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Dynamical localization of atomic-beam detlection by a modulated standing light wave
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The deAection of an atomic beam passing a standing-wave laser field in front of an oscillating mirror
occurs by chaotic diffusive momentum transfer in a classical description and, as we show, is limited by
dynamical localization quantum mechanically. An experiment to observe this quantum effect in an

atomic beam is proposed.

PACS number(s): 32.80.Pj, 42.50.Lc, 05.45.+b, 42.50.Vk

where p is the center-of-mass momentum of the atoms
(with mass M) and a~ are Pauli spin operators. In a
reference frame moving with v (2Eti/M)'I in the z
direction there remains only the transverse atomic cen-
ter-of-mass motion in the x direction and we can represent
the atomic state as tttg(x, t)~g)+ilt„(x, t)e ""' (e) with

equations of motion
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Here we neglect spontaneous emission from the upper
atomic level, which is justified for sufficiently high detun-
ing Bt tati —tot., Q/2 dhoti/h is the Rabi frequency.
Adiabatic elimination of the excited-state amplitude with
the assumption that the detuning bL is large compared to
the Rabi frequency O and the excited-state kinetic energy
term leads to
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where O„.ir O'-/bt is the effective Rabi frequency. (Note
that here we are not concerned with the diAerent problem
of chaos on the Bloch sphere of internal states [l I].) So
the dynamic of the atoms in the ground state —with an
energy shift of h O„tt/8 —is governed by the Hamiltonian

h Q„ir
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Since the probability to find an atom in the excited state is

negligible in our case, the properties of the atoms are com-
pletely determined by the ground-state amplitude. After
a rescaling t' tot, p 2ktx, p (2kL/Mto)p„and H'

(4kt/Mto )H, we get (rewriting t' t, H' H) thexe""' a++ H.c.j,

The deAection of atomic beams by interaction with a
standing light wave is an area of current theoretical [1,2]
and experimental [3,4] research, because it provides the
quantum-mechanical dual of diffraction of light waves by
a matter grating —the diffraction of matter waves from a

light grating. In the present paper we wish to investigate
the system under special conditions where a new eA'ect is
observable, namely, dynamical localization. This effect
has been discussed in model systems in "quantum chaos"
such as the kicked rotator [5] and atomic [6] and molecu-
lar [7] models. Furthermore, there is experimental evi-

dence [8] that it occurs in hydrogen atoms in Rydberg
states driven by a strong microwave field. According to
theory it should appear, under appropriate conditions, in

periodically driven quantum systems which are chaotic in

their classical limit. Proposals for observing the eA'ect in-

clude periodically driven Josephson junctions [9] and opti-
cal fibers with periodically varying index of refraction
[l0]. Here we wish to point out the deflection of a beam
of atoms passing a standing-wave laser field in front of an
oscillating mirror as an additional type of experiment in

which dynamical localization is predicted to appear. We
shall demonstrate the eA'ect theoretically and specify ap-
propriate experimental conditions for its observation.

Let us consider a beam of two-level atoms (states ~g),
and ~e) with energy diA'erence htoti, dipole momentum d),
which are initially in their ground state (g) and moving in

the z direction with kinetic energy Ee and are then pass-
ing through a single classical standing-wave light field

C(x, t) e, , [8ticos(kt x)e ' +c.c.]. We assume that
the x coordinate of the mirror, reflecting the incoming
traveling light wave —and thereby determining the posi-
tion of the nodes of the standing light wave —oscillates
around its average with ALsintot, so that the nodes are
harmonically oscillating in the same way, i.e., neglecting
retardation effects, C(x, t) passes into C(x ALsintot, t). —
This can be achieved, e.g. , by appropriately driving a
piezoelectrical crystal. The dipole and rotating-wave ap-
proximations then yield the Hamiltonian

2
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dirnensionless Hamiltonian

2

H = —k cos(p —
A. sint),

2
(3)

with the (classical) parameters k =e, Q,a/co and
-2kLAL, where e„hkL/2M is the recoil shift. The
quantized system in addition contains the rescaled Planck
constant k' 8a,/co via the commutator [p, p] = ik—Le. t
us note that the classical and quantal properties of (3) re-
cently have been discussed in connection with periodically
driven Josephson junctions [9]. The following analysis
closely follows the one given there. Our numerical exam-
ples are also taken from [9].

