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Mnlticritical behavior of Abrikosov vortex lattices
near the cholesteric —smectic- A —smectic-C' point
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The mean-field phase diagram of the cholesteric —smectic-A —smectic-C* (N*—Sm-A-Sm-C*) point is
derived within the framework of the chiral Chen-Lubensky model. We show that on the Sm-C* side of
the phase diagram, one or two additional twist-grain-boundary (TGB) (or chiral-smectic) phases will

occur. These additional chiral-smectic phases, the TGB& and TGB ~ phases, are highly dislocated ver-

sions of smectic-C and smectic-C* phases, respectively. According to the de Gennes superconductor
analogy, the grain-bc undary phase which occurred on the smectic-A side of the phase diagram (known
as the TGB„or chiral Sm-A *) is the analog of the Abrikosov vortex lattice in type-II superconductors.
However, the TGBC and TGB ~ phases would correspond to Abrikosov vortex lattices in a hypothetical

C

superconductor where the Ginzburg parameter ~ is negative and the photon has Bose condensed. These
additional phases are predicted to occur near the recently observed N*—Sm-A -Sm-C multicritical
point. We discuss the N*-TGB&, TGB„-TGB&,and TGB„-TGB ~ phase transitions. Because of the

twist, the XY-like Sm-A —Sm-C is (usually) replaced by the Ising-like TGB& -TGBc. However, if the Sm-
C* helicoidal pitch length is somewhat smaller than the cholesteric pitch length, then the TGB&-TGB&
transition would be replaced by the TGB&-TGB + transition.

C

PACS number(s): 61.30.Jf, 64.70.Md

I. INTRODUCTION

In the last two years there has been an effort by several
groups [1—5] to understand the effect of chirality on
smectic-A (Sm-A) liquid crystals. This work began with
two independent and nearly simultaneous events: One
was the prediction, by Renn and Lubensky [4], that chiral
smectics could exhibit a new highly dislocated Sm-3
phase called the twist-grain-boundary (TGB) phase. The
basis for this prediction was the de Gennes model [6]
which established a strong analogy (see Table I) between
the nematic (N) to Sm-A transition and the normal-to-
superconducting transition in metals. According to this
analogy, a transition between the cholesteric (N') and
Sm- A phases would occur either directly or would
proceed through an intermediate phase characterized by

a twisted lattice of screw dislocations (see Fig. 1). This
intermediate phase was, in fact, the analog of Abrikosov's
triangular flux vortex lattice [7,8] which occurs in type-II
superconductors in an externally imposed magnetic field.
Like Abrikosov's Aux lattice, the TGB would occur if
tc=A, lg, the ratio of the twist penetration depth divided

by the smectic coherence length, exceeded I/&2.
The other important development was the discovery,

by Goodby et al. [1], of an experimental candidate, the
Sm-A phase, first identified in the highly chiral homolo-
gous series 5-1-methylheptyl 4'- [(4"-n-alkoxyphenyl)
proppionoyloxyl-biphenyl-4-carboxylate] (nP1M7), with
n=13,14,15. Because x-ray studies on nonaligned sam-
ples together with textural studies indicated that the Sm-
2* simultaneously exhibited both smectic layering and
cholestericlike textures, Goodby et al. proposed that the

TABLE I. The de Gennes analogy between smectic-A liquid crystals and type-II superconductors.

Superconductor

/=Cooper pair amplitude
A =vector potential
B=V X A=magnetic induction
Normal metal
Normal metal in a magnetic field
Meissner phase
Meissner effect
London penetration depth, A,

Superconducting coherence length, g
Vortex (magnetic flux tube)
Abrikosov flux lattice

Liquid crystal

P= density-wave amplitude
n =nematic director
kp =n VXn=twist
Nematic phase
Cholesteric (N*) phase
Smectic-A phase
Twist expulsion
Twist penetration depth, A,2

Smectic correlation length g
Screw dislocation
Twist-grain-boundary (TGB) phase
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Sm- A * might, in fact, be the TGB phase. This
identification has since been confirmed by a high-
resolution x-ray study on aligned samples by Srajer et al.
[2]. The Srajer et al. study indicated that the Sm-A ' ex-
hibited many features expected for the TGB phase. In
particular, they found (1) long-range () 5000 A) Sm-3
correlations in the plane perpendicular to the pitch axis,
(2) smectic-layer normals uniformly distributed in the
plane perpendicular to the pitch axis, and (3) short-range
(185-A) smectic correlations along the pitch axis with a
Gaussian wave-vector dependence. All these observa-
tions are consistent with a twisted stack of two-
dimensional Sm-A slabs where the smectic order parame-
ter of a slab is a Landau-orbit solution of the linearized
Ginzburg-Landau —de Gennes equations.

The excitement of these discoveries has been further
heightened by the recent discovery by Slaney and Good-
by [9] of five new homogeneous series exhibiting the Sm-
A* phase. In several of these candidate materials, in-
cluding nP1M7 (see Fig. 2) the Sm-A ' phase is observed
to occur near a Sm-A —Sm-C* phase boundary [10].
This, we believe, is quite significant. To understand why,
we first reca11 that Abrikosov phases, such as the TGB,

occur only when the ratio of the twist penetration depth
A.2 to the smectic coherence length g is large. This result
together with the divergence of I~—=A,z/g at the Sm-
A —Sm-C phase boundary makes the appearance of the
TGB in materials like nP1M7 quite understandable [11].

In several of the compounds and mixtures exhibiting
the Sm-A * phase, one can infer the existence of a Sm-
A —Sm-A* —Sm-C* multicritical point. These systems
include mixtures of (15P1M7) and (902C14M5) mixtures
[12,9] as well as levo and dextro nP1M7 mixtures [13]. In
view of the existence of such multicritical points one
might ask whether the TGB phase obtained by entering
from the Sm-C* side is the same phase obtained by enter-
ing the Sm-A side. In particular, one might expect [14]
that entry from the Sm-C* side gives rise to a new TGB
phase consisting of Sm-C' (or perhaps Sm-C) like slabs.
One of the purposes of this paper is to investigate this
possibility.

In addition, we would also like to take advantage of
some unusual opportunities presented by the Sm-A —Sm-
A *—Sm-C* point. In particular, it offers one an oppor-
tunity to understand (1) how the Abrikosov fiux-
dislocation lattice behaves when a diverges (i.e., in the ex-
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FIG. 1. The twist-grain-boundary (TGB& or TGBc) phases

consist of a twisted array of infinite two-dimensional smectic
slabs which are stacked along the pitch axis P. In the inset we
see that between every pair of slabs there exists a grid of parallel
equispaced screw dislocations. These grids are known as grain
boundaries and, like the smectic slabs, also form a twisted stack.
The TGB phases are characterized by a nonvanishing twist and
long-range smectic correlations within the plane perpendicular
to the pitch axis. According to the de Gennes superconductor
analogy, the TGB~ is the analog of the Abrikosov vortex lattice
where the screw dislocation lines correspond to magnetic flux

vortices.
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FIG. 2. Phase diagram of binary mixtures of 15P1M7 and
902C14M5. These two compounds, respectively labeled A and

B, exhibit two distinct regions where the Sm-A * phase is ob-
served. For nearly pure 15P1M7 mixtures, one may infer a Sm-
A —Sm-3 —Sm-C* multicritical point. The figure is courtesy
of J. Goodby and A. Slaney. See Ref. [12].
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treme type-II limit) and (2) how it behaves when the
Meissner (twist expulsion) effect breaks down (e.g. , when
the Sm-C side of the phase diagram is entered). In a pre-
vious paper [5], we addressed the first question by exam-
ining the approach to the Sm- A —Sm-C boundary within
the framework of the Chen-Lubensky model of the chiral
N-A-C point. In this paper, we will continue our study of
the chiral Chen-Lubensky model in order to address the
second question.

We will find several remarkable features of the Sm-
A —Sm-A *-Sm-C' multicritical point. The first is that
one indeed finds new TGB phases here. In addition it
provides a fascinating example of multicritical
phenomenon involving Abrikosov vortex lattices. Final-
ly, the transition between (commensurate) TGB„and
TGBC phases may be the first theoretically described
structural phase transition occurring in a system with
quasicrystalline symmetry (see Appendix A and Ref.
[15]).

We should pause to explain why one should study a
model of the chiral N -A-C' point to understand the na-
ture of the Sm-A-Sm-A'-Sm-C* point. Indeed many
of the smectics exhibiting the Sm-A * phase often do not
have a cholesteric (N*) phase nearby. There are several
reasons for using an N*-A-C* —point model. The first is
that the chiral Chen-Lubensky [16] model of the chiral
N*-A-C* point provides a relatively tractable example of
a Sm-A —Sm-A *—Sm-C* point. In particular, the pres-
ence of weak smectic ordering, near a continuous N* to
TGB transition, will enable us to study phase transitions
between different TGB phases in ways which, otherwise,
would not be possible. The second reason is that one
needs a theory of the Sm-A -Sm-C' transition general-
ized in such a way as to describe the effect of a high den-
sity of dislocations. Of course, at suSciently high dislo-
cation densities (i.e., deep in the Sm-A phase, well away
from the Sm-A —Sm-A" transition) the dislocation cores
will overlap. The smectic order is then destroyed, leaving
only a uniformly twisted cholesteric. For this reason, the
cholesteric phase is a natural part of the phase diagram.
Moreover, as the chirality is turned off, the natural phase
diagram reduces to an N-A-C point. This does not mean,
of course, that the cholesteric phase is necessarily accessi-
ble in any given physical system.

As a result of this study, we will find that two addition-
al TGB phases may occur on the Sm-C side of the phase
diagram. Like the original TGB phase (the TGBz),
these additional TGB phases (the TGBc and TGB «)
consist of a twisted array of two-dimensional smectic
slabs, stacked along the pitch axis. The three phases are
distinguished by the nature of the slabs: TGB~, TGBC,
and TGB + consist of Sm-A, Srn-C, and Sm-C* slabs, re-

spectively.
The other principle results of our analysis of the chiral

N'-A-C* point are as follows. First we find that, with
decreasing temperature, the N*-TGBC transition as well
as the N*-TGB~ can occur. In addition, we find that
chirality will cause the Sm-A —Sm-C transition, near the
N-A-C point, to be replaced by a TGB~-TGBC transition
and (if Ki )K3 and Ki )K3) a TGBz-TGB « transition

as well. We will also show that the TGB~-TGBC, ac-
cording to mean-field theory, is a continuous Ising-like
transition. Finally, we will discuss the several unusual
multicritical points including, of course, the Sm-
A —TGBz —Srn-C point. These results, together with
those previously obtained for the Sm-A side, are shown
later in the mean-field chiral Chen-Lubensky phase dia-
gram (see Figs. 11—13).

