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Primary relaxation in a hard-sphere system
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The a-relaxation dynamics in a hard-sphere system is studied solving microscopic-mode-coupling
equations. The solutions for coherent and incoherent dynamical structure factors, the transversal corre-
lation functions, and the moduli are presented for all wave vectors. The wave-vector dependence of
fitted Kohlrausch exponents P and of the relaxation times r is discussed. Recent experiments on the a
relaxation of colloidal systems are quantitatively analyzed.
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I. INTRODUCTION

yx (z) = y~(zr ), Imz )0, (2)

where the master function y~(zr) is related to the La-
place transform 4~(z) via z4~(z)+4~(t =0)=y~(z).
The spectrum y"(co) exhibits an a resonance where the
position shifts with temperature T proportional to 1/~.
Our paper deals with the detailed form of the master
function 4 (xt/r) or the shape of the a peak yz(car).
One characteristic feature is the stretching: several de-
cades in time t or frequency co have to be mapped out in
order to investigate the a relaxation. This was
discovered by Kohlrausch in the last century who also
proposed a simple fit formula

4~( t) =fxexp[ —
( t /r )~] . (3)

The stretching is modeled by the Kohlrausch exponent
P(1. Different physical quantities exhibit different P.
There are also systematic deviations between true master
functions and the Kohlrausch function. Experiments
show that P and the correct form of 4 or y depend on the
microscopic details of the system. There is no universali-
ty. There is no fit formula known which accounts prop-
erly for all details of the master curve. There is no ac-
cepted microscopic or phenomenological theory for 4.
For more details we refer to some review, e.g., the book
of Wong and Angell [1].

In recent years the mode-coupling theory (MCT) for

The appearance of a slow structural relaxation process
referred to as primary or a relaxation is a characteristic
feature of supercooled liquids. Very often, but not al-
ways, the correlation function 4~(t) of some variable X
can be written as

4~( t) = 4~( t /r),
where the master function 4 varies only smoothly with
temperature, while the scale ~ increases rapidly upon
cooling. The master function 4~ depends on the variable
X measured and is different for different glass-forming
systems. An equivalent scaling law or time-temperature
superposition principle holds for the susceptibility y~(z):

supercooled liquid dynamics has been developed [2—5].
For some reviews the reader is referred to Refs. [6,7].
This approach aims at the evaluation of the relevant
correlators of simple liquids focusing on two physical
mechanisms: nonlinear coupling of density fluctuations
and phonon-assisted hopping. The new results of the
MCT are based on the existence of bifurcation singulari-
ties in the closed equations of motion [8]. These are re-
ferred to as glass-transition singularities. They separate
ergodic liquid from nonergodic glassy states. The noner-
godic state is characterized by a nonvanishing Edwards-
Anderson parameter [9]. Neglecting hopping events, an
ideal liquid-to-glass transition is obtained, if the tempera-
ture T crosses some critical value T, or the density some
critical density n, . The existence of the temperature T,
lying above the calorimetric glass-transition temperature
Tg is established in a number of glass-forming systems,
e.g. , Refs. 10—13. For some systems there are hints on
the relevance of T, [14—16]. In the limit T~T„T)T„
there appears an a process obeying (1), and a closed equa-
tion for the master functions 4& is derived. In this
manner the MCT provides a microscopic model, allow-

ing, in principle, 4z to be calculated. If hopping effects

[17]or other ergodicity-restoring processes [5] are includ-
ed the sharp transition is changed to a crossover. How-
ever, in a range of temperatures above T, the mentioned
idealized results are predicted to remain valid.

The functional form of the a master curve is predicted
to depend on all microscopic details. Nevertheless, using
simple schematic MCT models, already qualitative pre-
dictions about the shapes of a peaks are possible [18].
The e relaxation of real glass formers can only be calcu-
lated if the microscopic equations of the system are
known. Up to now such equations exist only for simple
one- and two-component liquids [3,19,20]. The first to
solve the complete MCT equations at the glass transition
for a simple one-atomic Lennard-Jones system was
Bengtzelius [21]. However, he did not discuss the a mas-
ter curves systematically nor could he study the adequacy
of the Kohlrausch fits, which he showed for two wave
vectors, because of complications due to P processes.
The time scale of crystallization in one-atomic Lennard-
Jones systems is much shorter than the a relaxation scale
at T, . Therefore, even on computers, it is very difficult to
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II. BASIC EQUATIONS

The normalized density correlation function 4 (t)
=S(q, t) IS (q) can be rewritten in terms of a generalized
longitudinal modulus M (z):

@ (z)=
n2

z q

z+M (z)

(4)

supercool them for such long times to explore T, effects.
In recent years an experimentally accessible system has

been developed, which well corresponds to the most sim-

ple theoretical glass-forming liquid, the hard-sphere sys-
tem (HSS). Suspensions of small colloidal spherical parti-
cles of equal size show structural and dynamical proper-
ties that have many features in common with those of
simple atomic systems [22]. Especially, the interaction
can be very short ranged and come close to one of an
ideal HSS [23]. In contrast to simple one-atomic liquids a
colloidal suspension can be brought to the metastable or
glassy state for hours or days without crystallization. Re-
cent dynamic light-scattering studies detected a glass
transition at a critical packing fraction y, =0.560+0.005
[24,25]. With a relative deviation of 7% this value is in
agreement with computer simulations. [26,27] and
theoretical MCT calculations [3,28]. The MCT predicts
a further slow relaxation process, the so-called P relaxa-
tion, to precede the a process. Very different from the a
process the P process depends only on one single number
A, , which combines all microscopic structural details.
This exponent parameter A, can be calculated from micro-
scopic models [29]. A rather detailed quantitative
analysis of the P relaxation dynamics of the colloidal sys-
tem [30] was possible using MCT predictions [31]. The
results show that the MCT is a candidate for an adequate
description of the colloidal HSS.

