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Fluids confined to narrow pores: A low-dimensional approach
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A fluid physisorbed in a narrow pore forms a nearly one- or two-dimensional monolayer, depending
on the pore geometry, when the characteristic dimension of the pore is only slightly larger than the
molecular size. In such cases, previous work shows that the average density of an adsorbed phase in
equilibrium with a bulk phase can be predicted by treating the adsorbate as a low-dimensional (low-D)
fluid, when the adsorbate density is low. For example, a fluid of hard spheres adsorbed inside a narrow
planar pore resembles a fluid of hard disks. We improve the low-D model by regarding the adsorbate as
a polydisperse fluid constrained to a lower dimension; thus, molecular size in the lower-dimensional
space replaces the adsorbate position in the dimension normal to the adsorbate surface in the true
geometry. The size distribution in the pseudo-low-D mixture is not chosen arbitrarily, but specified by
the equilibrium condition between the low-D mixture and the bulk fluid. This equilibrium condition fol-
lows naturally from the formalism of the semigrand canonical ensemble, which provides a convenient
thermodynamic description of polydisperse mixtures. The mapping of the adsorbed phase onto a po-
lydisperse low-D fluid is examined for examples of hard-particle fluids. We report the average adsorbate
density relative to the density of a bulk fluid in equilibrium with the adsorbed phase. The polydisperse
low-D model provides a better representation of dense adsorbed layers than the simpler low-D model
throughout the entire range of applicability of the models, as demonstrated by comparison to Monte
Carlo simulations. The theory also fares better than a well-regarded smoothed density-functional theory
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in predicting density profiles for hard spheres in very-narrow-slit pores.

PACS number(s): 61.20. —p, 64.60.Cn, 68.45.Ax

I. INTRODUCTION

A fluid permeating a porous solid may differ markedly
from a bulk fluid in structure and, consequently, in ther-
modynamic properties, if the molecular dimensions are
comparable to the characteristic dimensions of the pores.
The thermodynamics of fluids confined to narrow pores is
relevant to a variety of physical phenomena including gas
adsorption in porous media, capillary condensation,
chromatography, membrane transport, tertiary oil
recovery, and adsorption in soil. Here, we employ theory
and computer simulation to examine physisorbed molec-
ular systems that are strongly confined [1]; that is, at least
one of the spatial dimensions available to the adsorbate
molecules is so restricted that the adsorbed fluid resem-
bles a one- or two-dimensional film, depending on the ad-
sorbent geometry. Natural examples of two-dimensional
adsorbed layers are found in the interstices of layered
compounds like clays and hydrotalcites [2]. The struc-
ture of zeolite compounds [3] and a recently synthesized
antimony sulfide compound [4] possess molecular-sized
channels that could impose a nearly one-dimensional
geometry on adsorbed molecular fluids. Solutions of col-
loidal material in narrow channels of fabricated mem-
branes provide further examples of a one-dimensional ad-
sorbed layer [S]. Strong sorbent-sorbate enthalpic effects
can play a role in restricting the adsorbate, but the obvi-
ous examples of low-dimensional fluids are realized in na-
ture because of geometric restrictions imposed by the ad-
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sorbent. For our purposes, a strongly confined fluid oc-
cupies a pore with a characteristic dimension D less than
two times the molecular size d.

Considerable theory and computer-simulation studies
have focused in recent years on the structure and thermo-
dynamic properties of fluids confined to narrow pores
[6-14]. Adams and co-workers [l1] have examined
strongly confined or quasi-two-dimensional films of
Lennard-Jones fluids confined to slit pores. They found
that an integral equation (specifically, the compressibility
sum rule) requires that the local density conform to a
simple universal two-parameter function for any molecu-
lar fluid adsorbed in any pore that imposes a two-
dimensional (2D) order on the adsorbate. Tarazona,
Marconi, and Evans [15] have constructed a density-
functional theory (DFT) of fluids in a narrow slit from
the free energy for a hard-disk fluid. They used this
theory to check their more-general smoothed DFT for
adsorbed fluids. Some years earlier, Glandt [16]
developed a virial-type series for the pore bulk-
distribution coefficient in powers of the bulk density, and
he calculated the second and third surface virial
coefficients for hard-sphere solutes in regular geometric
pores. As part of the same work, Glandt proposed a
treatment in which the adsorbed phase is modeled as a
one- or two-dimensional fluid when confined to very nar-
row cylindrical or planar pores, respectively. The pur-
pose of the present work is to refine this low-dimensional
(low-D) approach to strongly confined fluids.
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A partition coefficient defines the equilibrium ratio of
molecular concentration in the adsorbed phase to that of
a bulk phase of the same fluid, and it is determined from
the condition of equilibrium between the phases—
equality of temperature and chemical potential. For con-
venience, we work with the activity a instead of the chem-
ical potential pu; these are related by

kT Ina=p—pu, (1.1)

where T is the absolute temperature, k is Boltzmann’s
constant, and p, is the chemical potential of the standard
state: the ideal-gas bulk phase at unit molecular concen-
tration and the same temperature. The equilibrium cri-
terion of equality of chemical potentials can be replaced
directly by equality of activities.

The bulk activity can be written

Ay =Ps7sp (1.2)

where p, is the bulk density and y, is the bulk activity
coefficient, which is a known function of p,. Thus
specification of the bulk density determines the activity of
both phases. The adsorbed-phase activity can be formal-
ly decomposed into a part that accounts for in-plane
cooperative effects and a part due to the specific interac-
tions between one adsorbate molecule and the adsorbent
[16,17]. The former part can be related to an adsorbed-
phase activity coefficient y, while the latter is simply the
inverse of Henry’s constant H for adsorption. With this
modification, the equilibrium condition becomes

%m‘pm (1.3)
where the adsorbed phase density p is defined per unit
volume of pore space. We emphasize that p and y in this
relation are average properties for the entire pore, and
not local properties that vary with position. Equation
(1.3) can be rearranged to give the partition coefficient K,

KE_&zHZL .
Po Y

Glandt suggested that for pores with D <2d, ¥ can be
closely approximated by the activity coefficient of a low-
dimensional fluid. In the two example cases he con-
sidered, hard spheres adsorbed in a cylindrical pore and
hard spheres adsorbed in a slit pore, ¥ is modeled as a
1D-fluid activity coefficient and a 2D-fluid activity
coefficient, respectively. Each low-dimensional activity is
a function of an effective low-dimensional density » (i.e.,
per unit area or unit length, as appropriate). Purely
geometric considerations dictate that, for the cylindrical
pore geometry

(1.4)

v

7 (1.5)

n=—D%,

where D is the pore diameter; and, for the slit pore

geometry
n=Dp, (1.6)

where D here is the distance between the parallel pore

walls. The low-dimensional theory becomes exact in the
limit as D approaches d, since sorbate-sorbate interac-
tions act parallel to the adsorbent surface. Glandt did not
have computer-simulation results available to verify his
theory, but MacElroy and Suh [18] have since reported a
Monte Carlo (MC) simulation study for hard spheres in
cylindrical pores. Their results together with our own
MC simulations reveal that at modest bulk densities,
Glandt’s low-dimensional theory provides a good approx-
imation for the average adsorbed-phase density up to
pore widths near the limit of its applicability, D =2d.
However, at higher bulk densities the treatment consider-
ably underestimates the partition coefficient near the lim-
iting pore width, and so there is room for improvement.