The organization of the paper is as follows. In Sec. II
we reintroduce the chiral Chen-Lubensky model (first
considered in Ref. [16])and briefly summarize the results
obtained there. In Sec. III we consider the instability of
the cholesteric phase with respect to the development of
Sm-C slabs. This instability demonstrates the formation
of the TGBc phase at a temperature T,2. In Sec. IV we
first discuss Sm-C* dislocations and grain boundaries.
Then we will introduce the structure of the TGB +

phase. In Sec. V we discuss the phase transitions between
the TGB phases. It consists of three subsections. In Sec.
VA we consider the point-group symmetries of the
TGB„and TGBC phases. In Sec. VB we will derive a
simplified stability operator which describes the mean-
field TGB„-TGBC transition on length scales much
larger than the grain-boundary spacing. In Sec. V C we
will use it to analyze the TGB„-TGBC and TGB~-
TGB + transitions. Finally in Sec. VI we summarize our

results and make a few concluding remarks regarding
some simple characteristics that should aid in the experi-
mental identification of the new TGB phases. This paper
also has two appendixes. In Appendix A we discuss some
group theoretical issues that are raised by the
TGB„—TGBC transition. In particular, we show that
the spontaneous macroscopic symmetry breaking at the
TGB~ to TGBc transition will allow a second-order
TGB„-TGBC transition even in the absence of a broken
local symmetry. We will also give a symmetry
classification of the possible TGB„-TGBcorder parame-
ters. In Appendix B we discuss the mean-field equation
of state (i.e., twist versus chirality) of the TGB„phase.

II. CHIRAL CHEN-LUBENSKY MODEL

The Chen-Lubensky (CL) model has been successful in
explaining the experimental observations [17] of the N
A-C rnulticritical point. This model assumes that the x-
ray scattering intensity in the nematic phase are spots
along the director axis, if near the N —Sm- A transition, or
diffuse rings centered along the same axis, if near the
N —Sm-C transition. In the first half of this section, we
will reintroduce a covariant version of this model, which
we believe contains the essential physics needed to de-
scribe the effects of chirality on the N-A-C point. In par-
ticular, the covariant CL model reduces to the chiral and
covariant de Gennes model first used to study the TGB~
phase. In addition, it clearly demonstrates how Sm-A
changes from a type-I superconductor analog to a type-II
analog as the Sm-A —Srn-C boundary is approached.
Much is known from earlier studies about the Sm-A side
of the CL phase diagram. So we will review some of the
basic results [4,5, 16] of these studies in the second half of
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this section.
The covariant CL model may defined in terms of 6', the

Frank director and g, the smectic order parameter. The
latter is related to the molecular density p(r), according
to

p(r) =po+g(r)+Q*(r),

where the Fourier spectrum of g contains only those
wave vectors q with ~q~=q0=2rrld, where d is the
smectic-layer spacing. Unlike the usual smectic order pa-
rameter of the noncovariant de Gennes model [i.e.,
/=/exp( iq—oz)], P exhibits rapid spatial oscillations
corresponding to the smectic layering.

The Chen-Lubensky free energy can be written as a
sum of three terms,

PcL[0 n] =+de Gennes[0 n]+PD [0 n]+FFrank[n]

(2)

The first term of Eq. (2) is a covariant version of the de
Gennes model,

F........= fd'«rlOI'+-, 'glgl')

+ f d r[C~~R;h'j+CI'5;J(n)](D;f)(D g*),

(3)

where D=V —iqon, 5J(n)=5~ —6;fi'J, and r&=a(T
—T~„) with T~„being the mean-field N Sm Atran—si--
tion temperature. One should note that, even if the smec-
tic crystal is undistorted, g exhibits a rapid spatial oscil-
lation corresponding to the density wave. Therefore, to
obtain the usual de Gennes model one must replace g by
/exp(iqoz) and n by e, +5n, where e, is a unit vector in
the z direction. The second term of Eq. (2), i.e., FD, con-
tains the fourth-order-gradient terms needed to describe
the ring in x-ray-scattering intensity associated with
X—Sm-C pretransitional fluctuations. It is given by

c=(I—NN)n,

where N is the layer normal and I is the unit matrix. In
the absence of smectic-layer strain, the Sm-A —Sm-C
transition can be described using free energy of the form
F„c =~,c +g,c, where r, changes sign at the Sm-
A —Sm-C transition. In terms of de Gennes model pa-
rameters, one can show that r, =C&~$0~ qo. F„c exhib-
its an x-y symmetry which, of course, would be reduced
by imposing strain. Simply stated, strain aligns the c
director. This director alignment effect has important
implications for the TGB~-TGBC transition to be dis-
cussed in Sec. VA.

In addition to the A-C boundary, there are two other
second-order phase boundaries n this model. These are
the N —Sm-A, and the N-Sm-C boundaries given by
r =r~ ~ =0 and r =r~ c =

~ Cj ~
/4D„respectively. (See

Fig. 3.) For a more detailed discussion of the nonchiral
model the reader is referred to Ref. [16].

In the presence of chiral molecules, the phase diagram
is determined not by minimizing Fc„but by minimizing
the Gibbs density,

G =F —h f d rn. VXn .

The "external field" h, conjugate to the twist n V Xn,
will be called the chirality. In the absence of layering, the
cholesteric twist ko, and pitch length P are related to the
chirality by k0 =2m. /P =h/K2. However, as the temper-
ature decreases, layering occurs and the twist tends to be

P

Sm A Sm C

FD = f d r[D~5;J5ki(D;D, p)(DkDIQ)'] . (4) -C~ =

The last term of Eq. (2) is the Frank free energy describ-
ing the director elasticity

FF„„k=—,
' f d r[K, (V n) +K&(n VXn)

+K3[nX(VXn)] ], N

where K, , K2, and K3 are the splay, twist, and bend elas-
tic constants.

In the absence of chirality, the equilibrium phase dia-
gram is determined by minimizing Fcz. This gives the
phase diagram in Fig. 3. Observe the presence of the
Srn-A —Sm-C phase boundary at Cz =0. This can be un-
derstood by observing that gradient terms in F2 tend to
align the layer normal q parallel to the director n. For
C~ &0, 0 defined by cos(8)=q n is given by
tan 0=tan Oo—:—C~/(2D~qo ). In the literature, one
often finds the Sm-A —Sm-C transition described using
the c director which is defined to be the component of n
lying in the plane of the smectic layers, i.e.,

Sm A Sm C

0

FIG. 3. Mean-field phase diagram for the CL model in the

(r, CL } plane when 6=0. The phase diagram displays the
nematic (N), smectic-A (Sm-A), and smectic-C (Srn-C) phases.
Also present is the N-A-C Lifshitz point P, where the N, Sm-A,
and Sm-C phases meet. All the phase boundaries in this dia-

gram are second order.
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expelled. Indeed, in an undislocated Sm-A sample, twist
can only penetrate a distance

1/2 1/2

(&)
2Ciq ohio

E2g

2c,q,'~r~

As discussed in Ref. [4] the size of A,2 relative to the smec-
tic correlation length g determines the nature of twist ex-
pulsion. In particular, if the Ginzburg parameter

f(r)= g 1(oexP(iq't r+iqou; ).exP[ —
—,'(x —x;) /g ],

1/2

(9)
Ciqo

is less than 1/&2, then the expulsion is complete in the
sense that the system will either expel twist entirely or
will phase separate into cholesteric and smectic regions.
In this case the smectic is said to be type I. If, however,
ir) 1/+2 then the smectic is said to be type II. In this
case, the TGB„phase will occur, separating the
cholesteric and Sm-A phases on the (h, T) plane. This
phase consists of a twisted stack of grain boundaries each
consisting of a row of parallel equispaced screw disloca-
tions. (See Fig. 1.) As mentioned in the caption, this
phase is characterized by quasi-long-range Sm- A order in
all directions perpendicular to the pitch axis, but short-
range Sm-A correlations along the pitch axis.

Observe that the above twist penetration depth
diverges as C~ vanishes, i.e., as the Sm-A-Sm-C phase
boundary is approached. Consequently, the smectic
changes from type I to type II when Ct =QgK2/(2qo) is
approached. At this point, the first-order N*-Sm-A
phase boundary will bifurcate into a pair of second-order
phase boundaries (the X*—TGB„and TGB„—Sm-A).
These boundaries are called the upper critical tempera-
ture (T,2) and lower critical temperature (T„) lines, re-
spectively. (See the phase diagrams in Figs. 11—13.)
Near the upper critical temperature, the smectic order
parameter of the TGB~ is

(a)

Srn A

Slab
k%,

U S I E E RI
l4 0 ILL\I Jl

qo

become clearer from our discussion of Sec. V A, the mac-
roscopic properties of the commensurate TGB will often
exhibit a q-fold screw symmetry. If q&4 or 6, this sym-
metry is noncrystallographic and the commensurate TGB
is a type of quasicrystal. We see then that u, are phasons
of the quasicrystal. Of course, not all of the u; are in-

dependent phason degrees of freedom, since the energet-
ics will determine all sums g; u, , for which g, qI =0.

Next consider the x-ray-scattering intensity of the
commensurate and incommensurate TGB. The x-ray
scattering intensity of the incommensurate TGB is in-
tense on the surface of a Bragg cylinder of radius qo and
height 1/g. See Fig. 4. The x-ray-scattering intensity of
the commensurate TGB depends on whether q is even or
odd. If q is odd, Bragg spots occur at (Jko/p, Iqt ~ ), for
any integers J and I, and where q~ was defined follow-

ing Eq. (10) and where E =0, . . . , 2q —1. As can be seen
from the form of the TGB given in Eq. (10), only those
spots with I= 1 exist as T~T,2. For q even, spots exist
at ( Jko /p, Iqf ) where E =-0, . . . , q

—1, and where I is an
arbitrary integer but J is even. Again, only the I=1
spots survive in the T~ T,2 limit. The Bragg spots lie on

(10)
TGB

~Gaussian

where x, =ilb, ib -g:—1/Qqoko =&Pd /(2n. ), and
tII=qon(x;). Each term in this sum corresPonds to a
two-dimensional smectic slab of width g. The sum, of
course, gives the twisted stack of slabs structure of the
TGB„. u; is the displacement of the ith slab along the
smectic-layer normal. This form of the TGB~ was deter-
mined by a stability analysis [4] of the cholesteric, with
respect to the development of smectic layering. That
analysis was quite similar to Abrikosov's derivation of
the spatial dependence of the Ginzburg-Landau order pa-
rameter of the triangular vortex lattice.

One of the most theoretically interesting features of the
above form of the TGBz is that lb /P -&d/P /2m. is ex-
perimentally adjustable. A detailed examination of the
energetics reveals that there is a weak tendency for the
TGB to lock in at any given rational values of lb/P,
thereby producing a commensurate TGB. In particular,
if the TGB~ is locked into a state with lb/P =p/q, then
the angle between adjacent slabs is kol& =2m@/q. As will

0'(x)
(Slab Profiles)

FIG. 4. (a) A Sm-A slab and the corresponding x-ray-
scattering intensity. The latter is a pair of Bragg rods whose
height is inversely proportional to the slab width. They are
parallel to the slab normal and are displaced from the pitch axis
by +qoN=(2m. /d)N, where d is the smectic-layer spacing and
N is the layer normal. (b) The incommensurate TGB„phase
and the corresponding x-ray-scattering intensity. This is simply
an in-plane powder average of the rods shown in (a). We have
also plotted the order-parameter profile, i.e., ~fix) ~, of the stack
of slabs as a function of x, the pitch axis coordinate. The profile
of a (Sm-A) slab is the {Gaussian) Landau-orbit solution of the
linearized Ginzburg-Landau equations.
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a vertically stacked q-fold symmetric axial [18] lattice
[19]. The symmetry group of the lattice of Bragg spots
(i.e., the Laue group GI ) is D . The group D is generat-
ed by a q-fold rotation A about the pitch axis and a m.

rotation d about a dihedral axis perpendicular to the
pitch axis.

