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Molecular theory of elastic constants of liquid crystals: Application to uniaxial phases

Yashwant Singh, Shri Singh, and Kumar Rajesh
Department ofPhysics, Banaras Hindu University, Varanasi 221 005, India

(Received 24 June 1991)

We use density-functional theory to derive an expression for the distortion free energy of molecular
ordered phases and expand it in terms of the order parameters characterizing the structure of the phase
and the molecular correlation function of an effective isotropic liquid. We derive expressions for the
elastic constants of the uniaxial nematic and smectic-A phases of the liquid crystals and express the re-
sults in terms of the spherical-harmonic coefficients of the direct pair-correlation function of the effective
isotropic liquid. These harmonic coefficients are obtained by solving the Ornstein-Zernike equation us-

ing the Percus-Yevick closure relation for a hard-core system and using a perturbation method for a
model system interacting via a pair potential that has angle-dependent attractive parts in addition to
hard-core repulsion. It is shown that the repulsive part of the pair interaction makes a dominant contri-
bution to the elastic constants of the liquid crystals.

PACS number(s): 61.30.By, 62.20.Dc, 61.30.Jf

I. INTRODUCTION

The understanding of the elastic constants of liquid
crystals is important for a number of reasons. In the first
place, they appear in the description of virtually all phe-
nomena where the variation of the director is manipulat-
ed by external fields (display devices) [1,2]. Second, they
provide unusually sensitive probes of the microscopic
structure of the ordered state. Valuable information re-
garding the nature and importance of various anisotro-
pies of the intermolecular potentials and of the spatial
and angular correlation functions can be derived from the
study of the elastic constants. Knowledge of the elastici-
ty of the liquid crystals is also needed in the study of the
order-parameter fluctuation and defect stability in them
[3]. Because of these reasons the study of the elastic con-
stants has drawn considerable interest in recent years
[3,4]. Most of the theoretical efforts directed towards de-

veloping molecular theories for the elastic constants are,
however, confined to the uniaxial nematic phase [5—13].

Starting with this paper we present a unified theory
based on the density-functional formalism [14] and ex-
press the elastic constants of the ordered phases (liquid
crystals, plastic crystals, and crystalline solids) in terms
of the order parameters which characterize the nature
and amount of ordering, and in terms of the molecular
correlations which characterize the structure of the sys-
tem. Note that the correlation functions of the ordered
phases (or inhomogeneous systems) are, in general, not
known and hence to be approximated. The integrals
which involve these correlation functions can be approxi-
mated by the integrals involving the correlation functions
of an effective isotropic liquid. The density of this liquid is
determined by a criterion [15] to be discussed below (see
Sec. II for details). The pair-correlation functions of the
isotropic fluid are found by solving the Ornstein-Zernike
equation using either the hypernetted chain or the
Percus-Yevick (PY) closure relations [16—18]. In this pa-

per, we confine ourselves to the uniaxial phases of the

liquid crystals and report result for the nematic (N) and
the smectic-A (SmA) phases. The other phases of the
liquid crystals will be treated in subsequent papers.

For a nematic phase with uniaxial molecular order, an
expression for the elastic energy in terms of the elastic
constants was derived by Osean [19]ad Frank [20],

b, A, =
—,
' f dr[K, (V n) +K&(n VXn)

+K3(nXVXn) ],

where n(r) is the director at point r and the subscript e
stands for distortion. In the limit of long-wavelength
elastic distortion, the elastic free-energy hA, is propor-
tional to q, where q is the wave vector of the distortion
and the elastic moduli K; are wave-vector independent,
giving rise to the terminology Frank elastic constants.
The first term in Eq. (1.1) gives energy associated with
splay, the second that associated with twist or torsion,
and the third that associated with flexion or bend. Thus
the Frank elastic constants K; characterize the free-
energy increase associated with the three normal modes
of deformation of the oriented nematic state. While for
systems considering the long-elongated molecules, Kz is
found to be smallest and K3 largest, i.e., K3)KJ )K7,
for the discotic nematic, Kz is largest and K3 smallest,
i.e., Kz )K, )K3. All the K,- are, however, found to be
of the order of 10 dyn.