The classical Hamiltonian (3) is that of a periodically
driven pendulum and was analyzed, e.g. , in [12]. We
briefly review the results of [9] relevant to our present
purpose. The basic phenomenon described is the crossing,
twice during each period T 2n/co, of the fundamental
resonance at which p p A, cost. It is useful to distin-
guish the cases of slow (A./k & I) and fast crossing (X/k
» I, i.e., AL»a, Qdr/2kLro ) [12,13]. We will here only
consider the case of fast crossing. It is then possible to
neglect the rate of change (=k) of the pendulum fre-
quency (=Jk ) compared to the rate of displacement
(=X) of the fundamental resonance p accost [13]. Out-
side each crossing the pendulum is effectively free, but
each crossing acts like a sudden kick which randomizes
the total phase p =—(p —ksint)mod(2n) and changes p by
Ap= —42n(k/Jk)sin(p+'n/4) where the sign depends
on the direction of the passing of the resonance. The sys-
tem can therefore be described, in reasonable approxi-
mation, by a standard map [12] of the form p=p
—24~(k/JK)sing, P y+2np per period T 2n. From
this description the classical chaos border is derived as
k & JnX/40. A crossing of the resonance occurs only for

IpI &X. Chaos is therefore essentially restricted to this
domain. For our discussion of dynamical localization
below we shall require a large chaotic domain A, » I, i.e.,

AL»1/2kI. . In the chaotic domain p diff'uses with the
diffusion constant D 2(Ap ) (/2 nc/o) where (Ap ) is the
mean square of the change of p per half period. The
above description by a standard map yields roughly, for
k/JK» I, D=k /k. A more quantitative estimate
D (k /A, )F(4x'k/Jzk) with known function F of order
I is available [14] if required. Thus, classically the nor-
malized momentum for sufficiently many crossings of
the resonance (r ~ X /k ) spreads diffusively over the en-
tire chaotic domain IpI ~ A, . Momentum fluctuations with
root mean square ((p„))'~ =McoAL/J3 are therefore
predicted classically.

In the quantized system (3) dynamical localization
denotes the quantum-mechanical destructive interference
of the transition amplitudes with large changes of the
quantum number of p [15]. In particular the Floquet
states y„ i.e., the quasienergy states of (3), in the In) rep-
resentation, with pIn) knIn), fall off exponentially as

Iy, I-exp( —In —n„I/I) where I is the wave-function lo-
calization length. It is given in terms of the diffusion con-
stant D„of p over one period D„=2nD by I=Dp/2E .
Due to the 2n periodicity of (3) in p the fractional part of
the eigenvalues n is a conserved quasirnomentum which

we take equal to zero. Alternatively, one may leave the
quasimomentum arbitrary but fixed in the interval [0,1)
and take the average in the final results. An initial state,
localized near n =0 and given by a linear superposition of
about l' Floquet states, first spreads by classical diffusion
and then develops into an exponentially localized distribu-
tion I yI -exp( —

In I/lp) with a localization length lD=2l
[16]. Thus fluctuations of the transverse momentum are
quantum mechanically reduced to ((p ))' =AID/J2 [9]
or ((p,. )) '~ =(v2nh A„rr/64co )/AL. For fixed external
frequency, they decrease inversely proportional to hL,
contrary to the classical case where they increase propor-
tionally to AL. This finding provides us with a clear signa-
ture of the effect which should be observable, if the classi-
cal restriction of the Auctuations by the width of the
chaotic domain (=X/J3) is larger than the quantum re-
striction due to dynamical localization (=klz/J2), i.e.,
AL & (J6nh/64MQl ) n, s.

In order to demonstrate the effect we display the results
of some numerical simulations [9]. For simplicity time
was discretized and the Hamiltonian equations following
from Eq. (3) were replaced by a discrete, periodically
time-dependent, two-dimensional map, 300 iterations of
which correspond to a single period 2n/co. In the simula-
tions the quantum version of this map was used. As a
consequence of this discretization the spectrum of reso-
nances of the continuous system is repeated on the fre-
quency axis with a period 300co. As the simulations were
restricted to values X ~130 the chaotic domain IpI &A,

does not overlap with its repeated copies and the discreti-
zation, therefore, cannot significantly affect the results
while leading to an enormous saving of computer time. In
Fig. I we present (An ') versu-s time as measured in periods
of the mirror oscillations for A, =85.0, k =15.0, and

1.58 [9]. The initial sharp rise of (An ) from the ini-
tial state at n =0 by classical diffusion is followed by a lo-
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FIG. I. Mean square of the number of occupied levels of the
cosine potential vs the number N of periods of the mirror oscilla-
tions for A, =85.0, I. =15.0, and k =1.58.