Also the a dynamics of a HSS is, in principle, accessi-
ble in colloidal suspensions. In this paper therefore a de-
tailed analysis of the MCT predictions for the a relaxa-
tion of a HSS is given. Except for the first steps of
Bengtzelius in this direction we are not aware of any mi-
croscopically based study of the a relaxation. The at-
tempt of Ref. [32] to calculate the dynamics of a
Lennard-Jones fluid using MCT equations could not ex-
tend the time window to more than three decades below
the microscopic time scale. This is clearly inadequate for
the analysis of a relaxation dynamics. In the present pa-
per the wave vector and time dependence of the slowest
relaxation process in a supercooled simple liquid are
studied theoretically.

Our paper is organized as follows. In Sec. II we give a
short summary of the MCT results for the a relaxation.
Section III contains remarks about the numerical pro-
cedure and its accuracy. In Sec. IV we present the wave-
vector-dependent solutions for the coherent and in-
coherent density fluctuations and the transverse shear
correlators in the a relaxation regime. Different fit for-
mulas and the recently proposed scaling procedure of
Dixon et al. [33] are discussed. The theoretical results
are compared with measurements on colloidal suspen-
sions.

4q(z)=i f dt e'"4q(t) for Imz )0 . (5)

0 is connected to the q-dependent generalization of the
q

isothermal sound velocity co(q)=IIq/q=+k~TI(mSq)
[34]. In the MCT of the glass transition the generalized
longitudinal modulus M (z) is approximated by pairs of
density fluctuations [3]

Mq(z) =Qqmq(z)+ivq(z)q

d k
m, (t)=-,'f, V(q, k)C„(t)4, „(t),

(2qr)

V(q, k) =nSqSkS k [hack+(q —k)c k]

'2

(7)

Here the vertices V in m (z) are evaluated at the critical
point y=qf. In time representation (9}can be written as
[18]

4 (t)=m (t) —— dt'm (t t')4 (t'), t=—
(10)

c is the Ornstein-Zernicke direct correlation function
and S is the static structure factor Sq= 1/(1 ncq—).
Equations (4)—(8), or more precisely a quantum-
mechanical generalization, were used earlier to describe
the dynamics of liquid He II [35]. The term iv (z) is a
stochastic damping term, which is assumed to be frequen-
cy independent for ~zto ~

&& 1. to characterizes microscop-
ic time scales like inverse phonon frequencies. Equations
(4)—(8) form a self-consistent set of equations for the
description of the long-time dynamics of dense simple
liquids close to the glass transition if the static structure
factor S is known. Using Fokker-Planck equations as
microscopics, Hess [36] has derived (4)—(7) and vertices
slightly different from (8) for colloids also. The complete-
ly different microscopic behavior of colloids and pure
HSS given by particle diffusion and hydrodynamic in-
teraction enters only the term iv (z). Even if one uses
Smoluchowsky dynamics instead of Liouvillian dynamics
it is possible to derive these equations for colloids if one
neglects hydrodynamic interactions [37]. Equations
(4)—(8) are the equations for the ideal glass transition.
The influence of activated hopping or other ergodicity-
restoring processes is not considered in this paper. These
processes seem to have no influence on experiments in
colloidal suspensions [30,31].

The a relaxation is asymptotically defined by the scal-
ing limit y~p', z~0, ~~~, z=zw=const. ~ is the
scale of the a relaxation that goes to infinity if the pack-
ing fraction q&=(qrl6)o n of the hard-sphere system ap-
proaches some critical value g', where 0 is the diameter
of the spheres. N is the temperature independent master
function obtained by the a scaling procedure. It obeys the
following a scaling equation [38]

m (z)
@q(z)=

1 —zm (z}
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The functions 4, m depending on the careted variables
are related to the original ones via qk (z) =+ (z),

~ ~
q q

4& (t ) =@ (t). In the following we discuss only the caret-
ed functions and drop the caret for convenience.

The scaling limit eliminates the microscopic and the
intermediate P relaxation as transients to the a relaxa-
tion. The value of 4 (t =0)=f is the strength of the a
relaxation. From (9) one can derive the equation for f
[3]:

=m (t=0)=P»(V fk), 0~f ~1

q s (r ) fs hsrb+hs2~(2b hs3r3b+O(r4b) (18)

d k
m,'("t)= ,

' f—,V'(q, k)4„(r )4&, „(r),
(2»r)

qkV'(q, k) = nSk S q (ck —
cq k ) k

q

2

(19)

(20)

The von Schweidler exponent b is the same as in (12).
Finally the time- and wave-vector-dependent transver-

sal current relaxation kernel in the o. regime is given by

7 is a functional of the function f determined by the
vertices V(y) (8). The short-time expansion of (10) leads
to [38]

For the derivation of the above summarized formulas
(9)—(20) the reader is referred to the original MCT papers
[3,29,38,39] or to the review [6].

4 (r)=f' —h r'+h(2"r" —h(3~r"+0(r") (12) III. NUMERICAL PROCEDURES

fq is the value of f at the critical packing fraction y'.
y' is defined by the occurrence of a fold bifurcation in Eq.
(11) for fq. The fractal short-time power behavior
4q(t) fq »et is t—he so-called von Schweidler law. The
von Schweidler exponent b is determined by the exponent
parameter A, via I (1+b)/I (I +2b)=A, [39]. I is the
gamma function. The exponent parameter A, is defined by

3 eq
(2 )' (2 )' '~f ~f,

X(1 fg )'(1 fq)'e—keq /&,
——

q'4&'(t ) = m'(r )
——f dt'm'(r I')4'(t'), —

q q ~ q q
(14)

0&A, &1. (13)
The vectors e', e' are appropriately normalized left and
right eigenvectors of the stability matrix C k

=(BV /dfI, )(1 fk) at the —critical packing fraction q&'.

The definition of y' above is equivalent to a nondegen-
erate maximal Eigenvalue E =1 of C I, The amplitude
of the von Schweidler law hq is equal to h =(1 fq ) eq. —
A, also determines the critical variation of the a relaxation
scale q' rcc ~qr

—y' r, where y= I/2a+ I/2b depends
on the von Schweidler exponent b and the positive solu-
tion a of I (1—a)/1 (1—2a)=A. .