The SmA phase has a liquid character along the plane
of the layer and responds like a solid to a force perpen-
dicular to the layers [1,2]. Thus, two very different situa-
tions arise: One is where the thickness of the layers is
strictly invariable, but they have curvature. The other is
where their curvature is small and partly relaxed by the
variation in thickness which describes small deformations
of the fundamental planar state. The free energy of the
distortion associated with these modes is thus written as
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(1.2)

where u (x,y, z) represents a small displacement of the
layers normal to their planes. In the SmA phase, twist
and bend deformations are prohibited since VXn=o.
This is because at each point n is normal to the layers.
Owing to the variation of u along Z, the following addi-
tional term may appear in the distortion free-energy den-
sity:

1—E'
2

$2u 1 $2u Q~u $2u

Qz2 2 Qz2 Qx2 Qy2
(1.3)

The contribution of these terms is expected to be small in
the limit of long-wavelength distortion and is generally
neglected. In Eq. (1.2) 8 is the compressional elastic con-
stant and has the dimension of an energy per unit
volume. Since E; has the dimension of an energy per unit
length, a parameter k defined as

A, =(Ei /&)'

has a dimension of length; A, is expected to be of the order
of molecular length [1].

A density-functional theory for the Frank elastic con-
stants of the uniaxial X phase was developed by Singh
[9—11] and others [8,12]. Their theory has been used to
calculate K; for a number of model systems using approx-
imate forms for the pair-correlation functions of the
medium [13,21 —23]. We, however, find that none of
these approximate forms of the pair-correlation function
gives the structure of the medium correctly [17] and
therefore the results reported by these authors are not ac-
curate. In this paper we use the weighted density-
functional theory [15] and express the elastic constants in
terms of integrals which involve spherical harmonic
coefficients of the direct pair-correlation function (DPCF)
of an effective isotropic system.

The paper is organized as follows. In Sec. II we use the
density-functional theory to derive a general expression
for the distortion free energy in the limit of long-
wavelength distortions. This is done by examining at a
mean-field level the entropic and energetic differences be-
tween the deformed and undeformed states of the ordered
phase. The entropic (usually referred to as the ideal gas)
part of the free energy does not make any contribution to

I

the distortion free energy. The energetic part is found by
an expansion about the free energy of the undeformed
state and replacing the DPCF of the ordered phase by
that of an effective liquid. The density of the liquid is ob-
tained by weighting the physical density over a physically
relevant range about the given point using a suitable
weight factor [14,15). In Sec. III we express the distor-
tion free energy in terms of the order parameters. The
subsequent two sections are devoted to the derivation of
the elastic constants of the uniaxial nematic and SmA
phases. In Sec. VI we evaluate the integrals which in-
volve the spherical harmonic coefficients of the DPCF as
a function of density for a model system and discuss the
relative contributions of different branches of the interac-
tions. The paper ends with a brief discussion given in
Sec. VII.

II. DISTORTION FREE ENERGY

The basic thermodynamic potential used to determine
the isothermal elastic properties of a system consisting of
X particles contained in volume V at temperature T, is
the Helmholtz free energy A. Elasticity is concerned
with the behavior of A [p] with respect to a small defor-
mation of the system away from its equilibrium state.
Such a deformation in the liquid crystals is caused by lim-
iting surfaces of the sample or by external fields acting on
molecules. In a nonuniform or ordered phase the free en-
ergy is a functional of the singlet distribution p(x) defined
as

p(x) =p(r, Q) = (N5(r —r')5(Q —Q') ), (2 1)

where 5(a b) is the —Dirac delta function and ( )
represents ensemble average over the positions r' and
orientations Q' of the N molecules in the system. The
vector I is taken here to indicate both the location r of
the center of a molecule and its relative orientation Q de-
scribed by the Euler angles 8,$,$. For an isotropic sys-
tem p(x) is independent of positions and orientations and
the free energy is a function of p. We use the notation

dQ=(1/Q)si n8d 8dgdf where Q=gn. for a molecule
of arbitrary symmetry and 4~ for a linear molecule.

In the density-functional formulation the free energy of
a system is expressed in terms of the direct correlation
function of the medium [14]. Taking a reference system
characterized by the singlet distribution p„(x) we find for
the excess free energy of a system of singlet distribution
p(x) as [14]

P&A [p]=PA [p]—PA [p„]=I3b, A [p„]—fdx, Ap(x, )f ds c'"(x,;[sp„])
—f dxi fd p(x2)exp( )fx2'ds s f 'ds'c' '(x, ,x~;[sp(x,s')]),

0 0
(2.2)

where

and

&A [p]=PA; [pl+PeA [p]

(2.3)

I

Here PA;d[p] is the free energy of an ideal gas of density
distribution p(x) and A is the cube of thermal wavelength
associated with a molecule

l3A;d [p]=f dx p(x) [ln[p(x)A] —1] p(x, s') =p„(x)+s'hp(x), (2.4a)



976 YASHWANT SINGH, SHRI SINGH, AND KUMAR RAJESH 45

where

bp(x)=p(x) —p„(x) . (2.4b)

Pb, A [p]= —
—,
' f dx, f dx2p(x, )p(x2)c(x„x2),

where

(2.5)

The functions c"' and c' ' appearing in Eq. (2.2) are, re-
spectively, the one- and two-particle direct correlation
functions of the medium. For a nonuniform system they
are functional of p(x) which we, whenever essential, indi-
cate by square brackets. The parameter s (and s') charac-
terizes a path in the density space along which integra-
tion is performed. Because of the existence of functional
A [p], the result is independent of the path of integration
[24].