A logical way to build upon the low-dimensional model
is to introduce the notion of polydispersity: the strongly
confined adsorbed phase becomes a pseudo mixture of
low-dimensional molecules. A  polydisperse fluid
represents the continuous limit of a discrete mixture, in
which the composition is described in terms of a distribu-
tion function rather than a set of mole fractions [19-21].
The distribution of sizes in the low-dimensional space
compensates for the neglect of the molecular coordinate
normal to the adsorbent surface, yet the low-dimensional
mixture is easier to model than the true interfacial fluid.
We will refer to Glandt’s low-dimensional model as the
monodisperse approach to distinguish it from our po-
lydisperse approach.

The appropriate formalism for using a low-dimensional
polydisperse mixture model to treat confined fluids is pro-
vided by the semigrand ensemble. The formalism and its
role in the theory are described in Sec. II. The treatment
is inexact, so several approaches may be devised; we will
discuss three of them in Sec. III. In Sec. IV the methods
are applied to a fluid of hard disks confined between nar-
rowly spaced lines, the two-dimensional analog of a nar-
row pore. The different approaches are evaluated by
comparison to computer simulation. Section V extends
the theory to hard-sphere systems in slitlike and cylindri-
cal pores, and also compares the theoretical results to
simulation. Conclusions and the extensions of the theory
are discussed in Sec. VI.

II. THEORY

A. Model system

For clarity, we develop and implement the semigrand
mixture approach for a specific, simple model system: a
bulk fluid of hard disks in equilibrium with a fluid of
disks confined between two bounding lines. This is the
two-dimensional analog of a fluid of spheres in equilibri-
um with an adsorbed phase confined to either slit-shaped
or cylindrical pores. While exceedingly simple, this
disks-between-lines model contains enough of the ele-
ments of the general problem to allow us to demonstrate
our approach.

The bounded fluid is referred to as the narrow hard-
disk system, or simply the adsorbed phase. We restrict
the separation D between the lines (i.e., the pore width) to
be less than or equal to 2d, where d is the disk diameter
(Fig. 1). We let x; and y; be the axial and radial coordi-
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FIG. 1. Coordinate system and parameters used in descrip-
tion of confined fluid.

nates, respectively, of the center of disk i, with y; defined
as zero along the centerline of the pore. The lines merely
confine the fluid of disks, and so the pore-wall interaction
is one of simple hard repulsion. As a result, the radial
coordinates are confined to the domain —(D —d)/
25y =+(D —d)/2. Additionally, for pore widths
D <(14+V'3/2)d, interactions are possible only between
adjacent disks; we denote this pore width as Dyy.
Second-nearest-neighbor interactions are possible in the
domain Dy =D =2d.

The restriction D <2d prevents disks from passing one
another along the pore, and so the adsorbed phase resem-
bles a one-dimensional fluid of hard rods. The axial com-
ponent of the distance of closest approach of two disks
corresponds to the collision diameter of two hard rods.
This collision diameter depends on the radial coordinates
of the two disks, and so it is appropriate to use a po-
lydisperse hard-rod mixture to model the adsorbed phase.
We define 8(y,y’) as the distance of closest approach,
projected onto the pore axis, of two adjacent disks having
radial coordinates y and y’:

8,y )=[d?=(y =y ]2 .

The disks freely sample radial coordinates, so we must
work within a framework in which the hard-rod mixture
freely samples rod lengths. The appropriate formalism is
provided by the semigrand ensemble.

(2.1

B. The semigrand ensemble

The semigrand canonical free energy Y is a Legendre
transform of the (canonical) Helmholtz free energy A4
[21,22]. For a polydisperse hard-rod mixture

BY=BA— [ N(o)BAu(o)do=—BPL+NpBu(o,) (2.2)

where L is the length of the system, P is the 1D pressure,
N is the total number of rods, and B=1/kT. The func-
tions N(o) and pu(o) represent the number and
chemical-potential distributions, respectively, of rods of
diameter (i.e., length) o, while the difference Au is
ulo)—uloy), where o is the diameter of an arbitrarily
chosen reference species; the integration is over all rod
lengths being modeled. The last equality in Eq. (2.2) is
due to Euler’s formula.

The definition of the activity given in Eq. (1.1) may be
extended to a component of the polydisperse mixture.
Accordingly, we write a (o), the activity of the com-
ponent with diameter o, as

Ina(o)=pBu(c)— InA? (2.3)

where A is its thermal de Broglie wavelength of the two-
dimensional system of disks being modeled; we have
neglected here any internal molecular degrees of freedom.
With this definition, the fundamental differential equation
in this ensemble is

d(BY)=UdB—BPdL +pBul(oy)dN — fN(o)cS In[a(o)]do
(2.4)

where U is the internal energy, and a(o) is the activity
ratio a(o)/a(oy). The independent variables in this en-
semble are the temperature, density, and the activity-
ratio distribution. We emphasize that the mixture com-
position is a dependent variable in the semigrand ensem-
ble. This a posteriori nature of the mixture composition is
consistent with the way fluids in pores behave physically:
the inhomogeneous distribution of molecules in the pore
is not an independent quantity but, instead, depends on
the geometry and physics of the particle-particle and
particle-wall interactions.

The analogy between a semigrand mixture and a
confined fluid is clarified by comparison of their corre-
sponding partition functions. The semigrand partition
function for the low-dimensional analog of the adsorbed
phase is

1

exp( —BY)=W

(M) (M) —BU
f(N)do fw)dx exp(—BU)

N
X II alo;) .

i=1

(2.5)

The notation (N) is used to represent an integral for
each of the N molecules, eg, [ ydo™

= fdcrlfdcrz s fdaN. The canonical partition func-
tion of the adsorbed phase is

exp(—BA)= 1 f(N)dy(N’fN)dx(N)exp(—BU)

AN (

N
X 1 exp[ =BV (y;)]

i=1
(2.6

where V(y) is the external field imposed by the boun-
daries. In our case, the external field is just the hard-
particle-wall repulsion, which restricts the radial posi-
tions to the domain |y| <(D —d)/2. The hard rods sam-
ple coordinates along the identity axis (o) just as the ad-
sorbed hard disks sample the radial coordinates (y). The
activity ratio a(o) determines the distribution of rods in
composition space just as the external field influences the
position of the disks in the radial coordinate. To com-
plete the analogy we must define a(o) so that it has the
same normalization as exp[—BV(y)]; thus for the
present system

[alo)do=D —d 2.7)
where the integration is performed over all diameters
needed to model the adsorbed phase.