The detailed form of the phase diagram for C~ & 0 was
determined in Ref. [5]. Here we shall merely summarize
some of the main results. We found that the upper criti-
cal temperature is given by

CJ q p A /K 2, Cq &&D ~ q p k p

A Dgqo(h /IC2 ) Cy «Dgq oko

where A ' is a slowly varying function of CII /(2D~qo ) and

ko = h/E2. We also found that the lower critical temper-
ature is given by

rcl

d
Cj ))(D~~r~ )'

~C~ln~
' 2/3

(D ~PI )1/2
D 1/2

(12)

These results imply that the TGB~ phase occurs over a
temperature interval bT=BT~ „(ko/qo), where 8 is

a constant of order unity. Using this, we estimated that,
in nP1M7, the TGB & phase could occur over a tempera-
ture interval of roughly 10—20 deg, which is consistent
with the 7 C temperature interval observed in nP1M7.

III. FORMATION OF Sm-C SLABS
IN A CHOLKSTKRIC PHASE

Having reviewed the physics of the Sm-A side of the
CL-model phase diagram, we now wish to analyze the CL
model on the Sm-C' side (i.e., C~ &0) of the phase dia-

gram. This analysis will determine the nature of the
phase which develops when the cholesteric phase be-
comes unstable with respect to smectic layering.

We begin by observing that E* develops smectic layers
when some eigenvalue of the stability kernel

least stable modes is

P(r) =P ~(x)exp(iq~ r), (16)

n (xl
J'N

where the vector q~ lies in the plane perpendicular to the
pitch axis. Physically, we expect that P ~(x) will be large
only for x such that tan '[n(x).qz]=+8, where 8 is the
equilibrium angle between the layer normal and the
director in a bulk Sm-C sample. In fact, there are two
vectors, q~ =qj(O, cos(kox+8), sin(kox+8)), which are
simultaneously perpendicular to the pitch axis and are at
an angle 8 with respect to the director. (See Fig. 5.) Con-
sequently, there are also two Bloch functions P + (x}and

(x), which describe the two types of smectic slabs

that may condense near x.
Next we define H(Vj, B„):—[C+2)+r) and observe

that Pq~ (x) are eigenfunctions of H(qP, B„,x) which ex-
q&

hibits an explicit periodic (with period P) dependence on

the pitch axis coordinate x. This implies, according to
Bloch's theorem, that the spectrum of H consists of
bands and the corresponding eigenfunctions are of the
form u(x)exp(ikx), where u(x)=u(x+P). However,
one may verify that if kp ((qp, then the bandwidth is ex-

ponentially narrow. Therefore, we can consider the asso-
ciated Wannier functions to be a nearly degenerate set of
nearly exact least stable eigenmodes. Because these func-
tions (unlike the Bloch functions) are spatially localized,
one may then expand H in powers of ko(x —x). In the
language of quantum mechanics, this is merely expanding
about the potential well minima in an attempt to approxi-
mate H by a harmonic-oscillator Hamiltonian. For
C~ )0 this expansion indeed reduces H to the harmonic-
oscillator form. However, if C~ (0 the expansion yields

(13)

where

and

C —= —[C
II

8', 6'J'+ C~5;i ( n ) ]D; D, (14)
gP

2)—=D~DIDk5kI(n)5, "(n)D, D (15)

becomes negative at some temperature T,z(h).
In spite of this layering, the induced director distortion

5n is negligible near T,z since 5n =0 (PDf). So near T,z,

n(r) =no(x)—:[O,cos(kox},sin(kox)),

where 2m/kp =2~/kp =P. Since the only explicit spatial
dependence of the stability kernel is through no(x), the
kernel is translationally invariant in the plane perpendic-
ular to the pitch axis. This implies that the form of the

FIG. 5. The smectic-layering wave vector qI =q or q
These directions are obtained as follows. First, we demand that
less than (q, n(x )) equals 0, the angle between the smectic-layer

normal and the director in a bulk sample of Sm-C. Second, we

demand that q~ lies in the plane perpendicular to the pitch axis.
The latter condition is required by the translation invariance of
the linearized CL equations in the plane perpendicular to P.
These two choices for q, give two types of Sm-C slabs (+ or —)

which are related by a ~ rotation about an axis perpendicular to
the pitch axis. The latter is a symmetry of the TGB~ point

group (Dq) which is spontaneously broken by the Ising-like

TGB A -TGB& transition.
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—,
' co, = —2CJ (qoko ) 1+

4D~q p

DJ

2lc~lkoqo

~ 1/2 -

C
1+

4Diq p

P= D(q—k ) 1+2 C~
o o

2D ~qo

C2
H= r — + —,'pJ, [x +p(xp +p x)]

+P(x p +p x )+DJ p

where p = —i B„and the coefficients are

(17)

(19)

H, =P{q p +p q ),
H2= Pi (q—J'+~& 'e '+u'q»

H3=2Pp p

(23}

(24)

(25)

slab of Sm-C where the angle between the director and
the layer normal q~ is Oo, the bulk Sm-C director angle.
As discussed below, the p term causes the Sm-C director
angle to weakly deviate from this bulk value by
O((ko/qo ) ).

To proceed further we introduce the cannonical vari-
ables q =x +pp and p'=p. Then
H =Ho+Hi +H2+H3 where

(22)

+Cia(q
ii

—
q ) j

=DJ I/I p +const, (20)

where q~={0,qJ~( qJJ }. Now FcL r, c -—p because
5lcl-p for Sm-C-layer tipping. This should be com-
pared to the result obtained for C~ & 0,

FcL=C, I~I'p'+D, lel'p' (21)

This is proportional to p because Sm-1-layer tipping
gives 5lcl -p.

The second observation is that the eigenstates of H are
localized at x=0. This would imply a two-dimensional

Several observations about this expansion of H are in
order: The first is that no p term occurs in H. This
could have been anticipated by considering a derivation
of those terms which remain in the limit of infinite pitch,
i.e., no(x) =(0,1,0). In that limit, we may take
pqJ=exp(ipx), which corresponds to tipping the layer
normal along the x axis. The energy cost of this tipping
1s

FCL(qJ. s»= I(('I [Dx[(qJJ.+ax)' —qotan'~]'

and D~=D~ —
—,'p ~, . One may readily show that the

spectrum of Ho is EpK„; n =1, . . . where
' 4/3

kp C~ CIIEp=(4DJ qo) R
4Diqo 4Diqo

(26)

R( J,xl)=[(1+x)~)x~~xJ ]', R11d K„(n =1,2, . . . ) are
positive numerical constants. The scaling arguments
which give the spectrum of Hp may also be used to show
that H& 23 perturb the Ho spectra by O(Ep(kp/qp) ).
Their contribution to H may be neglected since P »d.
Hence the eigenvalues of the stability kernel in Eq. (13)
are s„=Ep[K„+O((kp/qp) )]. The layering instability
occurs when cp changes sign which occurs at
T=T,2= TN „+r,z—/a.

Comparing this result with that of Eq. (11) might sug-
gest that the two T,2 curves at Cj =0 are mismatched by
br-DJ(qpkp) . This is an artifact: When

I CJ I
& DJ qokp, the perturbation H, is no longer negligi-

ble and the above analysis breaks down. In fact, the re-
quired continuity of the spectral Qow of H implies that r,2

saturates when —Cj & D~q pk p, Therefore, we conclude
that

C2

. 4Di
c2

h
o(4DJ.qo )

qoE2

C C
R 2, 2, Cq »D~qpkpII

4D qp 4D qp (27)
—3 'Diqoko, Cq ((D~qoko .

Next we consider the eigenfunctions of Ho. These have a
finite width along the pitch axis which is given by

1/3 2 1/6
d qo D~qo

g =. 2' k, Ic I

1/&qpkp I CJ I «DJ qpkp

, ICil »Diqoko
(28)

The approximate eigenstates given in Eq. (16) are two-
dimensional slabs of Sm-C. Unlike the Sm-A slabs which
occur in the TGB~, the order parameter is not Gaussian.
We now observe that P(q), being centered at q=0, im-
plies that 4}(x},the corresponding eigenfunction of H pri-
or to canonical transformation, will be centered at

C~
0—Oo= —const X

2D~q p

—1/3 '
g 2/3
Ko

qp

CJ »Dzqoko (29)

where the constant depends on the ratio CII /4D~qo.
Therefore, if P »d, the director angle of a slab will near-
ly equal that of bulk Sm-C.

At the layering instability, slabs of this form nucleate
throughout the cholesteric sample until a one-

x =JM(p ). This, in turn, implies that 8=8o+kop(p ).
Using the scaling properties of the eigenfunctions, one
finds that
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dimensional lattice of slabs forms. This is the TGBc
phase. The smectic order parameter for the TGBc is

P(r) = g P(x —x, )exp[iq,—+ r+ iqou, /cos8], (30)

N C

+- 1

4D»qo

' 1/2 2
E2g—Cq +—

» 0 (3 ll)

3

(31)

Using Eqs. (27) and (31) we find that for small h,
r + + & r, 2 provided

K3
Cx ( (4D&q o )

2

(32)

This is the C» (0 analog of the Ginzburg criterion which
states that the fiux lattice can occur in a superconductor
only when ~& 1/&2. The T,z, T„and the T„(see Sec.
IV) lines will meet when C~ satisfies the equality in Eq.
(32).

IV. DISLOCATIONS AND GRAIN BOUNDARIES
AND THE Sm-C*-TGB + TRANSITION

In the preceding section we found that the N' became
unstable with respect to the formation of the TGBc
phase as T dropped below T,z(C~). Our next task is to
consider Sm-C* dislocations and grain boundaries with
an eye towards understanding possible TGB phases
which might be constructed from Sm-C*.

I

where u, is an arbitrary phason angle of the slab, x, =bulb,
and where lb-g, . As with the TGB„, the destructive
interference of the smectic order in adjacent slabs gives
rise to a row of screw dislocation lines with spacing
ld —d /( kolb ) ~ The large (i.e., extensive) number phason
angles in Eq. (30) are hydrodynamic Goldstone modes
[20] of both the TGBC as well as the TGB~ phases.

To prove (within mean-field theory) that the TGBc ex-
ists, one must demonstrate that this layering instability
(i.e., the X*-TGBc transition) is not preempted by the
direct N*-Sm-C* transition. The latter occurs at r +

given by
' 1/2

FIG. 6. The Sm-C* phase viewed as an incommensurate
smectic. Two sets of layers occur in the Sm-C phase. The first
are the smectic density-wave layers with spacing d. The second
consist of the constant orientation planes of the c director.
These are called helilayers. Their spacing P, is the periodicity
of the Sm-C* helicoidal modulation. A strained Sm-C sample
can be described by the displacements u

&
and u2, of, respective-

ly, the density-wave layers and the helilayers, along the z axis.
(See Sec. IV.)