If the reference density p„(x) is taken zero everywhere
we find from Eq. (2.2)

1 1

c(x,, x2)= dss ds'c' '(x, , x2, [ss'p„]) .
0 0

(2.6)

Note that Eqs. (2.2) and (2.5) are exact but need the value
of c' '. Assuming that one can calculate the values of c' '

for any density along the path of integration, Eq. (2.2) or
(2.5) provides a useful way for calculating PEA [p]. It is,
however, only for a uniform fluid that c' ' is found either
by solving the integral equation theories of the liquid
state or by computer simulations. We, therefore, write
(2.2) or (2.5) in terms of correlation functions of a uni-
form fluid. This is done in two ways: in one of the
methods we choose p„(x)=pI, the density of an isotropic
liquid which has chemical potential equal to that of the
ordered phase and perform the functional Taylor expan-
sion for c"' and c' ' functions in the ascending powers of
bp(x)=p(x) —pI. The expansion coefficients are the
higher-order direct correlation functions of the isotropic
fluid. Thus,

13(&A [p]—b, A [p„])=—fdx, Ap(x, )c"'(pI)
—

—,
' f dxi fdx&[bp(xi)5p„(x2)+5p„(xi)hp(xz)+bp(xi)bp(x2)]c'2'(p&)

,' f—d—x,fdx, fdx, [ 5p„(x, )[25p„(x,)bp(x, )+bp(xz)bp(x3)]

+&p(xi)[25p„(x2)b p(x, )+5p„(x,)5p„(x3)

+Ap(x )b p(x ) ] ]c' '(pI )+ .

with

(2.7)

5p„(x, ) =p„(x; ) —p&, c'"'(p&) =c'"'(x»x2, . . . , pI ) .

Note that for a uniform fluid, c'"(p&) is position independent and therefore, the first term on the right-hand side of
Eq. (2.7) does not make any contribution to the distortion free energy. In what follows we neglect all terms which in-
volve c'"'(p& ) with n & 3. Thus using the symmetry of the system we find for the deformation free energy,

Pb, A, [p]=P(b, A [p]—b, A [po])

,' f d—x,—fdx2[p, (x, )p, (x2) —po(x~)pp(x2)]c (xi, x2,'pf ) (2.8)

1pfp]= dx, f dx2p(x, )p(x2)co(x, ,x2;p),
po~

(2.9)

where po is the average density of the ordered phase and
tv is a weight factor. p[p] is viewed here as a functional
of p(x). To ensure that the approximation becomes exact

where b A [po] and po(x) are, respectively, the excess free
energy and singlet distribution of the undistorted ordered
phase. The subscript e stands for the deformed state. In
most of the calculation pI is taken equal to the density of
coexisting isotropic fiuid and, therefore, Eq. (2.8) holds
near the isotropic-liquid crystal transition point.

In an alternative approach one uses Eq. (2.5) to calcu-
late the excess free energy of a nonuniform system and re-
places the unknown function c' ' by the DPCF of an
effective isotropic reference fluid. For atomic systems a
number of schemes have been proposed to calculate the
effective density of the reference fluid. We find the
scheme of Denton and Ashcroft [15] particularly simple
to be extended to the molecular system. Thus,

—c' '(x, ,x2;p„)= lim
5( hA)

p-p„5p(x, )5p(x, )

exactly, one finds

(2.10)

co(x„x2;p)=— 1
P 'c"'(x, , x„.p)

26 a'(p)

+—
pea "(p)

V
(2.11)

where ha(P) is the excess free energy per particle and
primes on it denote derivatives with respect to density.
Thus we find from Eq. (2.5) the following expression for
the free energy of the deformed state:

I

in the limit of a uniform system, the weight factor co must
satisfy the normalization condition

f dxicv(x„xz, p) =1 .

Requiring that co satisfy
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Pb, A, [p]=f3(b, A [p]—b, A [po])

= —
—,
' fdx, f dxz[p, (x, )p, (x2) —p,(x, )p,(x2)]c"'(x»x2,p) . (2.12)

E, /V= —[AA, [p]+P( V, —V)],1
(2.13)

The e1astic constants are defined by the second-order
term of the expansion of the free energy of the deformed
state around the free energy of the equilibrium (unde-
formed) state in the ascending powers of a parameter,
which measures the deformation. The first term of this
expansion is balanced by the equilibrium "stresses" of the
undeformed state. One defines the elastic free energy per
unit volume as

I

tional, orientational, and mixed order parameters. There
can be up to (21+1) orientational order parameters of
rank I, although this number can be drastically reduced
by exploiting the symmetry of the ordered phase and its
constituent molecules.