It is convenient to describe the composition of a po-
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lydisperse mixture by a distribution function
plo)=N(o)/N, which is normalized to unity. Further,
we define f (y) as a distribution function in position space
that is equal to p'"(y)/n, where p'*(y) is the (inhomo-
geneous) singlet density function inside the pore [23], and
n=N/L is the 1D number density; f(y) is also normal-
ized to unity. The component activity coefficient in the
adsorbed phase is defined

y(o)="217)

= (o) (2.8)

The semigrand partition function, Eq. (2.5), describes a
one-dimensional mixture of rods, each characterized by
an individual molecular diameter, while the collision di-
ameter of each pair of rods is given by the arithmetic
mean of their molecular diameters. However, Eq. (2.1)
specifies the equivalent hard-rod-collision diameter of a
pair in a way that cannot be broken up into the sum of
two terms, each containing only y or y’; therefore, an
equivalent molecular diameter cannot be uniquely defined
as a function of the radial coordinate. This fundamental
incongruity precludes an isomorphism between the nar-
row hard-disk system and a hard-rod mixture. To
proceed further, we develop approximate techniques to
map the adsorbed phase onto a hard-rod mixture.

Thus the central modeling question of our theory may
be stated as follows: given a set of coordinates {y}
representing the radial positions of all disks in a particu-
lar configuration of the narrow hard-disk system, how do
we map this into a set of molecular diameters of a hard-
rod system so that the equilibrium properties of the ad-
sorbed phase are best described? We have devised two
approaches, described in Secs. IIT A and III B, respective-
ly. Before turning to them, we deal with the more gen-
eral problems of how the activity-ratio distribution is
specified and how equilibrium with the bulk phase is in-
corporated in the semigrand approach.

C. Specification of activity ratios

Once a mapping of disk radial coordinates to rod diam-
eters has been defined, the appropriate choice for the
semigrand hard-rod activity-ratio distribution is easily es-
tablished. This distribution is determined solely by the
choice of the mapping and by the geometry of the system
(and by pore-wall interactions for the general case). In
particular, it does not depend on the densities of the ad-
sorbed or bulk phases. Consequently, the low-density
limit of the adsorbed phase determines the appropriate
form for a(o). As the adsorbed-phase density tends to
zero, the disks distribute themselves uniformly across the
accessible width of the pore, the component activity
coefficients of the effective hard-rod mixture tend to uni-
ty, and the activity-ratio distribution coincides with the
(unnormalized) composition of the hard-rod mixture

alo)=lim 217

. 2.9
p—0 play) 2.9)

Therefore the appropriate activity-ratio distribution to
use in modeling the adsorbed phase is proportional to the
hard-rod mixture composition that corresponds to a uni-

form radial distribution of disks. The definition is made
complete by the normalization condition, Eq. (2.7).

Once the activity-ratio distribution has been specified,
evaluation of the mixture composition is straightforward.
In terms of the composition and the hard-rod mixture ac-
tivity coefficient, the activity ratio is

_ plo)y(o)

2.10
from which we have
plo)=—2e)/ylo) @.11)
Jato)/y(o)do

where we have used normalization of p(o) to unity to
eliminate the terms in o, The particle distribution f(y)
in the pore is found from this composition by inverting
the mapping.

D. Equilibrium with the bulk phase

The density of particles in the pore must be evaluated
as a function of the density of the bulk phase using the
criterion of equality of chemical potentials between the
two phases. The adsorbed phase is modeled as an
effective one-dimensional mixture, so we must specify
which species chemical potential is equated to that of the
bulk. As given by Eq. (2.4), the work of inserting a parti-
cle into a semigrand mixture, (3Y/9N)r y ay Is the
chemical potential of the reference component, u(o),
where o is simply that component for which the im-
posed activity ratio a(o) is unity. This chemical poten-
tial must be equated to the work of removing a particle

from the bulk, the bulk chemical potential p,.
Equivalently,
aloy)=a, . (2.12)
From Eq. (2.8), the reference component activity is
alog)=np(oyylo,) . (2.13)

Since a(oy)=1 by definition, we may combine Egs.
(2.11)-(2.13) to write the equilibrium relation in its final
form

n =
[alo)/y(o)do

(2.14)

We note that o, has been eliminated from this expres-
sion.

III. MAPPINGS

We now turn to the task of selecting transformations
that map the narrow hard-disk fluid into a polydisperse
hard-rod mixture. Two approaches may be identified: (1)
a mapping of the distribution of radial coordinates into a
distribution of hard-rod diameters; and (2) a mapping of
individual radial coordinates into individual hard-rod di-
ameters.
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A. Distribution mappings

A given distribution of radial coordinates f(y) corre-
sponds unambiguously—via Eq. (2.1)—to a unique dis-
tribution of hard-rod-collision diameters p.(3). Using
standard methods from probability theory [24], we may
in turn use p,(8) to extract an appropriate distribution of
molecular diameters p (o). If we consider & to be a ran-
dom variable that is the arithmetic mean of two other
random variables ¢ and o', each distributed independent-
ly according to p(o), then the distribution p.(8) is given

by
6)=fp(a)p

with integration limits given by the domain of p.(8). In
our application p.(8) is known, and we must invert this
convolution to extract p(o), which we then use for the
activity-ratio distribution a(o ).

As prescribed by Eq. (2.9), the activity-ratio distribu-
tion is determined by studying the ideal-gas limit. If the
disks are distributed uniformly in the accessible area of
the pore, then the distribution of hard-rod-collision diam-
eters is

(26—o)do (3.1

1 1
D —d) , 8
pu(8)= | (d>—8)'? D—

0 otherwise .

(3.2)

The minimum collision diameter &, =[D(2d —D)]'?
corresponds to adjacent disks occupying opposite sides of
the pore; according to Eq. (3.1) it also represents the
minimum molecular diameter. The distribution p ()
given here has already been normalized such that the cor-
responding p(o) from Eq. (3.1) normalizes to D —d (see
Appendix A). Unfortunately, there is no function p(o)
that satisfies Eq. (3.1) for p.(8) given by Eq. (3.2): we
show in Appendix A that these relations require p(o) to
obey several conditions, some of which are in contradic-
tion. Nevertheless, we may select the most important of
these conditions to construct an approximate distribution
which is suitable for our analysis.

First, p(o) must be normalized to (D —d); second, the
first moment of p(o) must be equal to 2/(D —d) times
the first moment of the distribution given to Eq. (3.2);
third, p(o) must diverge with an exponent of —32 as
o —d; finally, the domain of ¢ must be the same as that
for 8, given in Eq. (3.2). A simple form may be construct-
ed to satisfy these conditions, and from Eq. (2.9) we iden-
tify the result as the activity-ratio distribution, thus

__a
(d -0 )3/4
0 otherwise

+ <o =
alo)= b, §,Z0c=d

(3.3)

where the constants a and b in this equation are chosen to
satisfy the conditions listed above; they are functions only
of the ratio D /d.

With a(o) given by Eq. (3.3), Egs. (2.11) and (2.14)
may be combined to determine the density n» and compo-

sition p(o) of the effective hard-rod mixture that best
models the adsorbed phase in equilibrium with a bulk
phase of activity a,. With Eq. (1.6), the adsorbed-phase
density p is easily recovered from these results

p=n/D . (3.4)

Numerical results and comparison with simulation are
presented in Sec. IV.

