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Optical-diffraction measurement of fractal dimensions and f(a) spectrum
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The optical-wavelet transform (OWT) is used to measure the generalized fractal dimensions D~ and
the related f(a} spectrum of singularities of fractal aggregates. Its ability to characterize geometrical
multifractality is demonstrated on deterministic fractals. Application of the OWT to experimental

copper electrodeposition clusters in the limit of small ionic concentration and small voltage is reported.
The statistical self-similarity of these experimental clusters and Witten and Sander diffusion-limited ag-

gregates is confirmed.

PACS number(s): 64.60.Ak, 07.60.—j, 42.30.—d, 61.50.Cj

Most of the experimental determinations of the fractal
dimension D of fractal structures are based on scattering
experiments with x rays, neutrons, or light [1). Widely
used in the study of critical phenomena at phase transi-
tions, these techniques provide a convenient experimental
method of characterizing the geometrical scaling proper-
ties of fractal objects. Generally, D is extracted from the
power-law behavior of the scattered intensity I(k)-k
where k is the scattering wave vector. This scaling law
indicates that the density-density correlation function
behaves as g(r)-r, where d is the dimension of
space. In the pioneering studies [1], this scaling analysis
was mainly concerned with stochastic structures. More
recently it has been generalized to deterministic fractals
[2]. But, as emphasized in recent theoretical works [3,4],
the estimate of the fractal dimension D does not provide
a deep insight into the geometrical complexity of fractal
objects. A better characterization would, for example,
require measuring the scaling exponents D„of higher-
order correlation functions. These exponents are inacces-
sible to classical scattering techniques which are based on
a simple Fourier transform. The aim of this Brief Report
is to demonstrate that the double Fraunhofer diffraction
experimental arrangement designed in a previous work
[5] to perform the optical-wavelet transform (OWT) can
be adapted to extract the generalized (to real values of q)
fractal dimensions [3] D and the closely related f(a)
spectrum of singularities [6]. We will mainly focus in this
study on fractal aggregates in two dimensions. For
homogeneous (globally self-similar) aggregates, the OWT
reveals that the D 's are all equal, i.e., their f(a) spec-
trum is concentrated on a single point a=Do. In this
case, the two-point correlation dimension D =D2 mea-
sured by classical scattering experiments is the actual
fractal dimension Do. For multifractals [6], D2 is
different from Do, and D is generally a monotonously
decreasing function of q, while the f(u) spectrum turns

out to be a single-humped function of maximum Do. For
its ability to characterize geometrical multifractality, the
OWT is a definite step beyond simple diffraction.

The wavelet transform (WT) has been the subject of
considerable theoretical developments and practical ap-
plications in a wide variety of fields [7]. Of recent in-
terest is the application of wavelets to fractals [4,8], e.g. ,
fractal aggregates grown in a diffusion field [9]. In a pre-
vious study [5], we have shown that a very cheap and fast
way to perform the WT consists in using coherent optical
spatial-frequency filtering. The WT of a real function p
over R (in practice, a mass density), with respect to an
isotropic analyzing wavelet g, is given by the convolution
product

T (a,x)= p(x')8 g
1 x'

a" a

Ts(a, x) is the wavelet component of p for the length
scale a ( )0). The analyzing wavelet g is just required to
be continuous and of zero mean [7]. Fourier transform-
ing Eq. (1) gives

f'g(a, k) =p(k)g(ak), (2)

where the caret denotes the Fourier transform. g has to
be zero at k=0 as the consequence of the requirement
(g ) =0. Calculating the wavelet component of size a of
p just amounts to filtering its Fourier-transform spectrum
with a filter of transparency g(ak). In the OWT [5] the
object p is Fourier transformed in a classical Fraunhofer
diffraction geometry, with a lens of focal length f. The
electromagnetic field distribution in the rear focal plane
of the lens is proportional to p(k), with k=2m'/A f; here
u is the position in the Fourier plane and A, is the light
source wavelength. The simplest acceptable filter shape
to be used in the Fourier plane is a binary approximation
of the Fourier transform of the sombrero (Mexican hat)
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[9]: the filter transparency is equal to one for
R /y & lul ~ R, and zero elsewhere. This is just a
bandp ass filter that admits frequencies between
2qrR/Af} and 2qrR/Af. The filter is located in front of
another lens which images the filtered sample, i.e., its
wavelet component at scale a =Af/2qrR. The whole WT
is completed by repeating this filtering for different values
of a, in practice with homothetic bandpass filters [10].