In the limit of long-wavelength distortion the magni-
tudes of the order parameters are assumed to remain un-
changed. The changes occur in the direction of the direc-
tors making them position dependent and in the RLV's
G. The RLV's G, of the strained structure are related to
G of the unstrained structure as

where V, is the volume of the deformed sample and P the
isotropic pressure. G, ={I+a) ' G, . (3.4)

where e is a strain matrix which governs the change in
position. Thus for a deformed state

III. EXPANSION OF THE DISTORTION FREE
ENERGY IN TERMS OF ORDER PARAMETERS p, (x) =po g g QI „(G)exp(iG, r }D' „(0,} .

G l, m, n

(3.5)

p,(x)=p, y y Q, „(G)exp(iG r)D'„(.0),
Q l, m, n

(3.1)

A complete set of order parameters which characterize
the nature and magnitude of the ordering is found from
Eq. (2.1) when Dirac delta functions are expanded in a
complete set of basis functions. Thus using Fourier ex-
pansion for the spatial 5 function and the generalized
spherica1 harmonics for the angular 5 function, we get
[15]

All angles without subscript e refer to a space fixed (SF)
frame whose origin is located at r

&
. Let the molecule 1 be

at the origin with principal director n(r, ) pointing in the
direction of the SF Z axis and molecule 2 at distance r, 2

from the origin, where n(r2) represents the direction of
the local principal director (see Fig. 1). Substituting Eqs.
(3.1) and (3.5) into Eq. (2.12) and performing integration
over r, we find

QI „(6)=(21 +1)(exp( iG r')D—'*„(0')) (3.2)

where G are reciprocal lattice vectors (RLV's) of a
periodic structure present in the ordered phase and Z

A
h

n(r, ),&

are the order parameters. Equation (3.1) presents a gen-
eral expansion and holds for crystalline solids, smectics,
nematics, plastic solids, etc., as special cases. We note
that [14]

(3.3a}

1
Qppp(G)=p, = f fd—r dQ p(r, Q)exp( iG r},— h

Oq

2

QIOO(G) =
QG, ={2l+ I )~G,

2l+1
dr dQp r, Q

(3.3b)

Xexp( iG r)PI(cos8), —

{3.3c}

QI „(0)= f fdrdQp(r, Q)D'*„(0),21 + 1
(3.3d)

~here pG, Q, „(0), and 16t are, respectively, the posi-
FIG. 1. Definition of angular variables for two linear mole-

cules.
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Pb, A, [p] —,'p—ofdr, 2f dQ, fdQ2 g g g g Q( „(6)Q( „(—6)
ll, l2 ml, m2 nl, n2 G

X[D ' „(Q,)D ' „(Q2,)exp(iG, r, 2)

—exp(iG r12)D „(Q1)D „(Q2)]c (r12iQ(tQ2) ~

(3.6)

Let y(r, 2) be the angle between the principal directors at r1 and r2. Using the rotational properties of the generalized
spherical harmonic [26] we find

D ' „(Q2, )=g D' (by(r, 2)}D '„(Q2) . (3.7)

Since the isotropic Quid DPCF is an invariant pairwise function, it has an expansion in the SF frame of the form
I I

c' '(r, 2, Q„Q2)= g g g c(IIlzl;n'(nz, r, 2)cg(III&I;mImzm'}D ', , (Q, )'D ', , (Q2}"Yl .(r,2)',
mini m2n2

I
1 'I2, 1 m

I
'rn 2'm n

1
'n 2

(3.8)

where cg(11121;m('m 2m') are the Clebsch-Gordan coefficients, c (I', I'21;n', n 2, r, 2) the harmonic expansion coefficient of
the DPCF, and r,2=r,2/~r, 2~ is a unit vector along the intermolecular axis. When Eqs. (3.7) and (3.8) are substituted
into Eq. (3.6) and the orthonormality condition for the generalized harmonics is used

Pb, A, [p] 1= ——
po g g g g c (1,121;m, mm')Ql „(6)Q( „(—6)

(1'l2, l ml'm2'm'm' nl, n2 G 1 2

X f dr(2[exp(IG, 'r12)Dmm (by(r(2)) exp((G'r12)]

X Y(" .( r, 2)c ( I, 121;n, n 2;r, 2 ) . (3.9)

This equation presents a general expression for the distortion free-energy density in the limit of long-wavelength distor-
tion and is the principal result of this paper. We will make use of this equation to derive expressions for the elastic con-
stants of the different ordered phases in this and subsequent publications.