B. Individual mappings

The treatment is simplified considerably if the mapping
provides a one-to-one correspondence between each
disk’s radial coordinate and its effective hard-rod diame-
ter. We will develop a general approach to such map-
pings, demonstrate its use with a very simple mapping,
and then go on to discuss a more sophisticated and
effective choice.

If o(y) is a single-valued function that gives the
effective hard-rod diameter as a function of the disk radi-
al coordinate, then any distribution f(y) in the radial
coordinate is easily transformed into a diameter distribu-
tion p(o) by [24]

a4

=2 do

(3.5)

where the bars represent the absolute value, and the fac-
tor of 2 accounts for the axial symmetry of the pore.

The activity-ratio distribution of the hard-disk mixture
is obtained when f (y) in Eq. (3.5) is uniform; thus, when
normalized according to Eq. (2.7),

4y

alo)=2 do

(3.6)

We delay evaluating the derivative because it drops out
when this equation is inserted into the equilibrium equa-
tions developed in Sec. II. In particular, Eq. (2.11) when
combined with Eq. (3.6) becomes

do
dy

1

plo)|——
y(0) [y No)ldy /doldo

(3.7

with integration limits that depend on the specific map-
ping. We divide Eq. (3.7) by 2. Then, according to Eq.
(3.5), the left-hand side is f(y), and the integral over o
can be transformed into an integral over y covering half
the accessible pore width; with the factor of 2 this may be
written as an integral over the full accessible pore width,
yielding

fy)

(3.8)

ol nJome 7 v Mob)dy

All subsequent integrals over y will be written with these
integration limits implicit. Equation (2.14) may be
modified in a similar fashion,

=a, . (3.9)
Jr ey 1(0 Ndy
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A compact expression of the treatment is found by com-
bining Egs. (3.8) and (3.9):

nf(y)y(o(y))=a, . (3.10)

The left-hand side of this expression gives the activity of
a disk as a function of its radial position; the equation is
merely a statement that this activity is uniform and equal
to the bulk activity.

As a very simple example of an individual mapping, let
us define the effective rod diameter of a disk as the length
of its intersection with the centerline of the pore, thus

a(y)=[d>—(2y)*]'/%. (3.11)

The hard-rod activity coefficient is given exactly by
[20,25]

no
1—mns,

Iny(o)=—1In(1—ns,)+ (3.12)

where s, is the first moment of the distribution of diame-
ters,

s,= [ oplardo (3.13a)

or, equivalently, the average effective 1D diameter
weighted by the distribution of disks in position space,

si= [ o)f Wy (3.13b)

where 8, in Eq. (3.13a) is the same as defined for Eq.
(3.2). With this result, Eq. (3.10) becomes

nf(y)

1—ns,

n [dZ__(Zy)Z]l/Z
1—ns,

exp =a, . (3.14)

The solution to Egs. (3.12)-(3.14) as a function of a, is
presented in Sec. IV.
A more sophisticated individual mapping is

o= [ f(»r"8(y,y")dy’

where 8(y,y’) is defined in Eq. (2.1). In this case, the
effective 1D molecular diameter is a functional of the
identity distribution. Equation (3.10) still determines the
equilibrium identity distribution, but the activity
coefficient of a component in the mixture will no longer
be represented by Eq. (3.12). As described in Appendix
B, the appropriate expression for the activity coefficient is

(3.15)

2no(y)—ns,

Iny[o(y)]=— In(1—ns,)+ (3.16)

1—ns,

The equilibrium condition results from combination with
Eq. (3.10),

n(2o(y)—s;)

nf (y) €X

(3.17)
1—ns,

=ay .

1—ns,

Equation (3.17) is an implicit relation for the distribution
of disk positions. The distribution of components in the
polydisperse fluid and the overall density #n can now be
determined by successive substitution. The procedure is
described in Sec. IV.

IV. APPLICATION: CONFINED DISKS

We apply the low-D polydisperse theory with the map-
pings described in the proceeding section to the fluid of
hard disks confined between parallel lines. The mappings
are compared to one another, a monodisperse low-D
theory, and computer simulation in Figs. 2(a) and 2(b).
The figures display the partition coefficient, (n/D)/p,,
obtained by the different methods as a function of relative
pore width, D /d, for bulk densities of p,d*=0.3 and 0.6,
respectively. These calculations are discussed in detail
below. A bulk fluid of hard disks is in equilibrium with
the adsorbed phase, so all of our calculations employ the
same bulk-phase activity. We adopt the expression

1.0 T T T T

(a)

O Monte Carlo
0.2+~ / e - Monodisperse -
............. Distribution map

- - - - Centerline intersection map
—— Mean collision diameter map

Partition Coefficient n/Dp,

| | |
.0 1.2 1.4 1.6 1.8 2.0

Pore size D/d

()

O Monte Carlo
0.2+ e Monodisperse -
---------- Distribution map

-- - - Centerline intersection map
—— Mean collision diameter map

Partition Coefficient n/Dp,

0.0 1 1 | |
1.0 1.2 1.4 1.6 1.8 2.0

Pore size D/d

FIG. 2. Partition coefficients as a function of pore diameter
for adsorbed phase of disks between lines. Grand canonical
Monte Carlo results are indicated by the circles, and the various
implementations of the low-dimensional theories are given by
the lines. (a) Bulk density p, =0.3; (b) p, =0.6.
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P 1.257 7*
a,= ex —0.043 |[1—y+
b (1__,'7)0.743 p 1_77 n (1___77)3
2
+O.9785+0.12817 —2.1925
(1—n)

4.1

as the hard-disk fluid activity, where n=mp,d?/4 is the
bulk-phase packing fraction. Equation (4.1) was derived
by Glandt [16] using a hard-disk equation of state pro-
posed by Henderson [26].

The monodisperse low-D theory models the adsorbed
phase as a fluid of hard rods of length d. The approach
employs Eq. (1.4) with y,=a, /p, and a, given by Eq.
(4.1), while the adsorbed-phase activity coefficient is

nd
1—nd’
which follows from the equation of state for hard rods
[27]. The Henry’s constant is

-4
H=1-

Iny=—In(1—nd)+

(4.2)

(4.3)

for this geometry, which is simply the fraction of the pore
volume accessible to the center of the disk. Equation
(1.4), with these substitutions, is easily solved for n using
Newton’s method when p,, is specified. Glandt [16] first
used the monodisperse theory to calculate partition
coefficients for hard spheres in slits or cylindrical pores,
but he did not consider the confined hard-disk fluid.

Our distribution mapping for the polydisperse low-D
theory uses Eq. (3.3) as the activity-ratio distribution
a(o) that approximately satisfies Egs. (3.1) and (3.2). The
constants @ and b, as a function of D /d, are determined
numerically to satisfy zeroth- and first-moment criteria as
described in Sec. III A and Appendix A; this operation
merely requires the solution of two linear equations in a
and b. With this specification for a(c), and with y(o)
given by Eq. (3.12), Eq. (2.11) provides the estimate of the
effective hard-rod composition p(c). This is an implicit
expression, because y (o) depends on the first moment of
p(o). A numerical solution is easily obtained by reduc-
ing Egs. (2.11), (2.14), (3.12), and (3.13) to two equations
that are solved simultaneously for the first moment s,
and the pore density n. The secant method works well
here.