DYNAMICAL LOCALIZATION OF ATOMIC-BEAM DEFLECTION. . . R21

20

15

10

5

I I I I I II . I Jl I I I I I 0 I I I I I I I I I I I I I I I I I I I I I

-100 -50 100 0 20 00 E0 80 100 120

FIG. 2. Logarithm of the time-averaged occupation probabil-

ity corresponding to Fig. 1. Dashed lines give the border

Inl &/k of the classical chaotic domain and the exponential
falloff with the localization length lg.

FIG. 3. Root mean square of the number of occupied levels vs

the normalized amplitude A. of the mirror oscillations for the
same values of the parameters k,k as in Fig. 1. Classical results,
indicated by e, are joined by a dashed line. Another dashed line

gives the analytical result for the quantum regime.

calized regime where (hn ) changes due to random beat-
ings of a finite number of Floquet states. Taking an aver-

age over the quasimomentum which was here taken as
zero arbitrarily, will smoothen out these beatings. ln Fig.
2 the time-averaged localized proability distribution over
the eigenstates of p which has established itself towards
the end of Fig. 1 is shown in a semilogarithmic plot [9].
The dashed lines give the classical border In I A/E and
the exponential falloff with the theoretically estimated lo-

calization length lD 2nk /M .
In Fig. 3 a numerical example [9] of our experimentally

accessible prediction is presented —the root-mean-square
transverse momentum fluctuations, expressed in fluctua-
tions of the quantum number n, versus the amplitude of
the mirror oscillations, expressed in scaled form by X,. The
values for k and k are the same as in Figs. 1 and 2. Also
shown are results of a classical calculation for the same
parameter values which are joined by a dashed line, for
convenience, and a dashed curve giving the estimate
hn lD/K2 J2nk /AP provided by localization theory.
The transition from classical to quantum behavior takes
place near Xv

= (J6n) ' k/(4) ' =33.
The experimental conditions under which the efl'ect

shown in Fig. 3 should be observable can now be summa-
rized. For example, for ytterbium atoms, optically
pumped to a two-state system (atomic frequency roti/2n
=5.40X10' Hz) and passing orthogonally a modulated
standing light wave with detuning bt /2+=4. 0 GHz (wave
number kt =1.13X10 m '), driving frequency of the
mirror co/2m= 125 kHz, and Rabi frequency 0/2ir =140
MHz, we have k=1.2, 4=0.24, and A, =2.26 x10
m 'hL. In order to observe the classical to quantum
crossover the amplitude of the mirror oscillations should
then be varied in the range 0.1-0.5 pm. The crossover
occurs at about 0.3 pm. The localization needs about lo/2

periods of the mirror oscillations to establish itself (cf.
Fig. 1). The interaction time of the atoms with the
standing-wave light field, t;„t, therefore has to be large
compared to ion/ro In. this example, lD=23 at the
classical-quantum crossover, which amounts to t;„t
&&90 ps.

The predicted effect rests entirely on coherence, there-
fore dissipation and noise have to be kept sufficiently low

[17]. This means that spontaneous decays of the upper
atomic level must be suppressed, which is achieved by de-
tuning sufficiently far from resonance. With the above
given parameters and a spontaneous decay rate of y/2n
=183 kHz, the number of spontaneous decays of an atom
during an interaction time t;„,=300 ps (which is attained,
for example, by ytterbium atoms of kinetic energy
Fo—1.4x 10 3 passing an interaction region of about 3
mm) is N (0/2) yt;„&/[(2bL) +y ]=0.03 and there-
fore negligible [4]. The measurement of the transverse
atomic momentum can be realized as in [3,4] without
back action on the system.

In summary, we have shown that dynamical localiza-
tion appears as a quantum effect in the classically chaotic
deAection of two-state atoms in the standing-wave light
field in front of an oscillating mirror, and we have de-

scribed conditions under which this effect might be ob-
served.
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