IV. UNIAXIAL NEMATIC PHASE

In an uniaxial phase the singlet distribution must be invariant under rotation about the director (Z axis) which im-
plies that m

&
=m2 =0. In addition, if the phase has a symmetry plane perpendicular to the director, only terms with

even I, and 12 will contribute. Thus

1—Pb~, [p]= —
—,'p'„g' g g c (1,11;Omm)

1/2
4~ A,

21~+ 1
Yl (by(r12) }—1 c (11121;n(n2', r12) Yl (r12), (4.1)

where p„ is the nematic number density and prime on the summation indicates that /, , 12 are even. If the system is

composed of cylindrically symmetric molecules the rotation about the molecular symmetry axis should not modify the
distribution, i.e., n, =n2=0. Since [26]

T

c (11121;n 1n2, r12 ) =
(21, +1)(212+1)

(4m )
1 ( ( 12) (4.2)

—Pb, A, [p]=—
—,'p21

we find that for a uniaxial phase composed of axially symmetric molecules, Eq. (4.1}reduces to

(21, +1)(212+1)
(4n )

PI PI
I 2

Xcg(11121;Omm) f dr12

' 1/2

21, +1 Yl (by( 12}} 1 I I( 12}Y( (r12} (4.3)

Note that by(r, 2) is the orientation of n(r2) with respect to n(r, ) which is taken to be along the Z axis of a space
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fixed frame. Without any loss of generality, we can confine the variation of n(r2) in a plane (say XZ). Thus

(~X(r(2))= Y(, (~8(r]2),0) . (4.4)

5 o+b8(r)b(, (5,—5,)+ —,'b8 (r)[b, 05 o+b( 2(5 2+5 2)]+

where

2l +1
b( 0= —

—,'12(12+ 1)

For small 60 we can expand the spherical harmonics in ascending power of 60 leading to

2I +I
Y( (68(r),0)=

'2 4m.
(4.5)

(4.6a)

212+1 (12 —1)!
b( (= b( (—= —

—,'12(12+1)
2

212+1 (12 —2)!
bl 2 bl 2 g(12 } 2(12+ }(12+

2 2-

(r z)

(r x)

For splay, twist, and bend deformations the deformation angle b,8 has been evaluated to order q to give [5,7]

—(r x) (r.x)
68(r) =r 0 and b8 (r)=r (r y)

(r "*)'

(4.6b)

(4.6c)

(4.7)

where x, y, z are unit vectors along XYZ axes. The subscript 12 has been dropped from r(2. Substituting Eqs. (4.5) and
(4.7) into Eq. (4.3) and integrating over r we get the following expressions for the Frank elastic constants [see Eq. (1.1)]:

l3K(= — —p„g' (2l, +1)' P( P( [ (&5b( Ocg(l(120;000)J( ( 0+[ ,'b( Ocr(1(—!22—;000)+~6b((cs(l(122;011)
1~ 2

+&3/2b( 2c (1,122;022)]J( ( 2], (4.8)

pK2= —
—,'p'„g' (21, +1)' 'P, P, [ b, ((cg(1,120&000)J, , o [b, o—cg(l(122;000)+&6b( 2cg(l, 122;022)]J( ( 2], (4.9)

1' 2

pK3 —p„p' (21( + 1 )' P( P( [ T&5b( Oc(((l(120;000)J( ( 0+ [b( ((cg(1,122;000) &6b( (c((—(l&122;011 )]J( ( 2]
1' 2

(4.10)

where

f dr c(r( ((r) ~

In Appendix A we expand the above expressions for PK; as

PK;= g PK, (1„12}

(4.11)

(4.12}

and

K, (2, 2) =K3(2,2)AK2(2, 2),
K2(2, 4) K2(4, 6) K2(6, 8)

K, (2,4) K((4,6) K, (6, 8)
~ ~ ~

3
'

and give explicit results for pK;(1„12)for 2 ~1„12~ 8. They suggest the following general relations:

K;(0,12)=K,(1„0)=0, (4.13a)

(4.13b)

(4.13c)

K3(2,4) K3(4, 6) K3(6, 8)

K((2,4) K((4,6) K((6,8)
~ ~ ~

0 (4.13d)
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V. THE SMECTIC A PHASE

Since the Srn A phase has one-dimensional positional ordering in addition to orientational ordering, one has, from Eq.
(3.9),

—f/EA, [p]= — p, g' g g Qkl Q kl c (/&/z/;Omm)[(2/&+1)(2/~+ I)]
V ' 8~ I I I k

l 2 g 2

x fdr
1/2

4m

212+ 1
exp(iG, z&~) YI (bg(r, z)) —exp(iGz, 2) cl I I(r) YI* (r),

1 2
(5.1)

where G =2nk/d . and G, =2nk/d. , ; d, and d are the interlayer spacing of the distorted and undistorted SmA phase
and k is a positive or negative integer, z, 2 is the translational coordinate parallel to the layer normal, and

Qpl
= ( 21 + 1 )Pl Qk p

=II z, and Qkl
= ( 21 + 1 )rkl are, respectively, orientational, positional, and mixed order parameters.