The centerline-intersection mapping for the po-
lydisperse low-D theory prescribes the effective rod
length of each disk as the length of its intersection with
the pore centerline, Eq. (3.11). Equation (3.14) expresses
S () in terms of a,, n and s,; Eq. (3.13) and normaliza-
tion of f(y) to unity then provide two equations that are
solved simultaneously for n and s, using the secant
method.

The mean-collision-diameter mapping for the po-
lydisperse low-D approach requires that we find the dis-
tribution of disk positions that satisfies Eq. (3.10) when
the activity coefficient is given by Eq. (3.16) and the col-
lision diameter is given by Eq. (3.15). We assumed an ini-

tial form for f(y) at 21 discrete points across the accessi-
ble pore, and solved the set of equations by successive
substitution. The curves plotted in Figs. 2(a) and 2(b)
represent solutions that converged to 0.05% of the f(y)
value at each point. The average adsorbed density n
changed by less than 0.1% when we solved for 41 discrete
points across the pore, so we take this to be the accuracy
of the calculations.

The performance of the theoretical methods is judged
against computer simulation. We implemented a stan-
dard grand-canonical-ensemble Monte Carlo (GCEMC)
algorithm [28] to obtain results for the adsorption of hard
disks between narrowly spaced lines. One move of the
simulation comprises a random translation of a randomly
chosen disk, and either an insertion of a disk at a random
point or the removal of a randomly chosen disk. If the
removal step was chosen, a particle was removed with a
probability equal to p/a,, where a, is determined by Eq.
(4.1). If an addition step is chosen, a particle is added if it
does not overlap the bounding lines or another disk.
Each simulation result shown in Figs. 2(a) and 2(b) was
collected for runs of at least 4X 10° moves for systems
containing at least 50 disks on average. Initial
configurations were randomized with runs of 10° moves.
The statistical uncertainty of the reported partition
coefficients is less than 1% in all cases, which is smaller
than the symbol size used in the figures.

All theoretical methods perform well for very narrow
pores—D /d less than about 1.2. As the pore diameter
increases, significant deviation from the Monte Carlo re-
sults is observed in some of the theories, particularly at
high density. The monodisperse model consistently un-
derestimates the density within the pore, behavior that is
easily understood: the collision diameters of the mono-
disperse model are fixed at their maximum values, and so
it cannot account for the arrangements that permit small-
er particle separations and thus greater packing into the
pore. In contrast, the centerline-intersection method
consistently overestimates the pore density. Because the
centerline-intersection diameter often represents the
smallest possible collision diameter for a given radial
coordinate, this behavior too is easily understood. Only
the distribution method and the mean-collision-diameter
approach perform well over the entire range of pore
widths. Indeed, these methods are the only two that ac-
count for the dependence of collision diameter on both
particle positions. In the present application, they are
about equally effective, although the distribution method
shows slightly better agreement with the high-density,
large-pore simulation results. This slight advantage over
the mean-collision-diameter approach is offset by the ex-
tensive analysis required for implementation of the distri-
bution method (cf. Appendix A); moreover, its accuracy
is not sustained when applied to other pore geometries.
Nevertheless, it appears to give the best results for the
disks-between-lines model system, and so we will use it to
briefly examine the behavior of this model under other
conditions.

In Fig. 3(a) the partition coefficient predicted by the
distribution method is plotted as a function of pore diam-
eter for four bulk densities, and in Fig. 3(b) it is plotted



946 ALBERT J. POST AND DAVID A. KOFKE 45

versus bulk density for four pore diameters. The behav-
ior at low bulk density is rather unremarkable, but at
higher densities interesting features emerge. Referring to
Fig. 3(a), the partition coefficient peaks sharply just
beyond a pore size of one disk diameter, decreases as the
pore width is increased, and begins to rise again as the
width approaches two diameters. This behavior is a
reflection of how well the disks can optimally fill the pore
as the pore widens. To illustrate, we include in Fig. 3(a) a
curve indicating the maximum possible value of n/D;
this maximum is achieved when the disks are packed per-
fectly within the pore, and each collision diameter has its
minimum value. The curve exhibits the most significant
qualitative features of the high-density plots (a quantita-
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FIG. 3. Partition coefficient for the system of disks between
lines, as given by the low-dimension mixture theory with the
distribution mapping. Pore diameter and bulk density as indi-
cated in (a) and (b), respectively. Solid curve in (a) indicates the
maximum density # /D possible for a given pore width. This
curve should be divided by the bulk density p, before compar-
ing quantitatively with the other curves.

tive comparison would require that this curve be divided
by p,). Clearly, this purely geometric consideration has a
significant influence on the behavior of the partition
coefficient at high density. Of course the sharp rise in the
high-density partition coefficient as the pore width ap-
proaches 2d is not realistic, and results from the neglect
of second-nearest-neighbor interactions. Such interac-
tions are possible only for pore widths greater than
Dy =1.866d. As seen in Fig. 3(b), the unrealistic rise in
the partition coefficient at high density is not present for
pore widths less than or equal to this value.

V. OTHER GEOMETRIES

We apply the low-D polydisperse model to the parti-
tioning of hard-sphere fluids in narrow slit-shaped pores
and narrow cylindrical pores. Glandt [16] examined
hard-sphere fluids in both pore geometries when he intro-
duced the monodisperse low-D approximation. The
width of the slit pore or the diameter of the cylindrical
pore, both denoted by D, is less than 2d, where d is now
the diameter of hard-sphere adsorbate. Partition
coefficients are determined by the mapping schemes dis-
cussed in Sec. III, and the results are compared to the
monodisperse low-D approximation and GCEMC simu-
lations. We denote those adsorbed-phase densities
defined on a per volume basis (the same dimensionality as
the bulk density for these examples) with the symbol p,
and low-D densities—which are on a per area basis for
slit pore and a per length basis for the cylindrical pore—
with the symbol n. This format is consistent with our no-
tation for the disks-between-lines example.

A. Hard spheres in a narrow slit

A fluid of hard spheres of diameter d confined between
two walls separated by a distance D < 2d resembles a pla-
nar two-dimensional fluid. We denote the coordinate
normal to the walls as y, the radial coordinate. Applica-
tion of the polydisperse low-D theory to this example re-
quires that we map the distribution of sphere positions in
the slit onto a distribution of hard-disk sizes or, alterna-
tively, that we map the y coordinate of a sphere center
onto an effective hard-disk size, o(y). The equations as-
sociated with the former mapping, which we referred to
as a distribution mapping in Sec. III A, are applied to
hard spheres in a slit and the mapping retains the same
form given there. Of course, the two geometries do not
have the same partition coefficients because adsorbed-
phase equation of state and the bulk activities differ from
those used in Sec. IV. We take the bulk activity to be
that derived from the Carnahan-Starling equation of state
for hard spheres [29]:

8n—9n°+ 37’

(5.1
(1—m)}

ap =Py Xp

where 7 is the packing fraction mp,d*/6.
Partition coefficients are also determined by the mean-
collision-diameter mapping, defined by Eq. (3.15). Equa-
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tion (3.10) is the equilibrium condition, with Eq. (5.1)
defining a,, but a component activity coefficient for a po-
lydisperse mixture of hard disks is required. We con-
struct a component activity in Appendix B for a po-
lydisperse 2D fluid in which the effective disk size is a
functional of the density distribution. The result is

2 ) )
&1 £ 4z P!