Before beginning our discussion, it is useful to recall
[21,22] a few facts about Sm-C*. The undistorted Sm-C'
is identical to the undistorted Sm-C expect that the c
director twists around as one moves along the layer nor-
mal direction (z). More generally, a strained Sm-C'
crystal would be described by

c=c{sin I q, [z +u z(r) ] ],cos j q, [z +uz(r) ]],0),
where uz(r) is the displacement of the constant c planes
("heli layers" ). It is useful to view the Sm-C' phase as a
type of incommensurate smectic [23] where the spacing
P, =2m. /q, of the helilayers is incommensurate with the
density-wave layer spacing d. See Fig. 6. Of course, un-
like the usual incommensurate smectic, the ratio of the
two layer spacings d /P, is —10 rather than -2. Never-
theless, the two systems are formally very similar. In
particular, both exhibit similar long-wavelength physics
described by

F( &,uu )=zJd r( —' IB,(B, )u+K„(V&u&) +Bz(B,uz) +Kz(zV~u)z+D[V (u, —u )] ]

+8„(a,u, )(a,u, )+K„(V',u, )(V,'u, ) ), (33)

where u, (r) is the displacement of the density-wave lay-
ers. The elastic constants in F;„, may be calculated in
terms of the de Gennes model parameters. However, we
wish to merely note that B, and B2 are proportional to

and ~c(q, ) ~, respectively, and that D is proportional
to [g~ ~c(q, )) . Following Lubensky, Ramaswamy, and
Toner's [23] discussion of incommensurate smectics, it is
useful to introduce the phason and phonon variables:
u =(1—s)u, +suz and w=uz —u, . Of course, the Sm-
C' phason should not be confused with the TGB~

I

phasons discussed in Sec. II. If we choose
s =(Bz+8 &z )/(8, +Bz+28,z ), then the phason and
phonon variables decouple in the long-wavelength limit.
One thereby obtains F;„,=F, (u)+Fxr(w), where

F, =
—,'8„(Bu) +—,'K„(v~u) is the usual Landau-Peirles

smectic free energy and F„(w)=—,'D~vzw~ + —,'8 (B,w)

is an anisotropic XY model. The elastic constants of the
decoupled free energy are 8„=(8,+Bz =B,z),
8 =[s 8&+(1 s) Bz —2s(1 —s)8&z—], and K„=K»
+K22 =K,2. In the above expression for F;„„onenotices
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FIG. 7. The Burgers lattice of the Sm-C* phase.
b, = fdl Vu

&
and . bz = fdl Vuz are components of the

Burgers vector of the screw or edge dislocation. The topologi-
cally allowed dislocations have (bl, b2)=(nd, mP, ) and may be
represented as points on a Burgers lattice. The phonon and
phason components b„and b of a dislocation are the projec-
tions of the Burgers lattice point onto the b„and b axes shown
in the figure. Since tanPb is, in general, irrational, no disloca-
tion has b =0. As a result, all screw dislocations have logarith-
mically divergent energies.

that a rotation, of one set of layers relative to the other
(i.e., Vw=const), would cost a finite energy. Of course, a
rotation of both sets of layers, Vu =const, costs nothing.

In addition to having similar elasticity theories, the
Sm-C* and the incommensurate smectic phases have
similar defect structures. In particular, as one circumna-
vigates any line defect, u

&
and u2 must change by an in-

tegral multiple of d and P„respectively. This means that

It)dl. Vu, =b, =m;I;,

where l, =d and 12=P, . The vector (b„b2) is the
Burgers vector of the smectic. The set of allowed
Burgers vectors lies on the lattice shown in Fig. 7. Any
given Burgers vector can correspond to either a screw or
edge dislocation depending on whether the dislocation
line is parallel or perpendicular to the z axis, respectively.
The screw dislocation, with Burgers vector (d, O), is
known as a wedge-screw dispiration [24,25]. It has a
nematic core with a radius g and converts to an ordinary
Sm-A screw dislocation at the Sm-A —Sm-C' transition.
Dislocations with a Burgers vector (O,P, ) have Sm-A-like
cores with a much larger core radius r, . These disloca-
tions will, hereafter, be called "heliscrew dispirations. "
They disappear at the Sm- 3 —Sm-C* transition, and have
no analogs in the Sm-A phase.

It is worthwhile to mention how one constructs the
wedge-screw dispiration using a Volterra construction.
Usually a screw dislocation is constructed by shifting the
smectic on one side of the Volterra cut by a distance d
relative to the other side of the cut surface. However,
Kleman [24] has pointed out that the c angle would jump
by q, d across the cut surface. Therefore, to obtain a line
defect which is continuous across the cut, one must also
rotate the director on one side of the cut as well. We see
that this defect is simultaneously a wedge disclination as
well as a screw dislocation. Thus follows the name
"wedge screw. "

To discuss the energetics of these dislocations, it is use-
ful to define the u and w components of the Burgers vec-
tors: b„=—(1 s—)b, +sb2 and b =—(b2 b—, ). Using
F,„,(u, w), Lubensky, Ramaswamy, and Toner [23] have
calculated the energy of the dislocations occurring in in-
commensurate smectics. Their results give the wedge-
screw and heliscrew energies: ews=E„„+Dd In(l/g)
and EHs=e„„+DP,ln(l /rHs ), where l is the sample size.
Remarkably, the second set of layers causes the disloca-
tion energies to diverge logarithmically. The wedge-
screw core energy is

Ede„„= 1na.[1+0(c )] . (34)
2l

This is the contribution to the wedge-screw energy from
the dislocation core, i.e., the sample volume contained in
a cylinder of radius -A,z centered about the dislocation
core [26]. The heliscrew core energy e„„-f,rHs,

where f„,is the Sm-A —Sm-C' condensation energy.

The core size rHs of the heliscrew is not the same as the
core size of the wedge screw. rHs may be estimated by
minimizing the sum of phason and core energies with
respect to rHs. This gives rHs=DP, /(2f„+) which is

proportional to c within mean-field theory. With this
choice of rHs, the energy of a heliscrew becomes
eHs=DP, in(cpl /rHs ), where cp is some constant of order
unity. One may also calculate the energy of compound
dislocations, and use this to identify their relative stabili-
ty. Unfortunately, this task is complicated by the loga-
rithmic dependence of the dislocation energy on sample
size. One can, however, show that dislocations with
(b&, b2)=(nd, O) will fragment into n wedge screws. One
can also show, for an infinitely large sample, that disloca-
tions of the form (b„b2)=( nd, P, ) with—n large will

tend to fragment into m wedge screws and a compound
dislocation, ( n'd, P, ), —where n

' =n —m is the integer
closest to P, /d.

Next we consider the construction of an isolated twist
grain boundary. A grain boundary in Sm-C' consists of
interpenetrating rows of wedge screws and heliscrews.
The spacings between the wedge screws and between the
heliscrews must be chosen such that the grain boundary
rotates both sets of layers by the same angle 58. Other-
wise, the smectic layers and helilayers will not be parallel
far from the grain boundary plane which would cause the
areal energy density of a grain boundary to diverge [27].
In particular, if the spacing of wedge screws and hel-
iscrews is uniform (wedge-screw and heliscrew spacing
equal to ld and ld, respectively) then b.8
=2 tan '(d/2ld )=2 tan '(P, /2ld ). To calculate the
energy of an isolated grain boundary, one observes that
Fs (u) vanishes and, hence, only the phason strain ener-

gy contributes. The calculation of the phason strain en-

ergy is an electrostatic calculation in which dislocations
act like charged lines with linear charge density b . To
further simplify the calculation, we take advantage of the
smallness of Id/Id and replace the row of wedge-screw
lines with a sheet of uniform charge. One thereby finds
that the phason configuration of a grain boundary lying
in the xz plane with dislocations parallel to the z axis is
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2~n .
4n„. /n/ 1,

exp [ix —(sgnn)/yf], (35)

where n is summed from N—,„ to + N, „(excluding
n =0), where N, „-lz/rHs is an ultraviolet cutoff associ-
ated with the finite core radius of a heliscrew. Using Eqs.
(34) and (35), we obtain the areal energy density of a Sm-
C* grain boundary

tb

/ /
/

sl ~ II1 Ill~~ aaaaaa+4 WC Q s

I I II II I ~I'
%%%Ay@ ) p

asxo~~) l
GBEs..c* ws'

+ ln
27K

(36)
(H

b

where A is the grain-boundary surface energy and 50 is
the grain-boundary rotation angle (i.e., the smectic on
one side is rotated by an angle 58 relative to that on the
other side. ) In the above expression, the term propor-
tional to D includes both the dislocation interaction ener-

gy (mediated by the phason) and the heliscrew core ener-

gy. Unlike the energy of an isolated dislocation, the
grain-boundary energy is finite. The Sm-C* grain bound-
ary energy should be compared with that of the Sm-A
grain boundary

lnz .
A d 2m k~~

(37)

We see that the Sm-C* grain-boundary energy reduces to
Es „at the Sm-A —Sm-C" transition (as expected). We
also see that the Sm-C* grain boundary energy has loga-
rithmic corrections to the linear 68 dependence. The
681n(b, 8) dependence is a signature of the long-range
phason interactions.

One can now imagine forming a new TGB phase
(TGB +), consisting of a twisted stack of the Sm-C"

grain boundaries with spacing lb =1b =8/ko. There are,
however, other possible structures for a TGB +. To de-

scribe them, it is useful to define srnectic boundaries and
heliboundaries as grain boundaries consisting of only
wedge-screw or heliscrew dislocations, respectively.
Hence, the finite energy Sm-C* grain boundary is a heli-
boundary superimposed on a smectic grain boundary.
With these definitions, we can now introduce an alterna-
tive TGB + structure. The alternative structure is a

twisted stack of heliboundaries (with spacing lb ) super-
imposed on a twisted stack of smectic boundaries (with
spacing lb%lb ). (See Fig. 8.) This alternative structure
will have a finite energy density provided that the average
twist produced by the heliscrews, ko =P, /(lz lb ), equals
that produced by the wedge screws, i.e., ko =d/(lb/„). In
Sec. VB we will find a transition where the TGB~ be-

comes unstable to a TGB + phase with this second struc-

ture. In addition, we will find that near the
TGB„—TGBC transition lb —lz but I, »l, .

Let us now briefly consider a possible Sm-C —TGB
transition. Because of the logarithmic dependence of the
phason strain energy on the heliscrew spacing [see, for
example, Eq. (34)], the Sm-C* —TGB, transition is first

order. The Sm-C* —TGB + transition, like the

TGB~ —Sm-A, occurs when the chirality increases to

Srnectic layer
(density wove)

C
~ Heli layer

FIG. 8. The TGB ~ phase. This structure consists of ac
twisted stack of helislabs superimposed on a twisted stack of
smectic slabs. The layers in the smectic slabs are density waves,
whereas the layers in the helislabs are helilayers. As is evident
from the figure, the grain-boundary spacing of the smectic slabs

lb is much shorter than that of the helislabs lb . One could also
imagine a TGB ~ structure with lb =Ib . This would be the casec
if the TGB + were composed of the finite energy Sm-C* grain

boundaries. (See Sec. IV.) However, the theory discussed in
Sec. VB shows that, at the TGB&- TGB + transition, the

C

TGB ~ structure with l~/Ib -Qd/P, occurs.

some value h„where the Gibbs energy of the Sm-C* de-
creases with the addition of dislocations. One can derive
a formula for h, &

in terms of dislocation line energies, in-
teraction energies, and dislocation twist. However, the
resulting expression is not terribly useful, since the dislo-
cation twist and interaction energies are difficult to evalu-
ate. Nevertheless, one can argue that the TGB + —Sm-

C line joins continuously with the TGB~ —Srn- A line.
It is useful to define the h„ line as the union of all

smectic to TGB phase boundaries. On the Sm-C* side of
the phase diagram, the h, &

line would, therefore,
represent all instabilities of the Sm-C* phase with respect
to the formation of wedge screws and heliscrews. In par-
ticular, segments of the h, &

line on the Sm-C* side of the
phase diagram could represent Sm-C* —TGB +, Sm-
C' —TGBC, or even Sm-C* —TGBz transitions. These
h, &

line segments will connect the intersection of the
TGB~ —Sm- A and Srn- A —Sm-C * phase boundaries with
the interaction of the N'-TGB, and the N' —Srn-C*
phase boundary. (See Figs. 11—13.) In the discussion of
Sec. VC, we will develop a clearer picture regarding
which TGB phases are likely to be formed from the Sm-
C*.