In writing Eq. (5.1) we have assumed molecules of the system to be cylindrically symmetric. Neglecting the coupling
between the distortions caused by the curvature in director orientation and dilation in layer thickness we find

A~—,' [p]= — p, g' g g Qkl Q kl cg(I, /zl;Omm)[(21, +1)(2/z+ I)]
I I I k

X fere""
1/2

Im(~X(r)) I cl I l(r)Ylm(r)
1 2

(5.2)

—Pa~I"[p]=—1

V

1 1

gyps X X g QkllQ —kl2 g I 2 ~

(21 +1)(2/ +1)ll, l~, l m k 1 2

] /2

x dr exp iG z&2
—exp iGz 2 cI I I r YI~ r (5.3)

Equations (5.2) and (5.3) represent, respectively, the distortion free energy arising due to curvature in the director orien-
tation and dilation in layer thickness.

Comparing Eq. (5.2) with Eq. (1.2) we obtain the following expression for K, :

4~
212+ 1

X fdr exp(iGz, 2) Yl (by(r)) —1 cl I I(r)Ylm(r) .

1
„, c (1,121;Omm}

1

4~ I I k
' [(2/I + 1)(2/z+ 1)]

' 1/2

(5.4)

A plane wave traveling in the Z direction is symmetrical about the Z axis and can be expanded as a series of Legendre
polynomials referred to this axis

e "=g (i)' (21'+ 1)j I, (Gr)PI (cose),
Is

(5.5)

where jl.(Gr) are spherical Bessel functions and 8 is angle between the Z axis and intermolecular axis r Thus from .Eqs.
(4.5), (5.4), and (5.5) we get

/3&I = —
6p' 2' X Qkl, Q-kl, (2/I+ I) '"(2/2+1) '

I ), l2 k

Xgi'(21'+1)' Jl'I I bl pc (/, 12/;000}5I(
1, 1'

1/2
21'+ 1

21+1 c (21'1,000)[ bI pc (1,121;000)—c (2/'I;000)

+2&6bI ~c (/, Izl;011)c (21'I;101)(2 g

+v'6bI ~c (I, /z/;022)cg (21'I;202) ]12g (5.6)

where

Jl I I fdr r~jl (Gr)cl I l(r)
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Using Eq. (3 4) we expand Eq. (5.3) in ascending powers of dilation parameter e=(deld —1). The term associated
with —,'e defines the bulk elastic constant B. Thus

PB = p, g' g QQki Q ki cz(l, lzl;Omm)[(21, +1)(2lz+1)] ' fdrr f dr G z, ze "ci I I(r}YI* (r) . (5.7)
1 ~ 2'

Using Eq. (5.5) we simplify Eq. (5.7) to give

pB =
—,'z(4m) '

p, g' g G Qki Q ki [(21)+1}(21z+I}]' J(' I
ii'(21'+I)'~ c (l, lzl;000)

11,12,11',k
' 1/2

21'+ 1
X Si( +2 c (21'1;000) (5.8)

The term proportional to e in the free-energy expansion is found to be

p~ 2' XQ/a Q —ki cz(l&lzl;Omm}G[(21&+1)(2lz+I)] ' f drz~ze "c» I(r)Y~~(r) .
l), l~, l k

t 2
(5.9)

When this term is set equal to zero for each 6, one finds a condition for equilibrium layer separation. To show this we
consider the free-energy density of the undistorted smectic phase

&W ~ =lzfd=
8 p, g' g g Qki, Q kl, cg(i~lzl;Omm)[(21&+1)(2lz+1)] ' f drci I I(r)exp(iGz, z)YI' (r) .

I &, 12, 1 m k

(5.10)

The interlayer spacing d is determined by minimizing b,fd with respect to G. Thus

iGzl~=fd= — ip, g' QQQ&I Q k& C (l&lzl;Omm)[(21&+1)(21z+I)] ' fdrci I (r1)z& Yz'I(r)e
l), 12, 1 m k

(5.11)

respectively, the length of the major (axis of revolution)
and minor axes of the ellipsoids. For u' ' we choose

for r ~D(r, Q&z}

0 for r & D (r, Q& )z,
(5.12a) u(Hc)(r Q Q ) (6.3)

which is identical to Eq. (5.9).
In Appendix B we write for the elastic constants of

SmA as
~&=X'X'~&i(li lz}

ll l~

and

(5.12b)PB =g' g' PB (lz, 1z )
1) 12

and evaluate the terms of these series for 0 1~, 12 4.