(5.2)

Iny,p(y)=—1In(1—§&,)+

where N (y) is the number density of disks occupying ra-
dial coordinate y, and Z is the 2D compressibility factor

2
Z—Bp__1 & :
n 1=8,  &(1—§&)

and &, =mns; /4, with s, the kth moment of the size dis-
tribution [cf. Eq. (3.13b)]:

si=[dy o]

where the integration limits are given by the accessible
pore width, —(D —d)/2 to (D —d)/2. The functional
derivatives of the moments are given in Appendix B.
Figure 4 compares the partition coefficients at reduced
densities of p,d*=0.3 and 0.6, which are obtained from
the distribution mapping and the mean-collision-diameter
mapping of the polydisperse theory, the monodisperse
low-D approximation, and the GCEMC simulation. The
simulation results are our own since we are unaware of
any previously reported MC simulations for hard-sphere
fluids in slit pores of the size range of interest. Each re-
ported simulation result was collected from MC runs of
2X 10° moves or more for systems with an average of at
least 100 adsorbed spheres. Initial configurations were

(5.3)

(5.4

1.0 T T T T 7

Partition Coefficient n/Dp,
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FIG. 4. Partition coefficient as a function of pore diameter
for adsorbed phase of spheres in a planar slit. Grand canonical
Monte Carlo results are indicated by the circles, and the various
implementations of the low-dimensional theories are given by
the lines.

randomized by runs of at least 10° moves. The statistical
uncertainty of our GCEMC results is no more than 1%
of the plotted value, which is smaller than the symbols in
Fig. 4

Both polydisperse low-D approaches match the simula-
tions for all D <2d with p,d><0.3, as shown in Fig. 4.
The polydisperse theory relying on the individual map-
ping compares favorably to the simulation results for all
D of interest at p,d 3=0.6, which is a considerable im-
provement upon the monodisperse low-D model. The
polydisperse theory relying on the distribution mapping
grossly overestimates the partition coefficient for
D >1.8d at p,d*=0.6. This behavior was observed in
the application described in Sec. IV, and likely arises
from the neglect of second-nearest-neighbor interactions.

B. Hard spheres in a narrow cylindrical pore

A fluid of hard spheres of diameter d confined to a nar-
row cylindrical pore, like the confined fluid of hard disks,
resembles a polydisperse one-dimensional mixture of hard
rods when the pore diameter D <2d. All of the methods
presented in Sec. IV can in principle be applied to this
geometry. However, the ideal-gas distribution of col-
lision diameters analogous to Eq. (3.2) cannot be obtained
in closed form, and so the distribution method of Sec.
IITA can be applied only with great difficulty. Conse-
quently, we do not include this method in our compar-
ison. An equilibrium condition relating the distribution
of adsorbed spheres at radial position y to the bulk fluid
is given by Eq. (3.10). Equation (3.16) gives the appropri-
ate component activity coefficient. The mean 1D col-
lision diameter for a sphere at radial position y in the
cylinder is [cf. Eq. (3.15)]

oy)= [dy'f (y)8(y,y") (5.5)

where y and y’ define vector positions in the cylinder, and

0 is the effective 1D collision diameter for spheres at posi-

tions y and y’,
8(y,y)=(d*—ly—y'»'"?. (5.6)

The angular part of the integration in Eq. (5.5) is comp-
leted to yield

oy)=4r [dy'f (yE(©)[d>—(y —y")?]'"

with

(5.7

, 172
4y'y

g_ d2_(y _yl)2

where E is the complete elliptic integral of the second
kind [30].

Partition coefficients given by the mean-collision-
diameter mapping, the monodisperse low-D approxima-
tion, and computer simulations are shown in Fig. 5.
MacElroy and Suh [18] have reported on some GCEMC
simulations for this system, and one of their points is
plotted in the figure. Our own GCEMC calculations
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FIG. 5. Partition coefficient as a function of pore diameter
for adsorbed phase of spheres in a cylindrical pore. Grand
canonical Monte Carlo results are indicated by the circles, and
the various implementations of the low-dimensional theories are
given by the lines. The triangle is a Monte Carlo simulation re-
sult from MacElroy and Suh [18].

were verified by checking that MacElroy and Suh’s parti-
tion coefficients were recovered, within the statistical un-
certainty. The earlier comments pertaining to typical run
lengths and statistical uncertainty of the results for slit-
pore simulations apply to the cylindrical-pore simulations
as well. The latter simulations contained at least 50
spheres in each case.

The polydisperse low-D theory and the simulations are
nearly identical for p,d®<0.3 in the entire pore size
range of interest, while the monodisperse low-D theory
noticeably deviates from the simulation results at
ppd®=0.3 for wide pores. The disparity between the
theoretical approaches and the simulations occurs for
smaller D with increasing density, but the polydisperse
theory matches the simulations below size ratios of
D ~1.85d (approximately Dyy) for p,d*=0.6. GCEMC
results at higher densities are difficult to obtain because
insertion rates become very infrequent. This form of the
polydisperse low-D theory does not capture the increase
in K above D=~Dyy. The same shortcoming was ob-
served for the system of disks confined between parallel
lines.

VI. SUMMARY AND CONCLUSIONS

We have developed a polydisperse low-D theory for
strongly confined fluids, and have applied the theory to
three model systems of hard-particle fluids sterically
confined to narrow pores. The theory maps the adsorbed
phase onto a low-D polydisperse fluid, but the mapping
process is approximate, so variations may be constructed;
we have considered three alternative mappings.

Adsorbed particles pack more efficiently in a narrow
pore when nearest neighbors occupy positions close to

opposing surfaces. We would expect high densities to im-
pose an alternating arrangement, and this ordering is
clearly easier to impose for the quasi-1D phase than for
the 2D phase. In the latter case, all of the first shell
neighbors about a central sphere cannot be positioned
near one surface when the central sphere is near the op-
posing surface, since the spheres in the shell are also
neighbors of each other. Thus the local distribution f(y)
about a given particle is not unlike the overall distribu-
tion, and we can expect in this instance the mean-
collision-diameter mapping to give a good representation
of the adsorbed-phase properties. The alternating ar-
rangement possible in the quasi-1D systems reflects better
packing than would be predicted by an average collision
diameter approach—the local f(y) differs from the
overall distribution; as a consequence this theory un-
derestimates the partition coefficient. The distribution
mapping, on the other hand, is able to capture the effect
of the more efficient packing, but it suffers seriously at
large pore widths because of its neglect of non-nearest-
neighbor interactions, which greatly attenuate the pack-
ing. The combination of ease of implementation and con-
sistently satisfactory performance leads us to recommend
the mean-collision-diameter mapping as the technique of
choice from among the methods proposed here.