The a master curve of the self-correlation function
4'q (t ) is the solution of

Equations (4)—(8) specify a microscopic infinite-
dimensional model for the a dynamics of a HSS. Numer-
ically the wave-vector space has to be discretized and an
upper cutoff' q,„has to be introduced. The mesh size
has to be small enough to resolve the central peak of S .
bq =0.1/a was chosen. The length scale a is connected
to the density by (4»r/3)a n =1. The cutoff q,„=30/a
ensures that the integrands of the wave-vector integrals
in (7) are negligible for q & q,„. A model of dimension
X =300 is obtained. The Verlet-Weiss approximation
[34] for the static structure of a HSS was used to calcu-
late the vertices.

The result of the a relaxation strength f' of this
N =300 model can be compared to earlier calculations
[3,27,32], see Fig. 1: For qa )2. 5 good agreement is
found except for the results of [32]. The Percus-Yevick
approximation [34] for S used in [3] leads to smaller f'
for qa (2.5. This difference lies beyond numerical er-

1.0

0.8

0.6

0.4
d k

m,'(r)= —,
'f, V'(q, k)C&„(r)C', „(I),

(2»r)
(15)

0.2
2

V'( q, k ) = n ck Sb .qk

q
(16)

', =m;(fI »q k) ~ o f; —I. —-
q

The rescaled short-time expansion is given by

(17)

The coherent function N (t) is an input in the equations
for N' (t ). As in the coherent case, the value
@q(t =0)=f' is a measure of the strength of the in-
coherent a process. It obeys

0.0
10

I

15 20
I

25 qa 30

FIG. l. Coherent and incoherent a relaxation strengths f»
and fq at the critical packing fraction cp'=0. 525. Three values

for fq from experiments on colloidal suspensions at volume

fraction &p,„,=0.565 ( y,„„,=0.560) from Ref. [25] are included.
Five wave vectors, for which dynamical results are presented in

more detail, are marked. The inset compares the small-q disper-
sion of the high-frequency transverse [c'„(q)] =MOS»mq(t =0)
and longitudinal [c'„(q)] =Mom (t =0) sound velocity.
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rors. Numerical errors in the wave-vector integration,
however, are largest for small q due to cancellation
effects. The errors can be estimated by comparing results
of different algorithms. Differences for qa & 1 and small-
er than 10% errors at q =0 are seen compared to the re-
sults of Ref. [27]. Three experimentally obtained values
for f ' [25] are also included in Fig. 1 and compare well to
the theoretical results. The further unphysical wiggles
observed in fq of Ref. [32] are possibly caused by using a
too small cutoff for the wave vectors (q,„=15.5/a),
where the integrands are not yet small.

The critical packing fraction of the %=300 model
y'=0. 525, which agrees with earlier calculations [21,27],
lies below the experimental value p'=0. 560 [24,25].
Generally it has been found that MCT overestimates the
trend to freezing [17]. When comparing to experiments it
is therefore necessary to use the distance to the transition
points as a relevant parameter. The maximal eigenUalue
of the stability matrix C k was E = 1+10 at y'. The re-
sult of Fig. 1 agree with the exact results of fq of the
discretized model up to relative errors of 0.5%. The
model has an exponent parameter A, =0.766(1+10 ),
which is calculated from Eq. (13). The corresponding
von Schweidler exponent b equals 0.532. The exponent
y, which describes the critical variation of the u-scaling
time, with y going to y' from below, is y=2. 62. This
value has been checked in context with the already men-
tioned P-dynamics analysis of colloidal suspensions [31].
The value of y=2. 0 arbitrarily fitted in Ref. [32] to nu-
merical data for shear and longitudinal viscosities of a
HSS violates the exact relation y = 1/2a + 1/2b.

A recently developed algorithm for integrating (10)
[18] is used. The results of the integration in time space
can be checked with Eq. (9) in Fourier space. The errors,
largest at high frequencies, are mainly due to the Fourier
transformation. They are at most 1.5%%uo in 4q(co) at the
peak of the structure factor q =q~ and 2% in 4'q"(co) at
q =2. 1/a. For qa (2.1, 4' (t) decays too slowly, so that
a reliable Fourier transformation is not possible. The
peak positions and widths of the a peaks in the suscepti-
bilities yq"(co), however, could be determined for
qa ~ 1.5. The numerical integration of (10) starting from
t =10 to t=10 took less than 20 min on a Cray Y-
MP.
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FIG. 2. Critical amplitude h~ and next two coefficients h~, h~
of expansion (12) of 4~(t) for t/v~0.

=&2r, =O. lo, which can also be read off from fq [3].
This shows that, for qa ( 10,f» closely follows the Gauss-
ian distribution f' =exp( qr,—) T. he value

((hr, ))' =O. lo corresponds to the Lindemann cri-
terion of melting [34].

The short-time von Schweidler law 4q(t ~0)
=fq hqt is th—e only simple analytic prediction of the
MCT for the shape of the a relaxation. The correction
terms hq &Aq

' and hq &hq p however, are of the same or-
der of magnitude as the critical amplitudes h, h' (see
Figs. 2 and 3). Therefore, in general, the von Schweidler
asymptote can be expected to hold only for short times,
t 10, say. The exceptions are cases where h' ', h' '

are either very small or where they are of the same size
and nearly cancel each other.

