
PHYSICAL REVIEW A VOLUME 45, NUMBER 12 15 JUNE 1992

Efficient Monte Carlo methods for the computer simulation of biological molecules
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We present an alternative approach to efficient Monte Carlo simulations of biological molecules. By
relaxing the usual restriction to Markov processes, we are able to optimize performance while dealing

directly with the inhomogeneity and anisotropy inherent in these systems. This approach allows us to
sample configurational space more efficiently than with either standard Monte Carlo or molecular-

dynamics methods.
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I. INTRODUCTION

In recent years, considerable effort and computational
resources have been devoted to simulating biological rnol-
ecules. These molecules, which include polymers, pro-
teins, and nucleic acids, are of great importance in phys-
ics, chemistry, biology, and medicine [1,2]. The goal of
these computer simulations is to provide insights into the
structure-function relationships in biornolecular interac-
tions and energetics [3] by supplying detailed information
about the conformations and internal motions of biologi-
cally important molecules.

Due to the size and complexity of the task, these simu-
lations require enormous amounts of supercomputer
time. This has led us to investigate alternative methods
for improving efficiency with the goal of reducing the
burden on supercomputing resources, broadening the
scope of applications, and increasing the reliability of the
results.

Currently, most computer simulations of thermo-
dynamic systems use either molecular-dynamics (MD) or
Monte Carlo (MC) methods. Both methods involve the
generation of molecular conformations to represent
thermal fluctuations. Equilibrium properties are found
by computing appropriate averages over the resulting set
of conformations. The interactions between atoms in the
molecule are represented by an effective Hamiltonian that
has been constructed empirically from a variety of experi-
mental information [4—8].

Molecular dynamics is a deterministic method that
computes classical trajectories by iterating a discretized
representation of Newton's equations. The total energy
of the system is conserved so that the generated
configurations trace out a microcanonical ensemble (if the
system is ergodic). An advantage of the MD method is
the possibility of following an explicit classical trajectory
of the system.

Since it is often more convenient to analyze data ob-

tained at constant temperature (and/or pressure), various
modifications of the MD method have been developed.
One possibility is to introduce terms representing noise
and dissipation into the equations, which leads to a
canonical ensemble (constant temperature) [9—11].
Another possibility is the rescaling of atomic velocities to
impose a fixed average temperature [11,12]. Nose has in-
troduced particularly interesting modified equations of
motion that couple the system to a fictitious external de-
gree of freedom [13,14].

The main adjustable parameter that enters a
molecular-dynamics simulation is the size of the time
step. Increasing the time step moves the system through
phase space more rapidly, but it can introduce errors and
can even affect the stability of the algorithm. For either
Gear [15] or Verlet [16] algorithms, the maximum time
step for reasonable accuracy must be less than about —,', of
the shortest period of vibration. In the case of most bio-
logical molecules, this corresponds to roughly 1 fs, which
is indeed commonly used in such work. It might also be
noted in passing that since the highest frequencies are as-
sociated with the smallest masses, one way to increase the
efficiency of the MD method without distorting the equi-
librium properties would be to set all masses equal [17].

A Monte Carlo simulation is a stochastic Markov pro-
cess that generates a sequence of configurations
representing a canonical ensemble. Trial moves are gen-
erated from a random distribution and are either accept-
ed or rejected with a probability given by the Boltzmann
factor. The Markov property of the MC process means
that the probability of transition to a new state depends
only on the present state. A fundamental theorem of
Markov processes states that if the transition probabili-
ties satisfy detailed balance, and if any configuration can
be reached from any other configuration in a finite num-

ber of steps with nonzero probability (ergodicity), then
the simulation can correctly reproduce the equilibrium
behavior [18].
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There are also mixtures of MC and MD methods
known as hybrid MC [19] and hybrid MD methods [20].
In these methods, larger time steps are used with a global
acceptance step to ensure thermal equilibrium.