The theory can be extended in many ways to more
complicated systems. For example, if the wall-particle
interaction ¥ (y) is more complicated, then the activity of
each component in the adsorbed phase becomes the prod-
uct of the left-hand side of Eq. (3.10) and the Boltzmann
factor exp[ —BV(y)]; for the distribution mapping, V(y)
enters through the calculation of the ideal-gas collision
diameter distribution [Eq. (3.2)]. The functional form of
the low-D activity coefficient remains the same. This ex-
tension of the theory permits application to adsorption
on single surfaces, where V(y) is a deep and narrow po-
tential well. Inclusion of long-range interactions between
adsorbate molecules is also possible, although the model
for the low-D polydisperse phase must incorporate these
interactions. Adsorption of mixtures may also be han-
dled easily within the framework. To do this, we treat
the species identity as another dimension, which can be
included in the vector y [21,22]. We impose a chemical-
potential-difference field in this dimension to control the
composition. Anisotropic molecules may also be con-
sidered. This extension is straightforward for cylindrical,
quasi-1D pores; for slit adsorption it may be necessary to
have an equation of state for nonspherical disks.

To place the proposed treatment in perspective, it is of
interest to compare it with established methods for treat-
ing inhomogeneous fluids. Density-functional theory [31]
(DFT) has been shown in many instances to be effective
in characterizing such systems. Several formulations of
DFT have been developed for the treatment of wetting
and adsorption at interfaces [15,32]. The method of
Tarazona, Marconi, and Evans [15] is considered to be
among the best of these [11]; further, it is known to pro-
duce local density profiles of hard spheres near walls in
nearly exact agreement with simulation [33). In Fig. 6 we
present pore profiles for a system of spheres inside planar
slits of diameter D/d =1.5 and 14V'3/2, respectively.
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FIG. 6. Density profiles of hard spheres in slip-shaped pores,
in equilibrium with a bulk fluid of density p,d*>=0.8. The dia-
monds are data taken from our grand canonical Monte Carlo
simulations, the solid lines represent the estimates of the pro-
posed polydisperse low-D theory, and the broken lines are com-
puted using the smoothed density-functional theory of Tarazo-
na. The pore widths are, from left to right, D /d=1.5, 1.667,
and 1+V3 /2, respectively.

The latter value (defined above as Dyy) is the pore size
above which non-nearest interactions can occur, and thus
represents the maximum size for which the low-D theory
applies. The individual mapping described in Secs. III B
and V A is used to compute the profile, and it is com-
pared with the DFT of Tarazona and with the essentially
exact profile that we determined by grand canonical
Monte Carlo simulation. Both theories perform well
overall, but the proposed method becomes increasingly
accurate and the DFT becomes less reliable as the pore
narrows. Thus we demonstrate that in the treatment of
highly confined systems the proposed technique is as
good as or better than the popular methods for treating
inhomogenous systems. Of course, DFT methods have a
much broader range of applicability, and may be applied
to essentially any pore width (as well as bulk fluids).
However, for the treatment of highly confined fluids, the
proposed technique has greater generality; as described
above, the same low-dimensional reference system may
be used in a variety of situations. For this reason it may
prove the technique of choice in the range of application
for which it is designed.
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APPENDIX A: ANALYSIS OF DECONVOLUTION

In the distribution-mapping approach discussed in Sec.
IIT A, the distribution of collision diameters p.(5) was
given in Eq. (3.1) as a convolution of the distribution of
molecular diameters p(o). In this appendix we demon-
strate that for p.(8) given by Eq. (3.2) there exists no
solution p(o) satisfying Eq. (3.1). We present criteria
that must be obeyed by such a solution, and show that
they are contradictory. Nevertheless, these criteria are
useful in constructing a p(o) that approximately obeys
Egs. (3.1) and (3.2).

The distribution of collision diameters p.(d) is nonzero
only for 8,, <8=d; clearly p(o) must also be nonzero
only over this domain, because a given 8 represents the
arithmetic mean of two values of o and so must be
bounded by these two values. Thus the limits of integra-
tion in Eq. (3.1) may be specified as a function of 8 as in
Fig. 7. Outside of these limits p(o) or p(26 —0o) must be
zero. Accordingly, Eq. (3.1) may be written

26-5,,
) [, Tplop(28—0)do, 5<8,
pc = m

4 (A1)
— >
J._plows—oids, 525,

where 8, =1(d +8,,). It is convenient to take advantage
of the symmetry of the integrand and write these in-
tegrals as follows:

2f] plolp(26—0)do , 858,

p.(8)= (A2)

d
2[ plodp(26—0)do , 828, .

1. Limiting behavior of p(o’)

The value of p(o) at its lower limit 0=3§,, is easily
determined by evaluating the derivative of Eq. (A2) (with
respect to 8) at 8=45,,. The result gives an expression for
p(8,,) directly,

Collision diameter, &

) d

Molecular diameter, ¢

FIG. 7. Region of nonzero integrand for convolution Eq.
(3.1). For a given collision diameter 8 (the ordinate), the limits
of integration of Eq. (3.1) are indicated by the left and right
boundaries of the shaded region.



950 ALBERT J. POST AND DAVID A. KOFKE 45

1

dp,
p(d,, )—‘/—5 —

A3
45 (A3)

1/2
5=5,, ] )

With p, given by Eq. (3.2), p(5,,) is zero only for D =2d
[although p.(§,,) is always zero].

The behavior of p(o) as 0 —d may be determined by a
perturbation analysis. We define the (small) parameter
€=d — &, and introduce it into Eq. (A2):

p.(d -—e)=zf0‘p [d—(e—s)lpld —(e+s)]ds (A4

where we have defined the new dummy variable
s =0 —(d —¢€), and have chosen the form of Eq. (A2) that
applies to §=(d+$6,,)/2. We now expand p(o) in a
series about o =d:
plo)=Sac—d)"

=0

(AS5)

where the coefficients a; and the exponents n; are to be
determined by matching with a similar expansion of p,.
Upon substitution of this expansion, Eq. (A4) may be
written in the form
pld—€)=3 a;a;B(n;+1,n,+1)2¢)" """
i,j=0
where B(n,m)=I(n)l'(m)/I'(n +m) is the beta func-
tion, with I" the gamma function.
When p, is given by Eq. (3.2), the expansion of
p.(d —€) about €=01is

(A6)

=L 12
p.d —¢€) \/E(D d)e 1
— 3 _(D—d)e2+et0(e?) . (A7)
42

Matching exponents and coefficients of Egs. (A6) and
(A7) gives the expansion for p(o ) about o =d:

_D=dr
plo)=""F 5 (d —o)
SR S— RSt VYO R
27T (3 /4)

(A8B)

Thus p(o) has an integrable singularity at o =d.