Figure 4 shows normalized results @q(t)/fq for
different wave vectors. In order to discuss the results and
to show all possible features the correlators at qa =0, 2.2,
4.4, 6.5, and 20 were chosen. q =q =4.4/a is the posi-
tion of the principal peak of S and consequently of fq.
q =q &

=2. 1/a lies in the first minimum, and

IV. RESULTS
0.50

The results for f' and f' also determine the high-
frequency values of the transverse Mq(t =0) and tagged
particle M'(t =0) memory kernels. The transverse-
high-frequency modulus G =lim oM'( t =0)/q is
found to be G /Mo =S Om

' o(t =0)=0.41, where
Mo=mnco is the thermodynamic bulk modulus. The
high-frequency longitudinal sound velocity [c (q) ]

2=corn (t =0) shows a stronger q-dependent dispersion
than the corresponding transverse velocity, see Fig. 1.
The q range of validity of the hydrodynamics is of the or-
der of magnitude of the peak width in S, as has been dis-
cussed in Ref. [3]. The value m'(t=0)=77. 7=a /r,
gives a root-mean-square displacement ((Ar, ) )'
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FIG 3. Critical amplitude hq and next two coefficients

hq, h~' of expansion (18) of 4q(t) for t/~ —+0.
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q =q2=6. 5/a in the second minimum of f'. q =qo=O
and q=q3=20/a are typical results for qa «1 and

qa ))1, respectively. The results 4 (t ) clearly cannot be
described with exponential decay. This is mainly due to

the short-time fractal time behavior l
see also g~ (co)

below]. The shape of the relaxation curve and the rela-
tive relaxation time ~ =~ /~ depend on q. The correla-
tor at the structure peak q =q has the longest relaxation

1.0

/ fC $q/fq

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0

log )p (t /T) log tp (t/t)

1.0 1.0

C
(Pq /fq

0.6 0.6

0.4— 0.4—

0.2 0.2

0.0
-2 —1

log ip(t/&)

0

0.0
—1

log ~p(t/&)

0

1.0

(f)q/fq

0.6

0.4

0.2

0.0

log&p ( t/&)

0

FIG. 4. ( ) No lized correlator @ (t)/f~ for q =q =() shown as solid line. The von Schweidler asymPtote (marked with b) a

th sion (12) up to t ii (short dashes) are also included. (b) Same as (a) for q =q, =2.1/a in the first minimum o f~.
=4.4/g at the structure peak in S and f' (d) For q =q2=6. 5/a in the se.cond minimum off; (e) F«q =q =2o /

q.
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time but the smallest stretching. The opposite holds for
qa =20. The von Schweidler asymptote and its correc-
tions are also included in Fig. 4. The asymptote describes
the decay only for t/~ ~ 10,except for q =0, where the
corrections almost cancel. Figure 5 exemplifies this for
q =qz in a double logarithmic plot. Having in mind ex-
perimental tests of the theory it is interesting to note that
a fitted von Schweidler law with b =0.565, however, can
reproduce the correlator even for times t/&=1 within
reasonable error bounds. This fit is also included in Fig.
5. A somewhat larger value of the critical amplitude

hq =0.4, instead of hq =0.3, compensates for the small
error in b Fig.ure 6 shows the results 4z(t)/fz for the
same wave vectors as in Fig. 4, except for the constant

o(t ) = l. Again, differently, strong stretching and
strongly varying relaxation times are obtained. In 4q(t )

the von Schweidler asymptote is again seen only at short
times except for qa=6. 5 where the corrections Aq Aq

nearly cancel.
The information concerning the relaxation times, line

shapes, and the von Schweidler asymptote can also be
discussed in the susceptibilities g~(co) and y~"(co) (see.
Figs. 7—9). The conjecture [17,40, 18] that y~(co) allows a
momentum expansion y"(co)=f~c~co[1+5(co)], where
lim@ P(co) =0, is numerically verified. The Debye fits to
the low-frequency side co~&&1 indicate that there is no
anomalous stretching of the a relaxation for ~~((1.
The Debye fits, where the slope and the peak height were
adjusted, in general fail to reproduce the area of the a
peak, i.e., the relaxation strength f'. A double-
logarithmic plot (Fig. 9) of the susceptibility at q =q

1shows the validity of the ~co low-frequency asymptote.
%hereas the Debye fit in general works for co~&10
only, at q =q it fits the narrow peak up to co~= 1.

The frequency windows where the von Schweidler
high- or the Debye low-frequency asymptotes are ob-
served in y~'(co) are not in any obvious way connected to

the corresponding regimes in the modulus. For q =0,
tom "(co) is close to the von Schweidler asymptote, only
for much higher frequencies than y"(9) [compare Figs.
7(a) and 10].

The q-dependent stretching shows up in the varying
width of the a peak in the susceptibilities. w shall
denote the full width at half maximum measured in de-
cades of (cur). In y"(co) and g'"(co) a general trend of in-

creasing w with increasing q is found, see Fig.s 11 and
12. In y~ (co) a strong variation roughly in phase with the
a relaxation strength f ' is superimposed on this trend, as
suggested in Ref. [41]. The width varies rapidly around
the peak of S at q =q . Another measure of the stretch-
ing of the a relaxation is the normalized slope of the
correlator X =(BC (t)/Bint)~ +/4 (H~) at the point

q

of infiection t =r where 8 4 (t)/(c) lnt) =0; this will be
discussed below in context with the Kohlrausch-fit for-
mula. w measures the stretching also for times preced-
ing 7q where the slow von Schweidler time dependence
still prevails. X therefore reflects less stretching than

wq, as can be seen in Fig. 11.
A very different variation of w with q happens in the

memory kernels (see Fig. 13). The width of the a peaks
in corn~" (co), corn~

"(co), and tom~"'(co) varies only a little,
about an average of w = 1.9+0.13. This common
feature of the memory kernels and the value w =1.9 are
not obviously connected to the width of the correspond-
ing susceptibilities.