V. THE TGB~-TGBc AND TGB„-TGB
TRANSITIONS

Even though the outlines of the phase diagram of the
chiral Chen-Lubensky model are beginning to emerge,
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there is still much to be done. In particular, we have not
yet considered the TGB„-TGBz transition. At this tran-
sition, it is clear that the director field of the TGB~ is ro-
tated, relative to the layer normals, about the pitch axis.
Yet there remains some fundamental questions. In par-
ticular, it is not yet clear what (if any) symmetry is bro-
ken at this transition. Nor is it clear when the TGB~-
TGB is replaced by a TGB~-TGB + transition. There

is, after all, a tendency for the chirality to produce Sm-
C'-like rather than Sm-C-like slabs.

The discussion in Secs. V A —V C is designed to answer
these questions. In Sec. VA we will determine the
TGB„-TGB& order parameter and discuss the various
symmetries which may be broken at the transition. In
Sec. VB we will derive a coarse-grained TGB~ stability
operator from the Chen-Lubensky model. Then in Sec.
V C we will analyze this coarse-grained stability operator.
This analysis will determine (1) the conditions required
for the TGB + phase to occur, (2) the location of the

TGB~-TGBC and the TGB„-TGB phase boundaries,

and (3) the structure of the multicritical points near the
intersection of the h, &

and Sm-A -Sm-C* lines.

A. Symmetry breaking at the TGB&-TGB& transition

At first glance, the symmetries of the TGB phases are
confusing: Spatially averaged observables of the TGB
phase, such as free energies, x-ray-scattering intensities,
and correlation functions, can exhibit noncrystallograph-
ic q-fold screw axis, even when local properties, such as
g(r) do not. One must, therefore, distinguish between
the symmetries of spatially averaged observables (known
as macroscopic symmetries) and the symmetries of local
observables. This distinction between macroscopic and
local symmetries is now understood to be a general prop-
erty of quasicrystals, incommensurate crystals [19], and
even ordinary crystals with screw or glide axes [28]. In
discussing such systems, the point group Hz of a phase
X, refers to all macroscopic point-group symmetries of the
phase. In particular, the point-group operation may
leave the system invariant only to within translations,
phason shifts, and so forth.

With this definition, we can now consider the point
group of the cholesteric and the TGB~. The cholesteric,
of course, has a continuous screw symmetry. However, it
is also invariant under d, a ~ rotation about an arbitrary
dihedral axis perpendicular to the pitch axis. The
dihedral symmetry d may be verified by examining the
effect of d, a ~ rotation on no(r) =(O, cos(kox), sin(kox))
about the y axis. Moreover, a m. rotation about any other
axis, perpendicular to the pitch axis, would also leave n
invariant to within a translation. The point group of the
cholesteric is, therefore, D „.

Next consider the point group of the incommensurate
TGB„, as described near h, 2 by Eq. (10). In particular,
consider the effect of a rotation % by an angle 2' about
the pitch axis, followed by a translation by lb along this

41 ~ 4l ~ 41 ~ 41 A
=P

4s ~ 1i ~
~ ~ ~ %P '~ 0P 0 ~

FIG. 9. (a) and (b) are schematic drawings of two TGBC
stacks. These are composed of a sequence of Sm-C slabs
separated by grain boundaries. Dislocations within a grain
boundary are denoted by a vertical row of dots. Although the
slab orientation twists around as one moves along the pitch axis,
we have for simplicity drawn the figure as if the dislocation lines
and smectic-layer normals were oriented along the page normal.
The arrow within each slab denotes the c director which prefers
to point either up or down. This refers to the tendency of the
twisting nematic director to, respectively, lag ahead or behind
the layer normals by 8=tan '(C~/2aygo). (a) consists of a fer-
romagnetic stack of up slabs, whereas in (B) there is an Ising
domain wall separating up from down slabs. The domain wall is
a high-angle grain boundary which is likely to be a common de-
fect of the TGBc.

axis. Together, these transformations have the same
effect as the replacement u;~u; &. One can also show
(for xo =0) that d has the same effect as u,.—+u;. Now
since the macroscopic properties of the incommensurate
TGB„are independent of the u s, A and d are macro-
scopic symmetries. Moreover, a given rotation about the
pitch axis can, to arbitrary precision, be written as % for
some n. Therefore we conclude that the point-group
symmetry of the incommensurate TGB&, like that of the
cholesteric, is D„. Of course, this does not imply that
the X to incommensurate TGB„ transition is necessari-
ly first order: The X*-TGB„ transition spontaneously
breaks the translation symmetry of the cholesteric.

Finally, we consider the commensurate TGB~ with
a=2np/q Th. e effects of % and d are as described
above. However, the macroscopic properties of the
TGBz depend on phason sums of the form g;~su;,
where S is any set of slabs such that g;~s q~=O. If q is

prime, the only such sums are T:g~
&

—u; and

D& u
& + q u;, where i = —00, ~ . ~, + ~ ~ In general, the

values of these sums depend on the detailed energetics
and are difficult to calculate [15]. However, if the D, are
all equal, then the TGB& point group is D, since T is an
invariant. If q is not prime, then additional phason sums
become observable. For example, if a =2m/9, then
the sums A =—u +u4+u7, 8 —=uz+u~+u8, and C:u 3 + u 6 +Q 9 are all observable. In this case, if A, 8,
and C are all distinct but the D s are all equal, then the
point-group symmetry is not D9 but is, instead, C3. In
the remainder of this section, we will restrict our atten-
tion to TGB~ phases with D symmetry.

We can now explain the following paper of "coin-
cidences" which occurred in the discussion in Sec. III.
The first was that the cholesteric became simultaneously
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unstable with respect to both slab types. The second
coincidence was that the slab-profile function for the two
slab types are equal. We now see why: The dihedral
symmetry takes a plus slab centered at x =x with phase u
into a minus slab centered at x'= —x with phase u'=u.
This explains why the two types of slabs are degenerate
eigenmodes.

Now suppose the TGBc consists of a ferromagnetic
stack, i.e., a stack of all plus or all minus slabs. [See Fig.
9(a).] In this case, we see that the macroscopic dihedral
symmetry of the TGB~ phase is broken at the TGB~-
TGBC transition. If we define 1V(r) to be the local layer
normal and c to be the c director defined in Eq. (7), then
the TGB„-TGBC transition (like the Sm-A —Sm-C tran-
sition) may be described using ( N X c) as the order pa-
rameter. The two transitions di6'er simply because the
TGB twists act as a nonordering Ising anisotropy on the
(xy-like) Sm-A —Sm-C" transition.

Based on the above discussion, we expect that Ising-
like domain walls can occur in the TGBc. These domain
walls, of course, divide the stack into sequences of slabs
of the same type (either + or —). Therefore, one might
ask whether the TGB& ground state consists of a stack of
like slabs (i.e., the ferromagnetic stack which was as-
sumed above) or whether it consists of an alternating se-
quence of plus and minus slabs (i.e., an antiferromagnetic
stack). (See Fig. 9.) This can be determined by the sign
of the domain-wall energy. Consider, therefore, the in-

teraction of two overlapping Sm-C slabs. A pair of like
slabs will give a smaller interaction energy than a pair of
opposite slabs, since the overlap of opposite slabs pro-
duces a higher density of repulsive screw dislocations.
Hence, the TGBc ground state is a twisted ferromagnetic
stack.

Since only macroscopic symmetries are broken at the
TGB„-TGBC transition, one may feel uncertain whether
the Landau criterion can be applied to infer the possibili-

ty of a second order TGB„-TGB& transition. As dis-

cussed in Appendix A, the group theory does, in fact, al-

low a continuous TGB~-TGBc transition in spite of the
absence of local symmetries. The discussion in the ap-
pendix also shows that several distinct TGB~-TGB&
transitions are possible. These transitions are dis-

tinguished by the point-group symmetry of the TGB&
phase. In particular, one may have transitions in which
the Dq symmetries TGB& phase is transformed into Cq

symmetric TGB&, where q =nq' for some n ~ 1.

stability operator, to remove the short wavelength (i.e.,

/bid ) spatial dependence.
Our analysis of these transitions begins with the Lon-

don approximation which assumes that the dislocation
core radius (-g) is smaller than the typical dislocation
spacing l. In this case, we may divide the Gibbs energy
into contributions associated with the dislocation core
and the exterior environment,

G (n, g) = g G„„(n,R;(s))+G,„,(n, l( ), (38)

where R, (s) is the coordinate of the ith dislocation. G„„
includes the core contributions to the dislocation line ten-
sion and curvature energies. However we can, in fact, ig-
nore the core energy near the Sm-A —Sm-C and TGB~-
TGBC phase boundaries (where x is large) because they
are much smaller than the exterior energy.

Before we can give a more explicit expression for G, we
need to introduce some notation which wi11 be useful in
characterizing unit-vector fields, such as the director &

and the layer normal N. If V(r) is such a vector, we may
write

V(r) =( I —V, )' (O, cos(kox +Pz), sin(kox +Pl ))

+Vx (39)

where v, =N, —4„
2 4

C
gy=Difoqo I+ ll

4D~q o

and

b, ~(V, x) =p,I

where ko is the mean twist of the TGB. We will call Pr
the phase lag of V and @v—= (Pv, V„) the phase-lag com-
ponents of V.

With this new notation, we now consider the detailed
form of G. In accordance with our approximation
scheme, we drop G„„and observe that G=G,„,(n, g)
consists of contributions from both FcL, Fp,»k, and the
chirality term. To calculate the contribution of FcL we
take ~g(r)~ =go. This gives

FCL= d & —,'v, ~~ V', r .v, +g~v, + & +g

(40)

B. Derivation of a coarse-grained stability theory
2—aX

+2D~foqo

—8 eo.V

—V.coco.V
(41)

In the next two subsections, we will generalize the
Chen-Lubensky analysis of the Sm- A —Sm-C transition to
describe the TGB~-TGBc and TGB~-TGB, transi-

tions. The purpose of this section is to construct a
coarse-grained stability operator y (V, r) describing in-

stabilities of the TGB~. This operator is obtained from
an approximation scheme which (I) neglects dislocation
cores, (2) take the amplitude of the smectic order parame-
ter to be fixed, and (3) coarse grains the resulting TGB ~

where eo—= (0, —sin(kox), cos(kox)), no=(O, cos(kox),
sin(kox)), and where p, =C~foqo. Note that p, changes

sign at the Sm-A —Sm-C transition. Next we expand

Fp„„& in powers of 4„
prank

—h d r n V Xn= d r 2@ n ~Frank @n+gf +nx

+( —,'K, ko —hko)],
(42)
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where

1

2M (x)

H. c.

h(np. V) ——,'(K, K—q)(ep V)B„

1

2M~(x)

(43)

with

V' 'V= —K~8 —V'(K3npnp+K2epep)'V
2M„(x)

(44)

—V V= —-'K, a„' —'V. (K3npnp+K, epep) V,
2M~(x)

(45}

and where h =h —K2kp+ —,'(K, +K3)kp and p,„;
=hkp/2. This exPansion of Fz„„k should be quite reli-
able near C~ =0, since 4„, the deviation of n from a uni-
formly twisting state, vanishes as dl /A, . One should also
note that the derivation of the above expressions did not
assume kp =k, ( =h /K2) as would be the case in the

N
absence of layering.