In developing alternative methods, we must keep in
mind the nature of the system and the types of questions
that are asked. Some of these questions concern the dy-
namics of short-time behavior (i.e., a few picoseconds},
and the only current option is the MD method. Howev-
er, most questions concern equilibrium properties. The
equilibrium configuration is of major importance in
determining biological function, and free-energy calcula-
tions are needed to predict and understand biochemical
reactions. Many calculations of relaxation times actually
require quasiequilibrium determination of free-energy
barriers.

Early work by Northrup and McCammon [21] indicat-
ed that the MD method was more efficient than the MC
method, even for equilibrium properties. This conclusion
was based on their observation that the MC method re-
quired much more computer time to carry out the updat-
ing process. However, the two methods actually require
about the same amount of computer time per sweep.
When this is corrected for, their data, based on the rms
deviations per sweep, indicate that the standard MC
method is more than the MD method. We have chosen
to base our approach on the MC method partly for this
reason, but primarily because of the flexibility for intro-
ducing additional new moves in MC simulations to im-
prove the efficiency.

Both Monte Carlo and molecular-dynamics methods
were originally developed to simulate fluids. In setting
up a simulation, both methods require preliminary calcu-
lations to equilibrate the system and to determine the ap-
propriate simulation parameters (time step in the MD
method or maximum jump size in the MC method} and
to ensure stability in the case of the MD method. When
simulating fluids, optimization of parameters is done on a
global basis, which is appropriate because these systems
are homogeneous and isotropic. However, the local
structure of molecules is inhomogeneous and highly an-
isotropic [1,2,21]. Thus it is necessary to optimize the pa-
rameters locally in order to increase the efficiency of the
simulation. Furthermore, both the inhomogeneity and
anisotropy change with time.

We have developed alternative MC methods to address
these problems. The essential feature of our approach is
the optimization of the Monte Carlo parameters from
data collected during the simulation. Because this
feature allows us to optimize local moves, we are able to
deal explicitly with the inhomogeneity and the local an-
isotropy of biological molecules. Our approach also al-
lows for the optimization of a wide variety of global
moves without long preliminary studies. This turns out
to be extremely important in designing efficient algo-
rithms.

Since our methods use information gathered during the
simulation, they are no longer strictly Markovian, al-
though they are almost or piecewise Markov processes
[22]. Detailed balance is satisfied and we have been able
to demonstrate that our algorithms reproduce the correct

equilibrium behavior while substantially improving speed
and efficiency. In this paper, we present a description of
our approach and illustrate its advantages by applying it
to a small molecule.

II. ALMOST MARKOV SIMULATION METHODS

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.25

0.0 1.0
I

2.0
I

3.0 4.0 5.0

FIG. 1. Semilog plot for the average acceptance ratio (P ) as
a function of the maximum step size for d = 1, 2, and 3 SHO
with P= l. The one-dimensional curve is exact, while in higher
dimensions, each point is obtained by averaging over 10000 MC
steps from a simulation where the trial jumps are generated uni-

formly in radius.

In this section, we derive two simulation methods from
an analysis of a simple harmonic oscillator (SHO). The
acceptance-ratio method (ARM) is an optimization tech-
nique that treats the inhomogeneity of biomolecules
efficiently. The second method, the dynamically opti-
mized Monte Carlo (DOMC) method, treats both the in-
homogeneity and the anisotropy. These methods are
then shown to retain their efficiency for the anharmonic
potentials found in biological molecules.

The potential energy of a d=l SHO is given by
V(x)= —,'kx . The efficiency of a MC simulation is deter-
mined by the choice of maximum step size 5 from which
the MC trial moves are generated. If an optimum 5 is
known for some given k and p, then the optimum 5 for
any other values of k and p is also known through the
scaling relation

—'kP5 =F (1)

where P= 1/k+T. Thus, if we can determine the optimal
scale factor I' for any SHO, we have solved the problem
for all such models.