In general the peak positions co defined by

g~ (cu =
Q~ ) = (y~ ),„ in the susceptibilities or generalized

viscosities shift to higher frequencies with increasing
wave vector. In the memory kernels a rather smooth
change by a little more than one decade is observed in the
whole q range (Fig. 13). Due to the hydrodynamic pole
the peak positions cannot be determined for qa (1.5 in
y'"(co). From qa =1.5 to 30 the peak positions shift

1.0

EJ CT

I

C)
CA

0.6

0.4

0.2
—3—4

I

—1

log &O (t/T)
0.0

FIG. 5. Logarithmic plot of 1 4&q(t )/f& for q
=—

qz vs loga-
rithm of t l~. The von Schweidler asymptote (marked with b) is
shown; b =0.532 and hq =0.30. With a vertical offset of one de-
cade 4q(t ) for q =q~ is compared to a fitted von Schweidler law
with b =0.565 and fitted critical amplitude hq =0.4.

log&o(t/v j

FIG. 6. Normalized tagged correlator 4q(t) for the wave
vectors q =ql, q~, q2, and q3 from right to left. The von
Schweidler asymptotes are shown as dashed curves.
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FIG. 7. Normalized susceptibility g"(9)/f; for wave vector q =0. A Debye law (short dashes) fitted to the low-frequency side
co«& 1 and the von Schweidler asymptote (long dashes) for co~)) 1 are included. A Kohlrausch law fitted to g~ is shown as a dotted
curve. The fitted Kohlrausch parameter is p =0.77. (b) Same as (a) for wave vector q =q, =2. 1/a. The Kohlrausch parameter

0

p~ =0.69 was fitted. (c) For wave vector q =q at the peak of S . A Kohlrausch fit with parameter p =0.89 is shown. (d) For

wave vector q =qz =6.5/a, p» =0.67 is fitted. (e) For wave vector q =q3 =20/a, where the Kohlrausch fit gives p =0.56.7
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FIG. 8. Normalized tagged-particle susceptibilities

y»"(9}/f» for the wave vectors q =q„q, qz, and q, from left

to right. The von Schweidler high-frequency asymptotes (long
dashes) and low-frequency fits linear in co (short dashes) are in-

cluded.

monotonically by more than 2.5 decades, see Fig 12. In
y"(co) the variation of tut' also covers two decades. It is
in phase with f' and rather rapid around the primary
peak q =q . The peak of qa =2. 1 in the first minimum of
f' and the peak at q =q are shifted by almost one de-
cade relative to each other (Fig. 11). Two relaxation
times can be obtained from the correlators directly.
The already-mentioned ~q of the point of inQection and
an averaged relaxation time (r ) = 1 o"dt 4 (t)/
4 (t/r~O). This averaged time of the shear memory
kernel, for example, connects shear-viscosity and high-
frequency transverse modulus (r') =»)'/G„. The in-
verse of these relaxation times is included in Fig. 11. It is

0.0

—0.5

—1.0
EJ U

x
CFl

—2.0O

—2.5

log+ (vr)

FIG. 9. Double-logarithmic plot of the normalized suscepti-
bility g"(9i/f' at q =q . The Debye low-frequency {short
dashes) and the von Schweidler high-frequency asymptotes
(long dashes) are shown.

FIG. 10. Normalized longitudinal modulus 9m~" (co)/
m~(t =0) at q =0. The von Schweidler high-frequency asymp-
tote (long dashes) and a Debye fit to the low-frequency wing

(short dashes) are included. A Kohlrausch fit to the whole a
peak is also shown as dotted curve', the fitting procedure
specified in the text leads to the following Kohlrausch parame-
ters: P=0.61, r"=0.25, and f =0.98m (t =0).

interesting to note that the self-motion relaxation time
(r'») varies proportionally to 1/q rather well for the
whole wave-vector range 1.5 qa 30. The product
(r» )q =24+1.8 shows only small but systematic wave-

vector dependence. Somewhat larger variation by at
most 17%%uo is found for the corresponding product using
the peak position aP» in y'".

The transverse modulus G(co)=(kT/m)tom»"'o(co)
shown in Fig. 14 has a width of 1.8 decades. From its
low-frequency slope the shear viscosity
=nkTm"'o(co=0) r=nkT 19.23m can be read off. It is
smaller than the longitudinal viscosity gi =

3

+rtt, =nkTm" o(co=0)/S or=nkT59. 8r by a factor
of 3.2. The self-motion memory kernel
M»(z) =(kT/m)m»(z) at q =0 determines the
frequency-dependent self-diffusion function D '(tu ) via
D'(co)=Im[(kTm)/M' o(z=co+iO)]. For cur(1 the
rather constant value D'=(a /r)0 045 is obtain. ed. For
ter) 1, D'(co) diverges proportionally to co', see Fig.
15. The time scale ~ was reintroduced into the equations
for g, and D' for clarity. The Stokes-Einstein relation
[34] D'rt, =kT/6»tR holds with R =0.53o.

The exposition of the results for the a relaxation is
complicated by the lack of exact analytical expressions.
Phenomenologically different fit formulas have been used
to describe the a relaxation. It is well known that no
simple fit formula can describe the a dynamics in general.
Fit formulas like the Cole-Cole law y (z }
=go/[I+( ized) ], which —assume a fractal frequency
variation also for co~&1, clearly cannot describe the
asymmetric results where y" ~~ for m~&&1 is found.
The Kohlrausch law @ (t)=f exp[ —(t/r }~] [1] is
widely used as a fit formula. This law plays a special role
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in the theory of limit distributions of random variables
[42,43]. Applying the generalized central limit theorem
to statistically independent correlators, all showing the
same short-time von Schweidler asymptote, leads to a
correlator where the Kohlrausch law is valid for all times
[42]. The Kohlrausch exponent P in this case equals the
von Schweidler exponent b.