Figure 1 sketches our current optical-wavelet trans-
form setup. A complete description can be found in Ref.
[10]. For the purpose of this Brief Report it suffices to
know that the experiment uses a stack of 31 homothetic
bandpass filters, whose dynamical range is equal to 27.
The setup comprises two paths, corresponding to two
different values of f. The resulting overall dynamical
range is a bit more than two decades. The samples used
up to now are large-size photographic slides that can ac-
commodate up to 1024X 1024 pixels. The filtered images
are sent to a charge coupled device (CCD) camera which
is coupled to a DEC 3200 workstation that can process
and store the images at the video rate. Since the video
camera is a quadratic detector, the OWT actually gives
I(a, x) =

I
T (a, x)l .

In our preliminary study [5] we have pointed out the
ability of the OWT to resolve local scaling properties of
fractals. If the mass of a fractal aggregate scales around
the point xo with the scaling exponent a(xo)

p($(xo, ke))= f p(x)dx-A, 'p(S(xo, e)),

Now, in the spirit of the multifractal formalism [6], let us
define a partition function in terms of the wavelet com-
ponents [11],
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FIG. 1. Optical-wavelet transform setup. The light source is
a krypton laser. The I. s are doublet lenses and M s are mir-
rors. The filters are brought into operation in the Fourier plane

by a robot. Path 1 (corresponding to small-scale wavelet corn-

ponents) is in operation when M3 and M6 are removed. The
figure shows path 2 (large-scale components in operation). SF,
spatial filter; ND, variable neutral density filter; S, sample; FB,
bandpass filter barrel; VC, video camera.

where $(xo e) is an e ball centered at xo, then the intensi-

ty recorded at this point on the CCD camera will behave
like [5,10]

I(Aa, xo)=lTg(ia, xo)l -k ITg(a, xo}l (4)

d[(q —1)D ]

dq

1= lim f dp(x) J'q(a, x)in[a &I(a,x)],
p+ lna

a(q)=

f(a(q))= lim dp(x)J'q(a, x)ln2q(a, x),1

p+ lna

where J (a, x) =[a &I(a,x)]'q 'I/Z(a, q). This defini-

tion can be obtained by simply deriving the partition
function [9] Z(a, q) with respect to q. Note that it allows
us to determine the f(a) curve using log&-log& plots for
both a(q) and f(a(q)) without neglecting logarithmic
corrections [12] and without facing the difficulties en-
countered [9] when directly Legendre transforming [6]
r(q) =(q —1)Dq.

In Fig. 2, we report the 0%T measurement of the D
and f(a) spectra of deterministic mathematical aggre-
gates. The one-scale snowflake shown in Fig. 2(a) is com-
monly thought of as a paradigm for globally self-similar
aggregates [9]. Its iterative construction rule can be con-
sidered as a deterministic model for aggregation. A
straightforward calculation [9] yields D =ln5/ln3 for all

q. Therefore, each point of the aggregate corresponds to
a single scaling index a =ln5/ln3, with the density
f(a=ln5/ln3) =ln5/ln3. The OWT measurement of the

Dq s is shown in Fig. 2(c) where the partition function is

plotted versus a in a log-log representation. The slope D
of the graph obtained for a given q is reported in Fig. 2(d)
as a function of q. The errors bars correspond to the Auc-

tuations observed around the straight lines in the
log2-log& plots in Fig. 2(c). These fluctuations are the
combination of finite-size effects and experimental noise
superposed onto intrinsic periodic oscillations [9] of
period P=ln3. These oscillations are due to the invari-
ance of the one-scale snowflake under dilation of length
scales by the scale factor 1=3. The 0%T provides an ac-
curate estimate of the D 's: within the experimental un-

certainty, the generalized fractal dimensions are all equal
to the theoretical value D =ln5/ln3. This is an experi-
mental checking of the capability of our experimental
technique to recognize global self-similarity.

Figure 2(b} shows a two-scale snowflake [9] constructed
at stage n by adding the configuration at the (n —1}th
stage of the growth to the four corners of the twice-
enlarged version (and not the same version as for the
one-scale snowflake construction rule) of the cluster cor-
responding to the (n —1)th-stage configuration (the ratio
of the two-scale factors 1, /i&=2). Since the two-scale
snowAake has an exact recursive structure, the general-
ized fractal dimensions D and the f(u) spectrum can be

Z(a, q)= fdp(x)[a v'I(a, x)]'q "-a ' . (5)

Z(a, q) is thus obtained by summing [a &I(a,x)]'q
for all points x belonging to the fractal set or aggregate;
the way it depends on the filter size (in the limit a ~0 )

directly gives the so-called order-q generalized dimen-
sions. The set of local exponents a and the related f(a)
spectrum of singularities are generated through the
"canonical" equations [12]:
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FIG. 2. OWT measurement of the Dq's and f(a) spectrum of the (a) one-scale and (b) two-scale snowflake fractals. The construc-
tion of each sample has been limited to six generations (see text). (c) Log2Z(a, q)/(q —1) vs log2a (arbitrary scales) for different
values of q. (d) Dq vs q for the one-scale ( o ) and two-scale (~ ) snowflake; the symbol + corresponds to the two-point correlation di-
mension Dz, i.e., the only dimension accessible to classical scattering experiments. (e) The experimental f(a) spectrum of the two-
scale snowflake. The solid lines in (c)-(e) correspond to the theoretical predictions (see text).