An important quantity for understanding the efficiency
of MC simulations is the average acceptance ratio (,P ),
which is defined as the ratio of accepted moves to trial
moves during a simulation. As shown in Fig. 1 (which
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also shows data for higher dimensions discussed below),
the acceptance ratio decreases monotonically as a func-
tion of step size 5. This is expected because small trial
step sizes corresponding to small energy changes will pro-
duce high acceptance ratios, while large moves have a
high probability of being rejected due to large energy
differences. The acceptance ratio decreases approximate-
ly exponentially as a function of 5 for the range of values
shown in Fig. 1. For larger 5, the acceptance ratio varies
inversely as 5.

To determine the optimal value of F, we first per-
formed a series of MC studies of a d =1 SHO, V(x) =x
with P= l. In addition to the acceptance ratio, we moni-
tored the autocorrelation time ~ and two measures of the
displacements per MC step, ((hx) )' and (Ihx!),
where hx represents the displacement during a MC move
and the angular brackets indicate the usual thermal aver-
age.

The simplest measures of efficiency are the rms [21]
and average absolute displacements. These quantities
should go to zero for small acceptance ratio (P) since
most moves are rejected, and for (P ) near 1.0 since each
trial move is small. Therefore, we expect a maximum in
each curve, as seen in Fig. 2. The maximum rms dis-
placement ((b.x ) )'~ occurs at (P ) =0.42
(5=F=2. 62), while (!b,x

I ) has a maximum at the larger
value of (P ) =0.56 (5=F=1.76). The optimal value of
F clearly depends on what is being calculated. However,
even if (P ) differs from the optimal value by as much as
+0. 15, the displacements are only reduced by 10%%uo. This
leaves a fairly large region around (P ) =0.5 (5=E=2}
for which both quantities are nearly optimized.

The integrated correlation time ~ was determined from
the normalized time-dependent energy-energy correlation
function

(2)

by the usual expression

r= g f(r, ), (3)

where the sum is cut off when the fluctuations drive the
correlation function negative [23]. The statistical error is
proportional to &1+2'.

Figure 3 shows a plot of the correlation time ~ as a
function of the acceptance ratio (P). This plot shows a
minimum in the correlation time with ~;„=1.4 MC
steps corresponding to a 50% acceptance ratio. This pro-
vides a justification for the common practice of tuning
the step size to accept about one-half of the trial moves.
In fact, using (P) =0.5 (5=F=2) to minimize r also
gives rms and average absolute displacements within
2.5% and 1.3%%uo of their respective maxima.

In higher dimensions, the parameters that enter the op-
timization scheme are found to depend on how the jumps
are generated. Two possibilities are to generate them uni-
formly in either the radius or the volume of a sphere (uni-
formly in radius or area of a circle for d =2}. Interesting-
ly, when the jumps are generated uniformly in radius, the
acceptance ratio, the rms displacement, and the absolute
displacement are nearly independent of the dimension as
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curve is exact, while in higher dimensions, each point is ob-
tained by averaging over 100000 MC steps from a simulation
where the trial jumps are generated uniformly in radius.
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p= l. The trial jumps are generated uniformly in radius, and
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shown in Figs. 1 and 2. The correlation time still has a
minimum at (P ) =0.5, but its value increases for higher
dimensions as shown in Fig. 3. The minimum correlation
time is 3.8 MC steps in two dimensions, and 6.1 MC steps
in three dimensions. Thus the optimal value of I' when
the jumps are generated uniformly in radius is still F=2
corresponding to a (P ) =0.5.

When the trial jumps are generated uniformly in
volume, the behavior is somewhat different. As shown in
Fig. 4, the acceptance ratio decreases more rapidly as a
function of 5 than in the previous case, but is still a near-
ly exponential function. The maximum rms and absolute
displacements are higher than in the previous case but
occur at lower acceptance ratios as shown in Fig. 5. The
minimum correlation time occurs at lower acceptance ra-
tios for higher dimensions as shown in Fig. 6. The
minimum correlation time is 2.8 MC steps corresponding
to (P ) =0.42 in two dimensions, and it is 4.4 MC steps
occurring at (P) =0.39 in three dimensions. The value
of F corresponding to the optimal correlation time de-
creases only slightly in higher dimensions, being about
1.9 for d =2, and about 1.8 for d =3 SHO.