Experimentally the cz relaxation can always be studied
on a finite-frequency window only. Least-squares fitting
procedures of the Kohlrausch law to the a decay, in gen-
eral, depend on the specified window. In order to remove
this ambiguity, the following fitting procedure is used:
The Kohlrausch parameter P is calculated from the full
width at half maximum w of the peak in y"(co) in de-

cades of cur The. relation f3=a&lto +a2+a3w, where
e&=1.340, +2= —0.2463, and +3=6.237X10, holds
with less than lgo error in the range 0.5(P( l. The
peak position c/ determines the relaxation time via
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FIG. 11. (a) Stretching parameters obtained for the coherent
density fluctuations. The full width at half maximum mq mea-

sured in decades of co~ and the inverse of the normalized slope

Xq obtained from the point of inflection in C
q ( t ) are shown. (b)

Peak-shift parameters for the coherent density fluctuations: log-
arithmic plots of the peak position mqw in yq'(co) and of the in-

verse of the scaled relaxation times r~ /r and ( r ) /r are shown.
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FIG. 12. Peak-shift and stretching parameters for the
tagged-particle susceptibilities y~"(co). The full width at half
maximum wq in decades of cow and a logarithmic plot of the

peak position co~~ and of the inverse of the scaled averaged re-

laxation time ( r~ ) /r are shown.
S

FIG. 13. (a) Stretching parameters for the normalized

coherent mq, incoherent m', and transverse mq memory func-

tions: the full widths at half maximum wq in comq" (co),

comq
"(co), and comq

"(co) are shown in units of decades of co~. (b)

Peak-shift parameters for the memory functions of (a): logarith-

mic plots of the peak positions Mz in the specified moduli are

shown.
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FIG. 14. Normalized transverse modulus
Qmq"'(9)/mq(t =0) at q =0. The von Schweidler high-
frequency asymptote (long dashes) and a Debye fit to the low-

frequency wing (short dashes) are included. A Kohlrausch fit to
the whole a peak is also shown as dotted curve; the fitting pro-
cedure to the peak specified in the text leads to the following
Kohlrausch parameters: P =0.61 r =0.24, and

f =0.98m~(t =0).
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FIG. 15. Double-logarithmic plot of the normalized self-
diffusion function D'(co)/(a /~). The high-frequency asymp-
tote proportional to co

' is included.

rot'r =1. The amplitude f can be taken from the height
of the a peak in the susceptibility f =y,. „. In order to
calculate r"=r (co~ },P-dependent corrections are neces-
sary, because for a normalized Kohlrausch law,
exp[ (t/r—)~], already aP and y,„are functions of P
[44]. The quality of the Kohlrausch fits can be seen in
Figs. 7 and 16. For frequencies co~( 1 the Kohlrausch fit,
the numerical results, and the Debye fit are very close to
each other. The upper part of the u peak can be fitted
well by the Kohlrausch law. On the high-frequency side,
however, systematic deviations, increasing with increas-
ing frequency, can be seen in general. The Kohlrausch
law falls below the von Schweidler asymptote because of

FIG. 16. Normalized tagged-particle susceptibilities
y'q"(co)lf~ compared to Kohlrausch fits to the peak position,
width, and height. The curves from left to right correspond to
the wave vectors q =q, q~, q2, and q3.

P )b The q.-dependent variation of the stretching ob-
served in co and X of course translates into a q variation
of I3 . Figure 17 shows that P changes by roughly 20%
around the primary peak of S . The Kohlrausch relaxa-
tion time r also changes drastically by a factor of 6 at
the peak q . In the tagged-particle motion, P~ varies
monotonically from P=0.99 at q =1.5/a to P=0.58 at
q =15/a, see Fig. 18. The Kohlrausch relaxation time
varies by two orders of magnitude in the wave-vector
range q

= 1.5/a to 15/a.
A trend in the quality of the Kohlrausch fit is found.

For large q the fits approximate the coherent and in-
coherent susceptibilities y" and y'" better. P~ comes
closer to b and takes the rather constant value 0.56+0.01
for qa )20. The conjecture for the wave-vector depen-
dence of r~ [41], namely r =(f'/h )'/, becomes valid
within insignificant errors for qa )20. This relation
would be valid if the von Schweidler law were the short-
time expansion of a Kohlrausch law with 13=b At the.
structure peak, however, this estimate lies a factor of 4
above the observed value. Even at the cutoff q =q,„,
however, the Kohlrausch law still deviates from the nu-
merical results by more than numerical error.

The Kohlrausch fits to the memory functions are of in-
termediate and rather q-independent quality. Two, even
for qAO, representative examples have been included in
Figs. 10 and 14. Because of the almost constant width of
the resonances in m "(co}, m '"(co), and m "'(co), the values
of the Kohlrausch exponent are close to P =0.58+0.03
for all wave vectors.

That the Kohlrausch law is an appropriate but not ex-
act fitting function can be seen by transferring the
frequency-dependent functions back into time. The
Kohlrausch fits, with the parameters obtained from the
frequency-dependent functions, describe the decay of
@ (t) rather well, except for the initial von Schweidler
regime (see Fig. 19). An extrapolation to t =0 using the
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FIG. 19. Normalized correlators 4q(t)/fq with the corre-
sponding Kohlrausch fits are shown. The Kohlrausch-fit pa-
rameters were determined from the peaks in the susceptibilities.
The shown fits for the wave vectors q =q3, qp, and q~ from left
to right are representative for the quality of the fits in time

space achievable with Kohlrausch parameters from frequency
space.
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FIG. 17. (a) Kohlrausch exponents Pq for the coherent densi-

ty fluctuations. The upper curve was obtained from the slope of
the correlators at the point of inflection in time space; the lower
curve is calculated from the peak width in the corresponding
susceptibility. (b) Kohlrausch relaxation times rq of the
coherent density fluctuations in units of the a scaling time ~.
The upper curve is determined by the point of inflection of the
correlators, the lower curve is calculated from the peak posi-
tions in the corresponding susceptibilities.

Kohlrausch function underestimates the exact a relaxa-
tion strength f '

by up to 5%. A real measurement of the
time-dependent function 4(t) in a finite time window
limited by the short-time P-dynamics corrections and
long-time noise problems will result in rather close-fit
parameters. In the familiar Kohlrausch plot
log&o[

—1n@q(t )/fq j, as a function of log, ot, an observa-
tion of the curvature of the correlators requires rather ex-
act data and a large time window. Figure 20 shows this
for q =q and qa =20.

A different way of parametrizing the u stretching and
the shift of relaxation times is suggested by the following

K —(t/~)1
property of the Kohlrausch function 4x(t) =f~e
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FIG. 18. Kohlrausch exponent Pq and relaxation time r for
the incoherent self-motion and obtained from y'"(co). Due to
the strong variation of rq a logarithmic plot is chosen for it.