VI. RESULTS FOR A MODEL SYSTEM

with

u' '(r, Q„Q )=(u' '+u' "')(r,Q„Q ) . (6.2)

Here u ' '(r, Q „Qz ) represents the repulsion between
hard ellipsoids of revolution (HER) parametrized by the
length-to-width ratio xo=a/b, where 2a and 2b denote,

We consider a model system the molecules of which
have prolate ellipsoid of revolution symmetry and in-
teract via a pair potential:

u(r, Q, , Q )=( u' '+u'd '+u' ~'+u q ~')(r, Q, , Q )

where D (r, Q, z) is the distance of closest approach of two
molecules with relative orientation given by Q, 2 ap-
proaching in the direction of r (which is the unit vector
along the intermolecular axis). For D(r, Q, z) we choose
the expression given by Berne and Puchukas [27],

(r e, +r ez)
D(r, Q,z)=do 1 ——

1 +y(e, .ez}

1 2(r e —r.e )
—1/2

1 —y(e, ez)

(6.4)
where

x —12
0

2+ 1

e& and e2 are unit vectors along the symmetry axes of the
two interacting molecules.

For u' "' we choose a form given by Gay and Berne
[28],
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0 for r &D(r, 0,2)

u' "'(r, Q„Q~)= —e(r, 0,2)
dp

r D—(r, 0&2 )+do
for r ~D(r, 0, 2), (6.5)

where

e(r, Q, z) =e,(0,2)ez(r, Q, 2)

with

(6.6a)

and

e, (0, )=e [1—y (e, e ) ] (6.6b)

(6.6c)

Here E'p is a constant with unit of energy and

~1/2 ~1/2

~1/2+ 61/2

(r e, +r.e2) (r.e, —r e2)
e2(r, Q, 2) =1——y' +

I+y'(e, e2) 1 —g'(e, e2)

core repulsion in contrast to the Gay-Berne potential
which has a soft repulsion [like the Lennard-Jones (12-6)
potential repulsion but with angle-dependent length and
depth parameters given above]. This difference in the
repulsive part of the potential will, however, not aA'ect

the basic features of the result as the softness of the repul-
sive core is treated in the hard-core model using the
temperature- and density-dependent hard-core length pa-
rameter [21].

In Eq. (6.1) the terms with superscripts d-d, d-q, and
q-q indicate the interactions arising due to the dipole-
dipole, dipole-quadrupole, and quadrupole-quadrupole
interactions, respectively. The centers for the origin of
these interactions are taken to be the center of molecules.
Thus

(6.7)

where e, is the value for the depth of the potential for a
side-to-side configuration and e, the value for an end-to-
end configuration. A good representation of the interac-
tion is found by choosing e, /e, =0.2 for xp-—3. Note
that the potential given by Eqs. (6.2)—(6.6) has a hard-

u' q'(r 0 0 )=— f' ~'(6' O' P')

where

(6.8)

(6.9)
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FIG. 2. The body-fixed potential harmonic coefficients
ul' I' (r) for the dispersion interaction for xo =3. The numbers

I 2

on the curves represent the values of Il l2m.

FIG 3. The body-fixed potential harmonic coefficients
ui'"I' (r) for the dispersion interaction for x0=3. The numbers

on the curves represent the values of l, l2m.
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(6.10)

(6.11)

45

I

I

' sinO' cosO&

sO' —sin
. g' ing'cos~

' 3cos 1)—6 sing)s

2 cosO)co 2
f(d-d)(g' g2, (() )

. gi ~

g'COsg2COS4

. i ~

g'Cosg)COSg2C

'+3 cos

cos

2g' 1 )
—6 sin )sin 2

2, 2 16 sjng)sin 2

3 cosg', (3 cos 2

2, ~ 2g' sin g2cos (6.12)

(6.13)

r perturh

(Hc)+ c(p')(r, Q)~&a, (r, Q„Q»= '

(6.14)

f (g)~~2'~

2 ~ + 1'7 COS g)COS 2 +2 $1

use a flrst-

2O' 5 cos O2

ractipn, we use

t) —
1 —5 COS

F) frame
re ulsive &nter

f'q q'(g'1 g2 0
.

hod& fixed (B
11 d hY the harsh r P

easured in a o y-
il controlle y

All angles wi
of the iso«ppic q '

pf the system.
Sincee the structure o

l late the DPCF ory tp Ca Cuation torde

(p)(HC))(rQ), Q2)

jth

,(p), Q„Q, ) = —
) ("

where

' )/2II+1(2l)+1 2)(2l ' + 1 )(2l ) +
(2l, +1)(2l2+1) 000).()QQ)c (l2l2 2'C( 11g

(6.15)