Although most workers fix the step size for the dura-
tion of the simulation, some efforts have been made to
update it as new information is generated. Allen and
Tildesley suggested raising or lowering the global step
size by 5% depending on whether the measured accep-
tance ratio is above or below 50%%uo [24). Corana et al. in-
troduced variations in maximum step sizes to maintain
the acceptance ratio at 50%%uo in simulated annealing runs
for minimizing functions of continuous variables [25].
Since they were not concerned with equilibrium proper-
ties, they did not discuss the non-Markovian nature of
their procedure.

Our 6rst optimization procedure is an acceptance-ratio
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FIG. 5. Same as in Fig. 2, except the trial jumps are generat-
ed uniformly in volume (uniformly in area for d =2).

(P) =exp( —5/5 ), (4)

where 50 is some constant. Let (P; ) be the ideal or the

method to carry out equilibrium simulations with
different dynamically determined step sizes for each par-
ticle. We have used the approximately exponential
dependence of (P) on 5
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FIG. 6. Same as in Fig. 3, except the trial jumps are generat-
ed uniformly in volume (uniformly in area for d =2).
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ln(a(P; )+b)
1 ( (P)+b) (6)

where a and 6 are real parameters chosen such that 5,I& is
either multiplied or divided by a convenient scale factor
(about 5 or 10) whenever P is 0 or 1 [25].

The ARM is a robust optimization technique and is
especially useful at high temperatures for simulated an-
nealing experiments. An advantage of the method is that
each atom is treated separately, thus dealing with the in-
homogeneity of the system efficiently. A weakness is that
the accuracy of the optimization is limited by the discrete
estimates of the acceptance ratio from the finite length of
each simulation cycle. Another weakness is that the
ARM does not deal with the local anisotropy of macro-
molecules, although it can be applied effectively to rota-
tions of part of the molecule or other global moves.
However, these problems can be dealt with using a
different method we call the dynamically optimized
Monte Carlo method.

We first discuss the one-dimensional DOMC equations
for a d =1 SHO. Square brackets denote a direct average
over all attempted moves regardless of whether they are
accepted or not. It is easy to show that

[b,E)=—,'k[(hx) ], (7)

where AE represents the energy change corresponding to
the jump size Ax. Combining this with Eq. (1) and elim-
inating k, we obtain the DOMC estimate for the op-
timum value of 5 from the simulation data

1/2
[(bx) ]
P[~E]

(8)

or, more generally

1/2

P[bE(bx) "] (9)

This is the fundamenta1 DQMC equation for d=1 sys-
tems. As discussed above, the scale factor F for the SHO
is about 2 for optimum efficiency. The extension of the
DOMC method to anisotropic systems in two and three
dimensions is described in the Appendix. Trial moves are
made within an ellipsoid (an ellipse for d =2) that refiects
the local anisotropy. The advantage of choosing moves
from an ellipsoid was suggested by Northrup and
McCarnmon [21] in 1980, although they had not

desired acceptance probability corresponding to an ideal
maxirnurn step size 5;. Then, clearly

in(P, )
in(P) (5)

A simulation is set up as a sequence of cycles. During
a given cycle characterized by a maximum step size 6,I&,

the acceptance ratio (P„~) for each particle is comput-
ed. An iteration procedure using Eq. (5) is set to update
new values of 5. Ho~ever, this equation must be protect-
ed against overflow problems that occur whenever P is ei-
ther 0 or 1. Therefore, we have modified it to read

developed a method for implementing it.
During each simulation cycle, the averages [(b,x)']

and [b,E] are computed locally for each variable, and a
new value of the maximum step size is obtained for the
next cycle [26]. This procedure is done only once every
cycle, and takes a negligible amount of computer time—
about 3% for the adenosine simulations discussed below,
and even less for larger molecules.