FIG. 20. Kohlrausch plot of the normalized density correla-
tors C&q(t)/fq for the two wave vectors q =q3 (upper) and

q =q (lower curve). In a plot of log, oj
—In[@q(t/r)/fq]j vs

log&p(t /7 ) Kohlrausch functions result in straight lines.
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At t =~ the second derivative with regard to lnt vanishes:
(8 /8 ln( t)4 (t) ~, =,=0. The first derivative is propor-
tional to P: (8/d Int )4 (t)~, =,=f Pe '. The value of
the Kohlrausch function at t =~ is of course

(t =r)=f e '. These two derivatives characterize
the stretching and this shift of the o)' process via 'Tq and

X, as defined above. They are compared to the corre-
sponding values obtained from the susceptibilities in Fig.
1 1 . The values of wq obtained with this procedure only
deviate little from the peak-position values. The stretch-
ing at ~ is smaller than the one obtained from the peak
width in y" due to the change from the fractal short-time
asymptote to the small-frequency normal behavior. Con-
sequently, the Kohlrausch parameters P~ obtained from
X lie systematically between 2% for large q and 9% at

q =q above the values from the susceptibilities. This
corroborates the statements concerning the equality of
the Kohlrausch fits and can serve as an error estimate.
Kohlrausch curves using the parameters from the
inflection points deviate more strongly from the correla-
tors for t/r « 1 than the fits in Fig. 19. Therefore, we
use the values obtained from the susceptibilities when
comparing with experimental least-squares Kohlrausch
fits to the time-dependent correlators. The values

P =0.89 at the peak of S and P =0.74 at
q q q

q
=

—,'q)' =3.8/a are close to the results of Bengtzelius for
a Lennard- Jones system at the glass transition. He re-
ports P =0.88 and P =0.68 [21].

Another fit formula for the a relaxation is the Cole-
Davidson law g (z) =go/( I ized —) [45]. a 1 is re-
sponsible for the asymmetric stretching of g"(co). If the
Cole-Davidson law were valid, the Cole-Davidson param-
eter would be equal to the von Schweidler exponent u =b.
The fitting procedure again calculates a from the width
of the resonance peak, takes ~ from the peak position,
and takes yo from the peak height. Figure 2 1 shows that
fits of varying quality are obtained. For some wave vec-
tors the Cole-Davidson fit is superior to the Kohlrausch
fit; for others the opposite situation is observed. Except
for small q, qa ~ 1 .5, and close to the primary peak
4.0 qa ~ 5.5, the fitted Cole-Davidson parameters lie
below the von Schweidler exponent a (b. Therefore for
most q values the fits lie above the spectrum at large fre-
quencies. The Cole-Davidson fit is excellent but not ex-
act for those wave vectors q where the fitted a equals b;
for example, at qa = 1 .2, a taken from the width of the u
peak is 0.53.

Only recently has it been observed that with a very spe-
cial scaling procedure dielectric loss measurements of the
a relaxation for a variety of systems can be scaled onto
one single scaling function [33]. This scaling property
was reported to hold for different temperatures, different
materials, and even for systems where the simple time-
temperature superposition principle was violated. A plot
of the scaled variable Y =( I/w& )log)0[gq "(co)/fico/co& ]
as a function of the scaled frequency X
=( I/wq )(I+ I/w )log, o(co/aP ) should collapse all
different curves onto one master function. Here w is the
full width of the a resonance normalized by the Debye
result, w =w /l. 39. The susceptibilities y"(co) for
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Xq
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0.2

0.1

0.0-2
log+ ( &r }

FIG. 21. Normalized susceptibilities g~(co)/fq compared to
Cole-Davidson fits (dashed curves}. The left susceptibility for
wave vector q =q &

exemplifies a good fit, where a =O.49 is
close to the von Schweidler exponent b; the curves on the right-
hand side for q =q, exemplify the strong deviation of the Cole-
Davidson fit if a =0.35 is much smaller than b.
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FIG. 22. Scaling plot as suggested by Dixon et al. [33] and
mentioned in the text. The susceptibilities for the wave vectors

q 3 q2 q &, qo, and q~ are shown from left to right.

q =qo, q &, q~, q 2, and q 3 do not reduce to one master
function if plotted as specified (see Fig. 22). Neither the
deviations for X & 0, where F does not go to the same
value for all q nor the fanning out of the correlators for
X)0 can be explained by numerical errors. In Fig. 23
for q =q the susceptibility and the fitted Kohlrausch
and Cole-Davidson laws are plotted in this fashion and
compared to values tentatively read off from Fig. 3(b) of
Ref. [33]. It can be seen that, especially for large X, the
MCT correlator lies closer to the reported master func-
tion than the Kohlrausch or Cole-Davidson fits. The up-
ward curvature of the master function for X around 4 is
not reproduced by the MCT result, which gives a straight
line corresponding to the von Schweidler asymptote. The



910 M. FUCHS, I. HOFACKER, AND A. LATZ 45

1.2

P g Q A A ())qp QP + O c
XXX

0 8 —— xx

0.6

0.4-

—8
—4

( I /Rq ) [1+(I /0 )]log,o(co/coq~ )

FIG. 23. Scaling plot according to Dixon et al. [33]. The
data points are read off from their Fig. 3(b). The curves corre-
spond to the rescaled susceptibility at q =qP, the rescaled Cole-
Davidson fit to this susceptibility, and the corresponding
Kohlrausch fit from top to bottom at high frequencies.

region of validity of the von Schweidler law, however,
cannot be specified in general. It is possible that in e"(co)
the asymptote is only observed for much larger X=6,
where the Dixon-Nagel function flattens out again.
Moreover, data from much below T„explicitly violating
the simple a time-temperature superposition principle,
have been included in the experimental scaling. Only fur-
ther developments of the MCT for finite separations from
the critical point, especially in the nonergodic state in-
cluding activated hopping, can show whether such a cur-
vature can be explained theoretically.