1 pg
(HC) (r)2„p', , (r)2)g)"/ m"

' 2'1 'm m' m "l'l'm'
I II

2 2I
2

I'("I;m m m cgXg C(»'
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I246 = —J246+ 13J246+ 14J246 (6.17f)

(6.18a)

(6.18b)

as a function of density. The PK, of the SmA phase is
expressed in terms of these quantities (see Appendix B).
From these figures it is clear that at low densities all in-
teractions contribute almost equally but at higher densi-
ties (p ~0.28) the contribution of repulsive interaction
increases steeply and dominates over contributions o
other interactions. Note that the density p*=0.28 is
close to the isotropic-nematic transition density in a sys-
tem of HER of xo =3.0 [17].

In Figs. 10—13 we plot the values of

Mooo =Jooo 2Jooo
2

M022 2J022 7 022 +
7 022
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(6.18i)
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FIG. 13. Values of p* K»4 and p* K246 are plotted as a func-
tion ofp*. Other details are the same as in Fig. 4.

10.0—
—0.35

as a function of density. The PB of the SmA phase is
written in terms of I& I I (see Appendix B). From these figures it is obvious that the dominant contribution to the

compressional elastic constants comes from the repulsive
interaction. The terms which contribute most for all in-
teractions are those which involve Mooo and M022.

VII. DISCUSSIONS
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FIG. 12. Values of p*'K,4, and p*'K244 are plotted as a func-
tion ofp*. Other details are the same as in Fig. 4.

We have used the density-functional theory to express
the distortion free energy of an ordered molecular system
(plastic crystals, liquid crystals, and crystalline solids) in

f th order parameters characterizing t e phase
and the correlation functions of an effective aequi . e
density of the effective liquid can be found by any ver-
sions of the weighted density-functional formalism [14].
We found it easy to extend the formulation of Denton
and Ashcroft [15] developed for the atomic liquids to t e
molecular systems [17,25]. The expression of the distor-
tion free energy given by Eq. (2.12) or (3.9 is general and
is applicable to crystalline solids, plastic crystals, and
liquid crystals. In this paper we have considered the uni-
axial nematic and SmA phases and have derived expres-
sions for the relevant elastic constants in the long-
wavelength limit. Note that when the size of molecules
and/or molecular correlation functions become of t e
size of the wavelength of distortion, the elastic moduli
may depend on the wave vector [29].

The theory developed in this paper needs the value of
order parameters, spherical-harmonic coe cients of the
DPCF of an effective fluid as a function of temperature
and density and the information about the constituent
molecules, viz. , electric multipole moments, length-to-
width ratio, etc., as input information. In the limit o
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long-wavelength distortion it is assumed that the magni-
tude of the order parameters does not get affected due to
the distortion; it is only the direction of the directors
which becomes position dependent. Thus, one uses the
value of the order parameters determined either experi-
mentally or calculated from the theory. The c harmonics
for a given system are found either by solving the OZ
equation with suitable closure relations or by adopting a
perturbation scheme which is based on the fact that the
Quid structures at high densities are primarily controlled
by the repulsive part of the interactions.

Instead of calculating the elastic constants and com-
paring them with experiments we preferred to show the
nature of contributions of different branches of interac-
tions for a model system. This we do because of (i) the in-
herent inability to mimic the complicated molecular
shape of real systems by simple models and (ii) the poor
information available about the input data. %'e have,
however, shown elsewhere [21] that the elastic constants
of the nematic phase are adequately represented by the
simple models. This is because of the fact that the main
contribution to the elastic constants comes from the
repulsive part of the interactions. The dipole-dipole and
dipole-quadrupole interactions do not contribute.
Though the dispersion and the quadrupole-quadrupole
interactions contribute, their contributions in the density
range of the liquid crystals are small.
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APPENDIX A

In this appendix we evaluate the terms of series of Eq.
(4.13) for 2 ~ l

& l2 ~ 8. For the uniaxial nematic phase we
find

1/2
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APPENDIX B

PKi(2, 2)= 5
4m. Ps X~k2[ 220 7 222 9(p) I224]

k

(B1)

pK)(2~4)= —
p, g rk2rk4 ( —, ) I242+ —I244

15 1/2 3

2 VT &77

We give explicit expressions for a few terms of the
series of Eq. (5.12).

' 1/2

(A5)
+(—„', )' I246 (B2)
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PB(0,0)= P, g k PkM000,
1

12&sr
(B3) 3

PB (0,4) = —P, g k Pk Tk4M0444&~ '„ (B6)

PB (2,2) =—1 5
Ps X k ~k2I. M220 ( p ) M222

k

1
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' 1/2
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