There are two additional features of EF„„&(V,x) which
are also worth noting. The first is h„„„k's long-
wavelength limit. In this limit, the (P, P) component of
EF„„&(V,x) vanishes but the (x,x} component does not.
This is significant. The vanishing (P, P } component
reflects the fact that 54=(0,1) is a rotation of the direc-
tor configuration, about the pitch axis, which costs no en-

ergy. By comparison, the nonvanishing (x,x) component
( =p,„;) suppresses deviations of the cholesteric director
out of the plane perpendicular to the pitch axis. The
second notable feature of AF„„k is the off-diagonal terms
h(np V). Under appropriate circumstances, they cause
4?„ to locally precess about the cholesteric director field

np as one moves along the np(r) direction. When kp=0,
this effect is responsible for producing a Sm-C*. Howev-
er, if kpAO, it will favor Sm-C' over Sm-C-like TGB
slabs.

Now combining FCL with FFrank. A n V X n gives

G,„,=F(k ) + J d r [—,'@„5„„„„(V,x) 4„
+ —,'v, 6&(V,x)v, +gf4„„+g&v,],

(46)

where gf
—= —,'(K2 —K3)kp and F(kp): &K2kp hkp

+r~fp~ +g~fp~ Now assum. ing that the chirality is
sufficiently small and noting that ~r~ ( ~r„~~O as h ~0,
we have ~r~ (&gK& /(D~qp). In this case, Eq. (46)
simplifies to

G,„,= Jd r [—,'@„.b,„„„„.@„+—,'p, v, +(gf@„„+g~u,)],
(47)

Where we redefined the zero of energy to suppress F(kp).
The quadratic part of this expression should be compared
to the free energy of a superconductor, i.e.,

G = J d'r (VX A)'+ H,„, VX A+ —,'p, v,
1 2 1

87TPp 47TPp

(48)
where p, is the superfluid density and where v, is the
superfluid velocity. The latter is related to the order-
parameter phase u by v,:—Vu —2ie A. Comparing Eqs.
(46) and (48), we see that the deviation of the director and
the layer normal corresponds to the superfluid velocity
vs

Now we turn to our stability analysis of the TGB„
near C~=O. For simplicity, we will take the smectic
order-parameter field to be held constant, so the stability
kernel

(50)

where f, 2(p„r&) are slowly varying functions of order
unity. For the purposes of our subsequent discussion, we
will take f, and f2 to be constant. The stability of the

@„(r)@„(r')
= [b,„„,„„(V,x)+p, I]+12gfn„5;","

+4g&(25;J.v, +u„u,j ), (49)

where 5'" =5;,5b . Unfortunately the spatial dependence
of the gf and g& terms make y '(r, r') into a type of
quasiperiodic Schrodinger operator. To determine
whether these contributions are significant, we compare
them with all the various terms that appear in the matrix
elements of h„„„z (e.g., p,„;, K2kpq„and ,'K3q, ). De-—
pending on the system parameters, these terms can be as
large as O(Kzkp). By comparing the h„„„zterms with
the gf term [which is -K2kp(kpl) ], we see that the
latter is smaller by a factor of O((kpl) ). Moreover, one
can verify that the gf term produces a fractional shift in
the TGB„—TGB + line which is of order O((kpl) ).
Hence, this term is negligible. Next consider the g&
terms. These are of order Djgpqp(kpl) Unlike the . gf
term, they are not higher order in the expansion in
powers of kp and, hence, will be included.

To at least partially take the g& terms into account, we
observe that the spatially dependent part of the g& term
oscillates with periods lb and ld. These periods (-200
A) are much shorter than the length scales of interest
[viz. , the Sm-C' slab width, and the cholesteric and Sm-
C* pitch lengths ()4500 A)] [29]. The oscillations are,
therefore, unlikely to have a significant effect. We will
simply replace the g& term by its spatial average. One
may wish to think of this as a simple coarse-graining pro-
cedure. Using the D symmetry of the TGB„, we can
write the averaged g& term as

25,, (4')+(4,4 ) =
—,'[f,5)+f,(o, );, ](kpl)
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TGB~ with respect to the TGBC and TGB, may, there-

fore, be studied using the approximate stability operator
—

1
—1

+xx +xp

+px and

1

2M(x )

= —
—,'K~8 +P(qko) x +—,'K3q +p, , (55)

=6F„„„(V,x)+p,'I, (51) y&„'= —ihq[1 —
—,'(koq) ]

—(a P—)iqkod, x

where p,
' =p, +(f& fz)(—kol) and where bF„„& is

defined like b,F„,„„[seeEq. (43)) except with p, and p,„;
being replaced by p,

' and p,'„;=p,„;+f2g&(kol), respec-
tively. The consequences of the coarse-grained stability
operator will be explored in Sec. V C.

C. Transitions among the TGB phases
within the coarse-grained theory

We will now begin the analysis of the coarse-grained
theory by discussing the least stable modes. Translation
invariance implies that these modes are of the form

n„(x)
exp(iq~ r)=@0(x)exp(iq~ r), (52)

where

'(B„,qj, x)@0(x)=A,@0(x) . (53)

If the least stable mode has q~ =0 and n„=O, then it de-
scribes the TGB„-TGBC transition. For q~WO, the least
stable mode describes the TGB~-TGB + transition. To
understand why a qj =0 instability corresponds to the
formation of the TGB +, we must first observe that

'(B„,q~, x+P)=y '(B„,q~, x). This implies that the
stability modes are Bloch functions, i.e.,
40(x)=exp(ikx)u(x) For q. &%0, the barrier heights of
the "potential" terms of y (B„,q~, x) will localize u(x)

within a slab of width g~ —"1/ 2nP/q~, inside . the
cholesteric unit cell [O,P). This localized mode is the hel-
islab which was discussed in Sec. IV.

To further simplify g ', we will assume that
P, /P ((1. But since pitch lengths of cholesterics tend to
be smaller than the Sm-C* pitch length, this may not ap-
pear to be a very physical limit. However, it does, in fact,
hold near a continuous (or weakly first order)
TGB + —Sm-C transition since P diverges while P,
remains finite. Moreover, we will argue that the TGB
does not exist if P, /P )0(1). Hence P, /P ((1, is
indeed, the relevant limit. It is also a particularly simple
limit, since the overlap of the wave function in adjacent
cells is small [ -exp —(P/P, )]. This, of course, means
that the bandwidth of the least stable band collapses. So
we may take the localized Wannier functions to be the
least stable modes and calculate them by solving the
eigenproblem with Mt, t(B„,x) expanded about the mode
center. Let q~=qno(x=0), then for x =0 we have

+0((koq) ), (56)

4o(x ) =uP' ' exp( —x '/4(~ ) (57)

as a variational ansatz. This variational eigenfunction
represents a TGB, helislab of width g~. In this hel-

islab, an amplitude ( lcl ) oscillation will coexist with the
c-director precession unless u„= iu&. If one thinks of the
twisting c director in an undistorted Sm-C* sample as be-

ing a circularly polarized waveform, then a state with
u Aiu

&
would look like an elliptically polarized

waveform. The elliptical, rather than circular, precession
is due to the Ising anisotropy discussed in Sec. V A. Now
if we move deeper into the TGB + phase, the elliptical

precession of the c director ~ould evolve as the director
amplitude grows and saturates. Indeed, if one assumes
that the c director amplitude is fully saturated, then the
Ising anisotropy would produce a helislab consisting of a
one-dimensional lattice of m walls separating distinct
smectic-C-like regions (i.e., regions where n„=O). How-0

ever, such behavior is of little concern since we are re-
stricting our analysis to the vicinity of the TGB~ -TGB

phase boundary.
Now using the variational eigenfunction, we wish to

determine the values of q and g~ which minimize (Mo).
To do this, we need the smallest eigenvalue A, (q) and the
corresponding eigenvector u of

where a—:—,'(K2 —K, ) and P= —,'(K, —K3). Note that all

these matrix elements are even in x which indicates that
the slab is localized about x=0. This, in turn, means that
at the center of the helislab, the helilayer normals are co-
axial with the director precession cone. However, as one
moves away from the helislab center, the layer normal
and the director precession cone axis will no longer coin-
cide. Of course, in an untwisted and unstrained Sm-C*,
the helilayer normal coincides with the precession cone
axis everywhere. These remarks should suggest an in-
teresting analogy between TGB + helislabs and TGB~
smectic slabs. In particular, the director and the layer
normal of the TGB~ slabs are analogs of the precession
cone axis and the helilayer normal.

The above simplified form of y '(B„,x) may be
thought of as a matrix version of the harmonic-oscillator
Hamiltonian. Unfortunately, it does not appear possible
to obtain the exact eigenfunctions analytically. In partic-
ular, the eigenfunctions are not Gaussian. Nevertheless,
it is clear that if qAO then the actual eigenstates of Eq.
(53) are bound states so one may use

1
+xx 2M ( )

Pg

= —
—,'K, a.'+ a(qk, )'x '+,'K, q '+ 2p,'„,+p,

m:—~ (ko lql )+2k,

(54) where

(58)
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C. C.
8
—'E x+—

x k 2
—'E&x +—i + sgnq

a . h a —P

(59) K
(IC K—

3 )(qko )

1/2

(62)

Minimizing A, with respect to x, we obtain x and the
helislab width

and

B(q)=2p,'„;xx+(p,'+ ,'K3—q )I, (60)

Now, given this gH, we wish to minimize A, (q) with
respect to q. (See Fig. 10.) To do this observe that

k+(q) = ,'Kx +——k,iqi+(p,'+-,'K, q')

+p,'„;+[(p,'„;) +(hq) ]'i (61)

8 I I I I I I I I I I I I I I I

and where x, defined by g&
——xko~qi, is not to be con-

fused with the pitch axis coordinate.
We first observe that if either E, & E3 or E2 (E3 then

the eigenvalues of m are unbounded from below. This
may been seen by taking x —+O. Although our harmonic-
oscillator approximation scheme breaks down for such
large slabs, this nevertheless implies that the slab width

gH is much greater than QP, P We. interpret this as in-
dicating that the TGB + is unstable with respect to
TGBc.

To simplify the remaining discussion of the eigenvalues
A, +(q), let K

&
=K2:K. The—n the eigenvalues become

,' V'K—(K—K3 )ko I ql
—h Iql+ (p,'+p.'.;)

+ 2E3q if q ) &kp
4

,'+—K(K K,—)k, ~I qiI+ p,'+ O (q')

if q (—,'kp .

(63)

So

[h —,'QK—(K K3)ko—]/K3 if q;„)—,'ko
qmin

0, otherwise . (64)

We see that a discontinuous change from the qAO insta-
bility to the q=0 instability occurs for kp=2q;„. This
allows us to estimate the critical cholesteric twist kf
above which the Sm-C* modulation is expelled. We find

k, =2h /3K =2k «/3 to within corrections of order

0 (K3/K). These results imply that if K3 (K then (1) the
TGBc separates the cholesteric from the TGB + and

that (2) a first-order TGB&-TGB + transition line, the
second-order TGB„-TGB& line, and the second-order
TGB&-TGB + lines intersect at a bicritical point. (See

Figs. 11 and 12.)

