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Dynamics of bubbles in a lipid monolayer
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A dynamic analysis of the growth of a gas bubble system in a lipid monolayer is presented. The bub-

bles are separated by thin liquid films. The two-dimensional bubble pattern has, independently of the in-

itial gas phase covering the surface, two different regimes of growth with time. Using simple arguments,

we find a differential equation which links the radius of the bubble with the width of the liquid film. Ac-

cording to the mechanism of thinning this film, the model predicts two different power laws for the areal

growth with time. If drainage is due to gravity, the power-growth exponent is a=
z (the experimental

value is a,„~,=0.59+0.11). When the film reaches the equilibrium thickness before rupture, the theoreti-

cal exponent a = 1 is in agreement with the experiment.

PACS number(s): 82.70.Rr, 68.90.+g

INTRODUCTION

Here we present an explanation of a recent experimen-
tal study of the evolution of gas bubbles in a lipid mono-
layer [1]. In a plane interface of an argon-water system,
after spreading a monolayer on it, the formation of gas
bubbles in the liquid background was observed. The
mean bubble size grows in time. When the initial gas
coverage is 75%, the strongly packed gas bubbles are
separated only by a thin liquid lamella. But if the initial
coverage of bubbles is only 40%, the liquid separation be-
tween bubbles is of the order of their size. At the begin-
ning, for both coverages, the mean area grows as a func-
tion of time, as in the case of soap froths [2], with a
power law (a ) = t and an e—xponent a =0.59+0.11. The
bigger the bubbles the faster they evolve. The growth ex-
ponent o. changes from 0.59+0.11 to 1.0. Below we pro-
pose a model to explain these two different time behav-
iors.

where k is the permeability constant and r is the bubble's
radius. If the gas bubble behaves as an ideal gas
[P( ', )r =NRT—, P being the pressure], the following rela-

tion holds:

dN 4mr P dr
dt RT dt

(2)

The change in the number of moles per unit volume in
the lamellae is related to the excess pressure P, on the
lamellae surface by

4(
RT rRT ' (3)

through the upper film later is proportional to the area of
the film and to the difference in concentration b,c (num-

ber of moles per cm ) between the gas the the lamellae,

dN =k4mr hc,
dt

0 is the surface tension. By substituting Eqs. (2) and (3)
into (1) we obtain

THE LAWS OF BUBBLEGROWTH WITH TIME Prdr =4kcrdt . (4)

Let us consider a two-dimensional bubble pattern in
the liquid-gas region. The shapes of the bubbles change
with time; the pressure in small bubbles is higher than in
bigger ones. Smaller bubbles can disappear by dissolu-
tion in the system. The monolayer in contact with water
will tend to settle at the free surface with the hydropho-
bic tail in contact with argon (gas) and the hydrophilic
polar head in contact with water. The gas inside the bub-
bles is interchanged with the two bulk phases (argon and
water) and also with the other bubbles via the liquid
lamallae. The pressure in the two bulk phases remains
nearly constant. The gas inside the bubbles will be first
absorbed at the inner interface and then by diffusion
through the liquid lamallae [3], will reach the upper
argon-gas phase. A small part of gas, can by dissolution,
reach larger bubbles or the water phase. The number of
gas moles N per unit time adsorbed first and passing

This equation, valid for any bubble of the system, is also
valid for contiguous bubbles; then we have

rdr=-4k dt .do
(5)

This differential equation governs the bubble's area
growth with time. In general, the thickness of the liquid

Using thermodynamic arguments, within the theory of
film stability [4], it was shown that the film thickness h is

simply

= d(x

dp

After substitution of Eq. (6) into (5) we obtain

rdr =4kb (t)dt .
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film changes with time. If we consider the film to be of
such a thickness that the drainage would correspond to
the Aow of a viscous liquid between parallel plates, then
the average velocity would be proportional to the square
of the film thickness and finally the thickness will change
with time as

(8)

where C, is a constant. In this derivation it was assumed
that gravity is the driving force and the velocity is null at
the surface of the film [5]. By introducing Eq. (8) into (7),
after integrating we have

2 2+C t1/2ro 2 (9)

where C2 is a constant and ro corresponds with t =0. As
the film continues to drain, there will be a situation, if the
film does not rupture spontaneously, where the concen-
tration of gas at the surface remains constant. In such a
situation the lamella thickness will be given by [6]

4I RT
EC

(10)

where E is the Gibbs elasticity of the film, C the bulk
concentration of solute in moles/cm, and I the surface
excess concentration of surfactant in moles/cm at the in-
terface. In this situation Eq. (7) becomes

r =ro+C3t,

where C3 is a constant. We can see from Eqs. (9) and (11)
that the area growth depends strongly on the regime of
How of the lamella film.

CONCLUSIONS

The present dynamic model, for a two-dimensional
bubble pattern in a liquid-gas interface, is able to predict
two different power laws of the mean-bubble area growth
with time. When drainage by gravity [7] is the thinning
mechanism of the liquid lamellae, our model predicts a
power exponent n= —,

' while the experimental value is

a,„~,=0.59+0.11 [2]. As the bubbles approach each oth-
er along their centers, the lamellae surfaces deform and
get thinner due to the drainage of the Quid by gravity.
Long-range, both attractive and repulsive, forces and
anomalous viscosity start to play an important role. Also
when three or more gas bubbles meet, the curved lamel-
lae called plateau border cause drainage because of the
differences in the lamellae curvature [6,7]. In this situa-
tion the drainage process could end in the rupture of the
film or could reach an equilibrium thickness [8,9). If the
film gets an equilibrium thickness, the area of the bubbles
will grow linearly with time as is predicted by Eq. (11).

ACKNOWLEDGMENTS

I acknowledge A. E. Rodriquez and F. Vericat for
many helpful discussions.

[I]B. Berge, A. J. Simon, and A. Libchaber, Phys. Rev. A 41,
6893 (1990).

[2] J. Stavans and J. A. Glazier, Phys. Rev. Lett. 62, 1318
(1989).

[3]J. T. Davies and E. K. Rideal, Interfacial Phenomena
(Academic, New York, 1963).

[4] J. Frenkel, Kinetics Theory of Liquids (Clarendon, Oxford,
1949).

[5] H. Schlichting, Boundary Layer Theo-ry (McGraw-Hill,

New York, 1979).
[6] M. J. Rosen, Surfactants and Interfacial Phenomena (Wi-

ley, New York, 1978).
[7] K. J. Mysels, J. Phys. Chem. 68, 3441 (1964).
[8] A. Vrij, Disc. Faraday Soc. 42, 23 (1966).
[9] I B»»ov and R. K. Jain, in Dynamics and Instability of

Fluid Interfaces, edited by T. S. Sorrensen (Springer-
Verlag, Ber1in, 1978).