Because both the ARM and the DOMC method use in-
forrnation from past configurations in determining the
transition probabilities, they are not strictly Markovian,
which raises the possibility that systematic errors might
be generated. To test for systematic errors, we have used
the DOMC method to calculate the energy of a SHO us-
ing very short cycles. In the extreme case of only 1 MC
step/cycle, we do find a large systematic error of 42%.
However, with even 2 MC steps/cycle the error drops to
6%, and for 3 MC steps/cycle it is about 1%. No sys-
tematic error was measurable for 4 or more MC
steps/cycle. To obtain small statistical errors in the esti-
mates of 5, at least 10 MC steps/cycle are needed for
one-dimensional moves, and 50 to 100 MC steps/cycle
for three-dimensional moves. Consequently, we conclude
that the systematic errors are negligible for practical ap-
plications.

We found DOMC to be extremely effective for a wide
range of anharmonic systems including both symmetric
and asymmetric double-well potentials. The results were
qualitatively similar to those for the SHO, although the
optimal values of F tended to be higher —about 3 or 4. It
was also interesting to note that the average displace-
ments showed a broader maximum when plotted against
F than when plotted against 5, which implies that the
precise value of F is even less critical for strongly anhar-
monic systems. Comparisons between the results of
DOMC and direct numerical integrations again
confirmed the absence of any measurable systematic error
for a cycle length of more than 4 MC steps. Further-
more, DOMC easily achieves optimal efficiency for two-
and three-dimensional models, with anisotropies of 1000
in the ratio of the coupling constants. Tests on two- and
three-dimensional potentials with anharmonicity and
even double minima have demonstrated that the DOMC
equations remain remarkably efficient.

In practice, it is possible for the straight averages used
in Eq. (9) to take either very large or negative values.
This may arise, for example, when a trial move puts an
atom very close to another. Generally, this is rather rare
at normal or low temperatures. However, to account for
such cases, the stability of the program is protected by
providing a branch to an alternate updating of the step
size based on the ARM for the particular cycle that has
run into a problem. The program reverts to the DQMC
equations on the following cycle.

Although the ARM and the DOMC method have been
derived and discussed in terms of single-particle moves,
this is not a real restriction. In fact, collective moves that
are important in biomolecules may be easily optimized
using this approach. A particularly important class of
such moves involves global rotations of a group of atoms
with respect to the rest of the molecule [27—29]. These
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moves are described by angles of rotation, and the only
modification needed is to restrict the maximum trial
move to the range [ 7r—, 7r]. The DOMC method can be
especially useful when the rotations are highly correlated.
Efficient MC moves involving groups of two or three ro-
tations can be optimized with the equations derived in
the Appendix.

III. APPLICATIONS

bands angles

+ g [1+cos(n4p y) ]-V~

dihedral

A,j B,J. ~v v
12 6 + 12 10

nonbonds Rtj R,j H bonds R)j R&j

,. j eR
i(j

(10)

The first two terms represent the bond-length and bond-
angle strain energies. The dihedral energy is represented
by a cosine function, where g is the dihedral angle, n

denotes the symmetry of the torsional barrier, V is the
force constant, and y is the phase angle. The last three
terms describe the "nonbonded" interactions between
pairs of atoms that do not belong to the same bond or an-
gle. A hydrogen bond is represented by a 10-12 potential,
and a Lennard-Jones potential is used for the other non-
bonded pair interactions. The last term is intended to
represent both the direct electrostatic interaction and the
screening effects of solvent. This term is not well deter-
mined for typical separations of a few angstroms, but we
have followed the common practice of taking the dielec-
tric "constant" to be e(R; ) =R;~ [30].

In performing the simulations, trial MC moves includ-
ed nine global rotations along with single-particle jumps.
The possibility of including such global moves to ac-
celerate the simulation is a great advantage of the Monte
Carlo approach.