As mentioned in the Introduction, the faster p dynam-
ics of a colloidal suspension [30] could quantitatively be
fitted with the MCT results from a HSS [31]. The follow-
ing observations regarding the a relaxation of 4 (t) at

q =q were made. (1) The time-temperature superposi-
tion principle is valid for packing fractions y 0.542.
The a-relaxation time varies in accordance with the
MCT prediction. (2) Deviations of the curves from the a
master function at short times t /~ && 1 are explained by
the p dynamics. (3) The exponent parameter X=0.758
taken from [27] cannot be varied by more than 4%
without destroying the agreement between theory and
data. (4) The p analysis gives f' =0.83 and h =0.36

q

[46]. A —5% error in the first and a +20% error in the
second quantity, relative to the theoretical values [3,27],
had to be accepted for the analysis. (5) The von
Schweidler asymptote can fit the a decay down to

(t)= f'pe '=0.3.
The reported value of X=0.758 is very comparable to

our value of k=0.766. The small difference from the
value from [27] is due to diff'erent numerical separations
from the transition point. In Fig. 6 of Ref. [31] data for
six different packing fractions below the experimental
critical packing fraction cp'=0. 560 and a Kohlrausch fit
with P =0.88 were shown. Figure 24 reproduces the

same set of data. The above-mentioned Kohlrausch fit

0.2

0.0

lag, p (~1 ~qpj

FIG. 24. a relaxation data of a colloidal suspension for wave

vector at the structure peak in S~ are reproduced from Refs.
[30,31]. The symbols 0, 6, , V, 0, and X correspond to the

packing fractions g,„~,=0.480, 0.494, 0.504, 0.520, 0.529, and

0.542. The critical packing fraction of this system was reported
to be &p,'„~,=0.560 [24]. The correlator 4 (t) at q =q is res-

caled as explained in the text and appropriately shifted to match

at t/~q =1. The corresponding Kohlrausch fit to this correlator
with P, =0.89 is also shown as a dashed curve.

fits the data for t/~ ~ l. Our calculated correlator
P

d&z (t ) scaled by f' Ifq and appropriately shifted in or-
P P P

der to match at t/~ =1 describes the data in the regime
q

t /&q + 1, where scaling is obeyed. For
P

I go((otl r ) & —1.2 the experimental data closest to the
P

critical packing fraction are also reproduced. 4 has the
P

exact critical amplitude h . This eliminates the large er-
P

ror in h, which was accepted in [31] in order to explain
P

more than 50% of the a decay with the von Schweidler
asymptote. In Fig. 5 it was shown that such fits to the ex-
act results can determine the von Schweidler exponent
rather well. The relative difference between our b and the
value b(X)=0.545 is less than 2.5%, although large er-
rors in the critical amplitude h occur. The P dynamics

P

accounts for the deviations of the data from the e master
curve for short times, as shown in Ref. [31]. There also
can be a discussion of the theoretical overestimate of the

fq value be found. P dynamics can only explain devia-
P

tions of the correlators from the o. master curve if the
data points lie above the a curve. The Kohlrausch fit

shown as a dashed line in Fig. 24 is therefore superior to
the one of Fig. 6 in Ref. [31]. In view of experimental
tests of MCT predictions it should be pointed out that
the superior Kohlrausch fit leads to an error in the es-

timated Debye-Wailer factor f '. As discussed in context
with Fig. 19 an extrapolation to f' using this Kohlrausch
fit leads to an even smaller value.

V. CONCLUSION

The microscopic mode-coupling theory of the a relaxa-
tion qualitatively reproduces the experimentally known
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features of the a dynamics of supercooled simple liquids.
Especially, an asymmetrically stretched shape of the
spectra caused by the von Schweidler law is found. The
Kohlrausch law can be used for all wave vectors as a
reasonable fit. The quality of the fit improves for large
wave vectors. However, for all curves there are systemat-
ic deviations from the Kohlrausch law. The Kohlrausch
exponent P and relaxation time r vary with wave vec-
tors and are different for different quantities. In the
coherent density correlators, P~ varies strongly around
the primary peak of the structure factor. Also there is no
obvious connection between the Kohlrausch exponent of
the modulus and the related correlator. These findings
are in qualitative agreement with experiments. In
neutron-scattering experiments on polybutadiene [10] a
wave-vector dependence of the exponent P and of the re-
laxation time r was found. Lindsey, Patterson, and
Stevens [47] report different Ii for polarized and depolar-
ized light scattering. The Cole-Davidson law also pro-
vides reasonable fits to our data. Like the Kohlrausch
law it also does not describe the data exactly. It depends
on the wave vector whose formula provides a better fit.
The only common feature of the spectra is the same von
Schweidler law for the high-frequency wing of the suscep-
tibilities. It is also seen in the short-time expansion of the
time-dependent functions. The numerical solutions, how-
ever, show that its range of validity is in general very
small in a hard-sphere system. For possible future tests
of the MCT it is important to note that an unbiased fit of

the short-time t /~ ( 1 side of the o. relaxation gives a von
Schweidler exponent very close to the exact one.

Our numerical work using the MCT factorization ap-
proximation gives reasonable results even in the hydro-
dynamic range q~O. For example, the Stokes-Einstein
relation is verified by combining rather independent re-
sults for the tagged particle and the stress correlation
functions.

With our results for the intermediate scattering func-
tion at the first peak of the structure factor we can quan-
titatively explain experiments on colloidal hard-sphere
systems [30]. This completes the P-relaxation analysis of
the same set of data done by Gotze and Sjogren [31]. The
experimentally observed slow relaxation for q =q of a
hard-sphere system at the liquid-to-glass transition is in
quantitative agreement with the ab initio MCT predic-
tions. Our work provides a variety of detailed results on
the cz dynamics of hard-sphere colloids. If the experi-
ments on these systems could be extended to a larger set
of wave vectors, a rather detailed test of the relevance of
the MCT could be conducted.
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