4—
lO

I

TGB A

B

Sm A

r
Bp

Sm C"

GB C

TGB C

I I 0
I I
i Type I

,
' Type II i

=-CL

-2 I

0
I i i i i I r i i i I

4
q/ko

FIG. 10. A plot of A,(q), the least stable eigenvalue branch
assuming QK(K —K3) =2K3 for h /(K3ko) =4.0, 4.5, 5.0, and
5.5. For the h/(E3kp)=4. 0 and 4.5, the minimum occurs at
q;„&0 which corresponds to a TGB& —TGB + transition.

C
However, for h /E3kp ~ 5, the TGB& -TGB ~ mode with

C

q;„%0 becomes unstable before the TGB&-TGBc mode with
q=0. Typically the TGB„-TGB + transition preempts the

C
TGB&-TGB& transition when P, /P is sufficiently small. This
theory describes a bicritical point where the TGB&-TGB~ and
the second-order TGB~-TGB ~ meet a first-order TGB&-

C

TGB ~.

FIG. 11. The phase diagram of the chiral Chen-Lubensky
model [i.e., of FcL=Fd, o,„„„+F~+F„„»z,defined by Eqs.
(2)—(5)] when K, and K2 & IC3. The TGB„, TGB~, and TGB
phases are grain-boundary phases consisting of stacks of Sm- A,
Sm-C, and Sm-C* slabs, respectively. In type-I liquid crystals,
the N*—Sm-A transition is first order. In type-II liquid crystals,
the TGBz phase intervenes between the N * and Sm- A phases.
From the Sm-C phase, one can enter either the TGB&, TGB&,
or the TGB ~ phase. The TGB&-TGBz transition is a second-

C
order Ising-like transition which spontaneously breaks the Dq
symmetric TGB& phase to a C, symmetric TGBc phase. The
TGBz-TGB ~ phase is first order near the

TGBz-TGB&-TGB ~ bicritical point. The N*-TGBz and the
C

N*-TGBc phases are second order.
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TGB A

BI--————I

Sm A Sm C

GB C

TGB C

of the H„ line is a first-order TGB~ —Sm-C*-phase
boundary.

To complete the phase diagram for E, =Ez & K3, we
must find the TGB„-TGB, line. Let p~(r&) denote the
value of p, at this line. Then using Eq. (64) for q;„and
setting A, (q) =0 we get

p. = —p,„,+ [h —
—,'+it. (Z —Z, )k, ]'—f, (k, I)' .

3

(66)
I I 0
1 I

Type I
i Type ll

I I 1

FIG. 12. Same as in Fig. 11, except assuming a long-range
repulsive interaction between dislocations which is proportional
to 1/rs with p& 1. The TGB„-TGB ~ line is now cotangent to

C

the Sm- A -Sm-C* phase boundary, which eliminates the
TGB„—Sm-C* segment of the H, &.

Unfortunately, without a detailed equation of state [i.e.,

kc(h)] near the TGB„-TGB, border, this result has

only limited value. One can, however, use it to obtain the
structure of the multicritical points near T, the intersec-
tion of the H, &

lines with the Sm-A —Sm-C' line. To do
this we rewrite Eq. (66) as

Next we consider the positions of the TGB~-TGB&
and TGB~ -TGB phase boundaries. By setting

(q=O)=0 one finds that the TGB„-TGB& phase
boundary is

h
Ps=

3

QE (K —K3 )

E3 2E3

XL, +0(ko),Ci Cii

Diqoko 4D&q o2

(67)

C~ = —const X 1+ D~koqo,II

4D~qo
(65)

where the constant is positive and proportional to
f, f2. For s—mall ko, this lies in a rather narrow strip,
about the Sm-A-Sm-C phase boundary (i.e., Ci=O). To
within the accuracy of the formulas, the TGB„-TGBC
phase boundary together with the two H„ lines intersect
at (presumably) a Liftshitz point located at

(Ci, r) ——(AiDikolgo ApD qic'k) .

A
&

and A 2 are expressions, of order unity, which depend
on C~~/4DiQo.

We can, now, draw a complete phase diagram when ei-
ther I(, &K3 or K2 &K3. See Fig. 13. Note that the
TGB&-TGBC and the Sm-A —Sm-C' lines intersect the
H„ line at different points. This indicates that a segment

lb Kqd
Xln

Id 2(h —h„)A,
(68)

which can be derived in the Ib, Id ))1, limit [see Eq. (95)].
One thereby obtains an explicit form to the TGB~-
TGB + boundary near the K, &

line

r, (Ci ) r„(Ci ) ——exp—
C,k', /(f id)

[r, i(Ci) r~, (C, )] '"—

(69)

where L (x,y) —= [1+const Xf, (1+y)/x] '. This indi-
cates that the TGB~-TGB line is on the C side of the
Sm-A —Sm-C' phase boundary. The latter is given by

p„c=h /(2k3 ). One can now use the equation of state

d ld E2d
ko= ln

~ 2(h —h )A,

r
~k

ru"

TG

Bl

TGB C

il
1 1 0
I I

,
' Type I,' Type Il',

= —CJ

FIG. 13. Same as in Fig. 11 except with K& and K2 & K3. On
the Sm-C* side of the phase diagram, the TGB + phase no

longer occurs.

Combining this with the observation that r„—r„c van-

ishes as T is approached, we conclude that the TGB~-
TGB + and the TGB„—Sm-A lines are cotangent.

Next we observe that the h, &
line is also cotangent to

the TGBz —Sm-A line. The question, therefore, arises
whether the TGB~-TGB lies above or below the h„
line in the immediate neighborhood of T. The answer de-
pends on the TGB&—Sm-C* line. If a segment of the h„
line lies above the TGB~-TGB + line, then the h„seg-
ment would be a first-order TGB& —Sm-C* transition
line. (See Fig. 11.) As one moves into the TGBz, across
such a first-order TGB„—Sm-C' line, ordinary and heli-
dislocations are spontaneously generated. However, the
dislocations would collapse to the TGB„with a finite

(lb, I~-A, ) spacing, destroying both the Sm-C and Sm-C
ordering in the process. If, however, the h, &

line is below
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the TGBz-TGBc line, then one no longer has a pair of
bicritical points separated by a first-order line. Instead
one has a tetracritical point where the two H„ lines (the
TGB,—Sm-C* and the TGB„—Sm-A), the Ising-like

TGB~-TGB +, and the xy-like Sm-A —Sm-C* intersect.

(See Fig. 12.) One can apply similar arguments to con-
clude that a first-order TGB~ —Sm- A would also split the
tetracritical point either into a pair of critical end points
(CEP) or a CEP and a bicritical point.

VI. CONCLUSIONS

We have largely completed the phase diagram of the
chiral Chen-Lubensky model. The principle results are
summarized in Figs. 11—13. The basic results are as fol-
lows: We have shown that the Sm-C* phase can exhibit
transitions to the TGB&, TGBc, or TGB +. In addition,

we find that both the N*-TGB~ and N'-TGBc transi-
tions are possible, but that the N*-TGB + does not

occur. In our discussion of the TGB ~ -TGBc and
TGB~-TGBc+ transitions, we argued that the Dq sym-

metric TGB~ would exhibit an Ising-like transition to
the C symmetric TGBc. We also showed that the
TGBA-TGBc is replaced by the TGBA-TGBce transi-

tion when the cholesteric pitch length I' increases beyond
-2P, /3, where I', is the Sm-C* pitch length.

In spite of these results the chiral N-3-C phase dia-
grams are incomplete in several respects. First, we have
not located the intersection of the TGBc-TGB and 0, &

lines. In addition, we do not know whether there exists a
tricritical point on the TGBc-TGB, line. (Although we

showed that this line was first order near the TGB„-
TGBc-TGB + bicritical point, one could easily imagine

that the transition becomes second order once the ampli-
tude of the c director saturated. ) In particular, one could
imagine a TGBc-TGB + transition where I', diverges

like the soliton spacing in the Frank-van der Meer mod-
el during an incommensurate-commensurate transition
[30].

Of course the most notable result of this study is the
existence of the two new phases, the TGBc and the
TGB,. (The latter occurs only when E, and Ez &K3. )

At the time of writing, these phases have not been ob-
served. Of course, if the new phases were found they
would be distinguishable from the TGB„by the existence
of short-range Sm-C ordering (detectable by x-ray scatter-
ing). However, one could not necessarily distinguish the
phases optically since the optical properties of the TGBc
would be quite similar to the TGB~. By contrast, the op-
tical properties of the TGB + should be quite distinct
from both the TGBz and TGBc. In particular, one
might hope to observe, in the TCiB , an optical analog
of the TGB Bragg cylinder. It is hoped that this work
will inspire experimentalists to hunt for these new phases.
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APPENDIX A: GROUP THEORETICAL CONSTRAINTS
ON THK TGB ~ -TGB ~ TRANSITION

In this appendix we wish to consider the consequences
of the macroscopic TGB symmetry on the TGB„-TGBc
transition. We begin our discussion by defining the
point-group operators d and Re in terms of their action
on the director and smectic order-parameter fields,

d n(r)=( n„(—d r), n~(d~r), —n, (d r))

—:R '(d )n(d r), (Al)

d l((r):—P(d r) (A2)

and

%en(r) —=R e 'n(R&r),

RsP(r) =P(Rsr),

(A3)

(A4)

where R & is the matrix which rotates vectors by an angle

8 about the pitch axis and where d„r=( —x,y, —z).
However, for the following discussion, it is convenient to
define d and %& in terms of their action on the phase lag

V

components of n,

d 4„(r)=—(P„(d r), n„(d~r))

DQ '(d )4—(d r),
JP&4„(r)—= (P„(Rer)+8,n„(R&r))

Do '(Re)4—(Rr)+(8,0),

(A5)

(A6)

where DD(%e)=I and D0(d )—= I define a r—epresenta-
tion of D„.

Next consider the stability kernel y '(r, r') of the
TGB„phase with order parameter go(r) and director
field @0(r),

X+0+0 X@0/0

X/0+0 X$0$0
(A7)

where

5F
5/0(r)5it0(r')

' (AS)

iO (k —k')
y~~(gk, gk') =DD(g)y~~(k, k')e

and

(A10)

etc. Below we will prove that, if the macroscopic proper-
ties of the TGB~ phase are invariant under some point-

group symmetry, then
iO (k —k')

y~~(gk, gk')=[D
0( gg}qq( k, k')D 0 (g)]e

(A9)

The author would like to thank Tom Lubensky, Ming
Huang, David Mermin, Jay Patel, and John Toner for

ie (k —k')
y~~ (gk, gk'} =y~~ (k, k')e (A 1 1)



970 S. R. RENN 45

where 8s(k) is a phase transition which may be calculat-
ed from go and @0.

To prove the above identities, we first observe that the
invariance of F under a point-group element g implies

F [@„(k),p(k)]=F [Do '(g)@„(gk),p(gk)]

=F[DO '(g)4„(gk)e ',g(k)],

G' eL

where

'(k+ G, k +G')

X[D '(g)V (g(k+G')}]e

=A[D '(g)V (g(k+G))]e ', (A19)

(A12}
'(g) =

Do '(g) 0
(A20)

where the last identity is valid for any 8 (k) which is
linear in IC over the reciprocal lattice of (@,1it). Note
that (A12) is valid independent of the form of 11 and @.
Now since Po and Co describe a phase with the macro-
scopic D symmetry, one can readily show [19]

g(gk) =g(k)e (A13)

and

Do '(g)@ (gk)=exp[i8g(k)]+I &(g)@&(k)
p

and

(A21)

Hence, the eigenbasis transforms according to an irreduc-
ible representation of the (generally nonsymmorphic)
space group, i.e.,

ig (k)
R '(g)n(gk) =n(k)e (A14)

g (gk) =exp[i8 (k) ] g I &(g)g&(k),
I3

(A22)

or equivalently

Do '(g)4„(gk) =4„(k)e (A15)

In the above results, the phase function 8g(k) is (1) linear
in k, (2) defined on all reciprocal-lattice vectors, and (3)
satisfies the group compatibility conditions: 8s g (k)g)g2
=8 (gzk)+8 (k). In general, the phase function will

gi 2

depend on both the space group of (lito, @0) as well as the
phonon-phason configuration. If we now twice function-
ally differentiate Eq. (A12) about $0 and 40 one obtains
Eqs. (A9) —(A 1 1).