computed analytically [9]. These theoretical predictions
(solid lines) are compared to our optical experimental
measurements in Figs. 2(d} and 2(e}, respectively. The
data reveal a rather smooth decreasing dependence of D
as a function of q. This evolution is visible in Fig. 2(c).
The data for the corresponding f(a) spectrum are shown
in Fig. 2(e}. This spectrum is characteristic of multifrac-
tal objects [4,6]. The scaling exponent a is not unique; it
is experimentally found in a finite range a;„~a a,„,
where the bounds a;„and a,„are given by the strong-
est and weakest singularities, respectively. The lower
bound a;„=D+„=1,f(a;„)=0, corresponds to the
central point, i.e., the region of highest mass, where the
largest scale factor I, has been applied at each stage of
construction [Fig. 2(b)]. Conversely, a~,„=D „=1.5
corresponds to the regions of lowest mass, where the
smallest scale factor I2 has been successively applied;
these regions have a finite density exponent f(a,„)=1.
The actual fractal dimension of the two-scale snowflake is
the value Dq for q =0, which is also the maximum of the
f(a) curve, D o1.34+0.05. This value is larger than
the two-point correlation dimension D2 = 1.29+0.05,
usually identified to the fractal dimension in classical
diffraction experiments [1,2]. The data shown in Figs.
2(d) and 2(e) are in remarkable agreement with the
theoretical D and f(a) curves. Multifractality of the
two-scale snowflake is thus demonstrated experimentally.

A.mong the various experimental illustrations of fractal
pattern-forming phenomena, electrochemical deposition
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FIG. 3. (a) An off-lattice DLA cluster of mass M=50000
(courtesy of P. Meakin) [19]. (b) An electrochemical fractal ag-
gregate grown in circular geometry; the experimental conditions
are defined in Ref. [9]. OWT determination of the D, 's of the
(c) numerical DLA cluster and (d) experimental electrodeposit;
the solid lines correspond to the mean-field prediction DF = 3.
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[13] is commonly considered as the paradigm for theoret-
ical studies of diffusion-limited aggregation. In fact, by
varying the concentration of metal ions and the cathode
potential, one can explore a rich variety of morphologies.
Fractal patterns are usually obtained in the limit of small
ionic concentration and small current density. These
fractal electrodeposition clusters have been extensively
studied [14] and it has been conjectured that they are
similar to diffusion-limited aggregates (DLA) computed
with the random walker model of Witten and Sander
[15]. Only very recently the deep connection between
highly ramified electrodeposits and DLA clusters has
been established on a quantitative basis [9,16]. We show
in Fig. 3 the OWT determination of the spectrum of gen-
eralized fractal dimensions of off-lattice DLA clusters
[17] of mass M=50000 [Fig. 3(a)] and a fractal copper
electrodeposition cluster grown in a circular geometry
[Fig. 3(b)]. The data for the D 's of these aggregates are
reported in Figs. 3(c) and 3(d), respectively. The global
self-similarity of these numerical and experimental aggre-
gates is confirmed by our OWT analysis. The data do not
reveal any significant deviation from a constant D curve.
Moreover, the dimensions for the electrodeposition
(D =1.66+0.08) and DLA (D =1.65+0.06) clusters
are the same within the experimental uncertainty and in
good agreement with recent numerical dimension mea-
surements [9,16]. Note that our experimental data match

the mean-field prediction [18]D~ =
—, for diffusion-limited

aggregation in d =2 dimension. The results in Fig. 3 pro-
vide the experimental demonstration that electrodeposi-
tion and DLA clusters are statistically self-similar and
that their fractal properties, when characterized by such
quantities as their generalized fractal dimensions, or the
related f(a) spectrum, are identical.

In conclusion, we have shown that the optical-
diffraction device, designed to perform analogically the
WT, is a very powerful experimental tool that can resolve
geometrica1 multifractality. Preliminary results of a
study of Laplacian fractal growth phenomena show that
the OWT can also be applied to characterize the mul-
tifractal properties of the velocity field along the cluster
interface. For its ability to analyze the scaling behavior
of high-order correlation functions, the OWT is a definite
step beyond classical scattering techniques. Its applica-
tion to revisit phase transitions in critical phenomena
looks very promising. The study of critical colloidal sys-
tems is currently in progress.
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