2. Derivative of p, at §=3§,

The two right-hand sides of Eq. (A2) are equal to each
other at the transition value §, =(d +§,, ) /2; this must be
so because p., the function they define, is continuous
here. Further, all derivatives of p. are continuous at this
point. Thus it is appropriate to examine conditions un-
der which the derivatives of the right-hand sides of Egs.
(A2) are also continuous. If we let p;(8) represent the
derivative of p, from below, while py(8) represents the
derivative from above, then from Eq. (A2) we have

pL(®)=20p®)P+4 [ plo)p'(26—0)do , 5=,

(A8a)

Ph(8)=—20p(®)P+4 [ plo)p'26—0)do , 828, .
(A8b)

With an appropriate change of variables and an integra-
tion by parts, Eqgs. (A8) can be used to relate the deriva-
tives from above and below at §6=3§,,

pu(8,)—pr(8,)=4p(8,,)p(d) . (A9)

Thus the convolution describes a function with continu-
ous first derivatives only if the function p(o) is zero at
o =39, or at 0 =d. However, Egs. (A3) and (A8) indicate
that p(o) is not zero at either of these points, and in fact
it diverges at one of them, hence p; or py is infinite at §,.
This behavior clearly is not in accord with Eq. (3.2), and
so we conclude that there is no function p(o) that
satisfies Egs. (3.1) and (3.2).

3. Approximate form for p(o)

Although in this instance we cannot find a p(o') satisfy-
ing Egs. (3.1) and (3.2) exactly, it is possible to construct
a function that obeys these equations approximately. The
task is to select the most important of the exact criteria
developed here, and to construct a simple function that
obeys them. It has been established that the thermo-
dynamics of hard-particle mixtures are well characterized
using just the first few moments of their composition, and
that the exact form of the distribution is relatively unim-
portant. Accordingly, we expect criteria involving the
moments of p(o) to be relevant to any specification of an
approximate function.

Equation (3.2) can be used to specify exactly the mo-
ments of any approximate p(o). If we define ¢, and s, as
the nth moments, about the origin, of the distributions
p.(8) and p(o), respectively, then

1 non
Q=TT S Kk [SkSa—k - (A10)
2 k=0
Thus for n =0,1,2 we have
co=1s§, (Alla)
Sl_SOcl/CO y (Allb)
(%] ¢ :
=8y [2—— | — . (Allc)
Co Co

Because p(o) is to be used to define the activity-ratio dis-
tribution a(o ), the normalization given by Eq. (2.7) re-
quires s, =D —d, and so Eq. (A1la) specifies the normali-
zation of p.(8); this was used to develop Eq. (3.2). Equa-
tions (A11b) and (Allc) then specify the moments of
p(o). In the application to the disks-between-lines mod-
el, the adsorbed phase is characterized fully by just the
first moment of the composition distribution, so we em-
ploy only Eq. (Allb) in constructing an approximate
plo).

To summarize, we constructed a function p(o) that ap-
proximately satisfies Egs. (3.1) and (3.2) using the follow-
ing criteria: (1) from Eq. (A8), p(o) diverges with an ex-
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ponent of —3 as 0 —d: (2) the first moment of p(o) is
given by Eq. (A11b), with ¢; and ¢, the zeroth and first
moments of the distribution p,.(8) given by Eq. (3.2); (3)
from Eq. (2.7), p(o) is normalized to D —d. The simplest
form satisfying these three criteria is that given by Eq.
(3.3).

APPENDIX B: ACTIVITY COEFFICIENT
FOR POLYDISPERSE ONE-
AND TWO-DIMENSIONAL FLUIDS

Our mean-collision-diameter mapping [Eq. (3.15)]
treats the effective size of a species as a functional of the
entire component identity distribution, in contrast to the
other mapping procedures which employ the standard
description of hard-particle polydisperse mixtures. This
unusual treatment requires that expressions for com-
ponent properties such as the activity coefficient be
rederived, because the functional dependence of the
molecular diameters on composition leads to extra depen-
dences on the component mole numbers. Overall mixture
properties such as the pressure remain unchanged. We
derive here equations for the activity coefficient of the 1D
and 2D effective polydisperse fluid.

The individual mappings of Sec. III B in essence treat
the adsorbed phase as a polydisperse mixture in which
the radial coordinate y is the identity variable. Because
the mapping of Eq. (3.15) is written in terms of f(y), the
distribution of radial coordinates, it is convenient to
adopt this view explicitly in developing the expression for
the activity coefficient y[o(y)] needed in Eq. (3.10).
Thus we shall henceforth denote this quantity simply as
v(y), and we shall treat the adsorbed phase as a po-
lydisperse mixture distributed in y, with a normalized
composition distribution f (y).

The activity coefficient y(y) of a component of identity
y in a polydisperse mixture is given by the functional
derivative [20]

8B A,
SN(y)

Iny(y)= (B1)

TV

where A, is the residual Helmholtz free energy (i.e., that
above the ideal gas at the same density) and N(y) is
Nf(y) and is normalized to N. For the systems studied
in this work, the composition dependence of 4, is ex-
pressed solely in terms of the moments of the composi-
tion £, defined

_% ” -
&=~ [ [eWIN ()dy =v,ns, (B2)

where v, is the (generalized) volume of a particle of unit
diameter (equal to unity, 7 /4, and /6 in one, two, and

three dimensions, respectively), and ¥V is the system
volume (or area, or length, as appropriate); s,, are the mo-
ments as defined by Eq. (5.4). Then, the activity
coefficient may be given by

a(BA,/N) &,

Iny(y)=BA,/N+N 3, 2 5N () (B3)

where the sum extends from » =0 to the dimensionality
of the system. Normally, o(y) is independent of N(y),
and the functional derivative needed here can be written

% _ e lon) (B4)
SN(y) N7

However, if we employ the mapping given by Eq. (3.15),
then o is itself a functional of N(y). Equation (B2) is
then

v n
b= [ay N [ [ N80y )dy’ (B5)
and the functional derivative becomes
8, _ 1 . , , N
SN ) = o |lewEn [ 10180,y o] dy
—nén /8o (B6)
In particular
88 1
SN(y) N (B7a)
SN(y) N 00Vmsils
8¢, 1 ) , ) o
SN ()~ W |SlOWT 260 [ (580, (v )dy

—2¢, (B7¢)
For a hard-rod mixture, the residual Helmholtz free
energy is [20]

BA,/N=—In(1—§,) . (B8)

This relation may be inserted into Eq. (B3) and combined
with Eq. (B7) to produce the expression given in Eq.
(3.16). For hard disks, the result from scaled particle
theory [34] leads to
3
BA,/N=—In(1—&)+——— . (B9)
2 E(1—E,)

Combination of Egs. (B3) and (B9) yields Eq. (5.2).
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FIG. 1. Coordinate system and parameters used in descrip-
tion of confined fluid.
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FIG. 7. Region of nonzero integrand for convolution Eq.
(3.1). For a given collision diameter 6 (the ordinate), the limits
of integration of Eq. (3.1) are indicated by the left and right
boundaries of the shaded region.