Next we consider the eigenfunctions of g '. Let

where V(k)—:(4,g (k)) are the director and order-
parameter components of the stability mode, and where
the matrices I (g) form some irreducible representation of
D .

It will be useful to have the explicit form of the repre-
sentation matrices I (g) for the group generators d and

A~. The one-dimensional representations of D are listed
in Table II. There are either q

—1 or q
—2 two-

dimensional representations of D if q is odd or even, re-
spectively. These are [31] EI, with 1=1,2, . . . , q

—1 or
EI, with 1=1,2, . . . , (q/2) —1,(q/2)=1 for q odd or
even (respectively). A simple form of the EI representa-
tion is given by the following matrices:

d r'g 'rr'V r' =AV r (A16)

exp(2m il /q) 0r (x)= 0 exp( —2nil /q)
(A23)

where V (r) (a= 1, . . . , D), are a degenerate set of D ~ 1

least stable eigenmodes, and let y '(k, k') be the Fourier
transform of y '(r, r'). Then the quasiperiodicity of g(r)
implies that g '(k, k') vanishes unless k —k'EL, the
TGB~ reciprocal lattice. Consequently we can write the
mode as a Bloch function

and

1 0
~Ei 0 1

(A24}

With the above results, we can now investigate the
ramifications of the D symmetry on the TGB&-TGB&
transition. Near the transition

V (r)=e g V (k+G)e'
6eL

(A17) @(r)=4c(r)+ga 4 (r),

where gG ~
V(k +G)~ will be finite if the mode is extend-

ed, and diverges if the mode is localized. In general, the
set of vectors I k, a = 1, . . . , D] is symmetric under the
point group D .

Observe that Eqs. (A2), (A4}—(A6), together with the
Fourier transform of Eq. (A16), i.e.,

'(g(k+G), g(k +G'))V (g(k+G'))
G' EL

=A,V (g (k +G )), (A18)

imply

11(r) =go(r)+ g

aors

(r),

where 110 and 4o are the smectic order parameter and the

director field of the TGB„. Now Eqs. (A12), (A21),
(A22), and (A25) imply that F[a ]—:F[4,$] equals

F(ga&l & (g)). These point-group symmetry conditions

are identical to conditions familiar from the theory of
phase transitions occurring in systems with symmorphic

space groups.
Using the explicit form of the I z matrices, one may

I

readily show that the Landau expansion contains no odd
terms for any of the E representation order parameters.
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TABLE II. The group characters for the representations of Dq. There are two or four one-dimensional representations for q odd
or q even, respectively. The representations for q-odd representations are given in (a) and the q-even representations are given in (b).
In both tables, C(g) denotes the class containing the group element g. The group characters for the higher (i.e., two-) dimensional
representations are not needed for the discussion in the text and have, therefore, been omitted.

A1
A2

C(rq )

(a) q odd
C(rq ) q/2 )q C(dy )

A1
A2

B1
B2

C (I) C(rq)

1

1
—1
—1

C(rq)
(b) q even

C (Pq/2 1)

1

1

1 )q/2 —
1

( 1 )q/2 —1

q/2)
q

1

1

1 )q/2

( 1 )q/2

C(d r ')

1
—1

1
—1

C(d r '+')
q

1
—1
—1

1

Moreover, inspection of Table II quickly reveals that
only a Landau theory corresponding to a transition de-
scribed by the A, representation (no-symmetry breaking)
can exhibit a Landau expansion with odd terms. Howev-
er, the A, representation is ruled out since the TGB&-
TGB~ transition breaks dihedral symmetry.

From the above discussion, we see that mean-field
theory will predict a second or a first-order transition de-
pending on the nature of the quartic terms. However, in
the limit of large pitch (i.e., P) l)), the quartic terms
reduce to those describing the Sm-A —Sm-C transition.
Therefore, in that limit, we predict that the TGB~-
TGBc and TGB&-TGB + will be of the same order as

the Sm-A —Sm-C and Sm-A —Sm-C* transitions, respec-
tively.

Finally, we wish to determine which representations of
Dq describe a possible TGB„-TGBc order parameter.
Only the A z and Ei (1 = l, . . . ) representations break all
of the dihedral symmetries necessary (and sufficient) to be
TGB„-TGBz order parameters. Of course, these choices
describe rather different transitions. In particular, the
A 2 describes a transition to a TGBc Phase with Cq sym-
metry, whereas the EI representations describe transi-
tions to TGBc phases with C ~ symmetry, where q =nq'
for some integer n&1. In the Secs. VB and VC, we con-
structed a mean-field theory of the TGB„-TGBc and
TGB~-TGB + transitions from the de Gennes model.
That theory described a TGB&-TGB& transition with an
order parameter transforming according to the A 2 repre-
sentation.

APPENDIX 8: MEAN-FIKLD EQUATIONS OF STATE
FOR THE TGB~

F;„,= fd q m( —q) U(q) m(q)
1 (Bl)

where

with

U(q) = U, (q)e, e, + U, (q)ejej

E2q2+K3q &

U, (q)=
q

2 $2q 2 +$2q 2 +
(B2)

Ei(q2/qi ) +E3
U, (q)= 2 2

[&&(qz/q&) +&3q ]+l
(B3)

F;„,/0= —dh/(lbld)+ fd q
(2m )3 1+(A,j2q)

(B4)

Now consider the TGB„structure with a dislocation
configuration given by

R&~(s) =plbx+ (kid+ u&~ )e2(p)+se, (p) .

e=noXq/~n&Xqi, and ej=qXe, /~qXe, i. The above
expressions are defined for a coordinate system where no
point along the 1 direction and q lies in the 1-2 plane.
Adding the contribution of the (linearized) chirality term
to the above result, gives the TGB~ interaction energy
provided that both kol'((1 and koi. ((1. If we restrict
ourselves to a configuration of straight and nearly parallel
screw dislocations, then Eq. (Bl) easily reduces to

We wish to calculate the twist as a function of chirality
[i.e., ko(h)] using a London approximation. The interac-
tion energy for screw dislocations may be calculated
within the de Gennes theory for untwisted smectics
linearized about n=z. This has been done by Day, Lu-
bensky, and McKane [32]. They found, in the absence of
chirality, that

In this expression I,

e, (p) =(0,cos(pk, l„),sin(pk, lb ))

and

ez(p ) =(0, —sin(pk, lb ),cos(pk, lb ) ) (B6)
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form a right-hand triad. We also note that the index kp
denotes the kth dislocation in the pth grain boundary.
Next we define the contribution of the pth grain bound-
ary to the dislocation density

dR„(,(s);q.R (,
m (q~)—=dg wads

" e
k ds

(87)

—iq r&d r~e 'm(r~, x) .

Reexpressed in terms of m~ (q~), Eq. (84) becomes

This is related to the previously defined dislocation densi-
ty m(r) =m(rj, x) via

m(q(, x) = g m~(q~)5(x —
x~ )

K, 1, m (q).m (
—q)

2g2 ~ (2 )2 ( 2+ 7 2)1/2

Xexp[ —(q +A2)' ~x„—x~ ~] .

(88)

The dislocation interaction energy of the TGB depends
on whether the ratio of I(, /P is a rational number or not.
If a = I(, /Po =P /Q, a rational number, then the
intergrain-boundary terms of Eq. (88) (i.e., those with
p&p') will have contributions with nonzero q. These
contributions are energies associated with the interdigita-
tion of dislocations in pairs of distant grain boundaries.
This weak interdigitation energy can be shown to pro-
duce lockin at all rational values of n. Here we shall re-
strict ourselves to irrational lb/Pp. In this case

Flat E2 I„ [1—e ' 'cos(kol(, )]
(d/ld) g E o( nl de 2) + —1+

b 2 n=1 [1—e " 'cos(kol(, )] +e ' 'sin (kol(, )

(89)

where ICO(x) is the Bessel function with an imaginary ar-
gument.

In the limit where lb and ld ))d kplb &&1. If we also
suppose lb and Id » A,2, then the TGB free energy
simplifies to

FTGB

Q

SC2d2

2lb I„A,2

I—
Ib /k2

e +
2-~,

c., —hd

1/2 —
ld /k~

e

(810)

ETGB
l 2 , +(&, p)/(1(, 1d ) . —

(ld lb )
(812)

Let 1:—Ql(, ld. Then Eq. (812) implies that
' 1/2r2d

h —h, )

(813)

and

Minimizing the above expression in terms of lb and ld,
one finds that

lb K2d
Ib =A,2ln

ld 2(h —h, )k~
(811)

ld K2d
I„=x2ln

~2 2(h —h„)7(.2

Evidently one obtains a continuous transition in this ap-
proximation although it may be difficult for many experi-
ments to distinguish it from a first-order transition. We
should also note that Eq. (Bll) may be obtained using
ko=d/(l(, ld ).

It is also interesting to consider the A,z))Ql(, ld, limit,
where we can expand the right-hand side of Eq. (88) to
obtain

2nd 2m'p="d = (814)
lb ld h hc]

It is unfortunate that the higher-order corrections in
I/A, 2, which are required to give the lattice spacing ratio
R, are fairly difficult to evaluate. However, preliminary
numerical studies indicate that Ib, ld, and I differ by fac-
tors of order unity. Finally we note that Eq. (Bll) and
(813) match continuously at 1-A,2.

The above story is modified by several effects that have
been ignored. A particularly interesting one is associated
with the smectic-layer compressibility [33,34]. It can be
included by replacing the smectic-layer spacing d by
d'=d/(1+v), where v is a compressional strain, and by
adding —,'BI~U . One may then integrate out the strain to
obtain

E.ff
0

K2d

2lbldk2

c., —hd

lb ld

I—
l~ /A, 2e +

2~~

2
S

2BlllIbld

1/2
—l /A,d

(815)

I,„ l „2~g Bllln v

d Bq
(816)

To get some feeling for the lengths involved, suppose
d=40 A and A, =90 or 185 A. In these two cases Eq.

in the limit where Ib and ld &)A,. This differs from Eq.
(810) by a long-range attractive interaction. The attrac-
tion is proportional to 1/I and, hence, dominates the ex-

ponentially screened repulsive interactions. Because of
this, the TGBz —Sm-A transition becomes first order. In
particular, as h ~h„, I tends to some finite I „instead
of diverging logarithmically. We may get an order of
magnitude estimate of l,„by equating the twist repul-
sion term with the long-range interaction term. One finds

that
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(B16)would be I,„/A. 2= 8.9 and 7.3, respectively.
A second e6'ect which has been neglected is the long-

range entropic repulsion between dislocation lines. Un-
fortunately, a discussion of thermal fluctuations and the

energetics of bent dislocations is well beyond the scope of
our discussion. So we will simply note that such a long-
range repulsion will tend to make the TGB~ —Sm-A tran-
sition either second order or more weakly first order.
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