One measure of the DOMC efficiency is the energy-
energy correlation time, which is 8.6 sweeps, indicating a
rapid sampling of phase space. However, this quantity is
not easily compared with the results of other methods for
reasons that will become clear below. Therefore, we have
used the time dependence of the approach of the average
rms displacement ((b,r} )' to its equilibrium value as a
measure of efficiency [21]. This quantity is defined as

((4l)2)l/2 y fr (r ) f2)l/2
N, .

where N is the number of atoms and r; and ( r; ) are the
position and the average position of atom i, respectively.

As a simple example, we have applied these simulation
methods to adenosine, one of the building blocks of
DNA, using the united-atom force field developed by
Kollman and co-workers [8]. The potental energy is
given by

E= g K~(b b, } +—g Es(e e,q)—
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FIG. 7. The rms displacements for simulations of adenosine
obtained from MC, MD, and DOMC simulations corresponding
to the same amount of computer time. On a DEC 3100
workstation, the CPU times are 0.12 s/sweep for the DOMC
simulation, and 0.04 s/sweep for the MC and MD simulations.
For the DOMC simulation, snapshots are taken every 10
sweeps, while snapshots are taken every 30 sweeps for the MC
and MD simulations. In this figure, the rms obtained during the
first 1000 snapshots is shown.

It was computed by superposing all the stored structures
to the initial equilibrated structure. The superposition
was done following the procedure introduced by Kabsch

[31]with a modification that assures that the matching of
structures is done through a rotation and not an inver-
sion [32].

We have performed conventional MC, MD, and
DOMC simulations at room temperature (298 K) using
the same amount of computer time to account for the
fact that the full DOMC simulation took a factor of 3
more computer time per sweep due to the global rota-
tions. The DOMC simulation consisted of 1800 cycles
with 100 sweeps each. Every single-particle move and ro-
tation was performed once each sweep. Snapshots of the
molecule are taken every 10 sweeps. The computed aver-
age position of each atom ( r, ) after superposition is up-
dated after each snapshot. The rms is found to converge
to about 1 A.

In the MD simulation, a Verlet leap-frog algorithm
was used with a time step of 10 ' s, starting from the
same equilibrated initial configuration as the DOMC
simulation. We used the average potential energy from
the DOMC simulation to initialize the velocities of the
atoms. Velocities were initially generated from a
Maxwellian distribution and a global adjustment was
made to set the total linear and angular momenta to zero.
The velocities were then rescaled to make the initial ki-
netic energy equal to the difference between the previous-
ly calculated total energy and the configuration's poten-
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FIG. 8. Same as in Fig. 7, except that the length of the runs
are longer. The DOMC simulation is 180000 sweeps, while the
MC and MD simulations are 540000 sweeps long.

IV. CONCLUSION

In this paper, we have introduced two methods for car-
rying out optimized Monte Carlo simulations of thermo-

tial energy.
The standard MC simulation was done with a global

optimizaton. Single atom moves were generated uniform-
ly in volume from spherical neighborhoods with a radius
of 0.08 A, corresponding to the maximum rms displace-
ment for this method. The overall global acceptance ra-
tio was 31%%uo.

Plots of rms displacements obtained for each of the
three methods starting from the same well-equilibrated
structure corresponding to the same amount of computer
time are shown in Fig. 7 and 8. Figure 7 shows the
"short-time" behavior of the rms fluctuations, while a
1engthier run is shown in Fig. 8. From the short run, the
rms fluctuations obtained from the DOMC simulation
exceed the MD fluctuations, and approach the asymptot-
ic value rapidly.

The plot of the DOMC rms fluctuations also shows
some kinks (or zigzags). These represent energy-barrier
crossings when the molecule changes conformation
states. These kinks are also seen in the MD data in Fig.
8; however, they occur on much longer (and unpredict-
able) time scales.

The rms fluctuations obtained from MD depend
strongly on the initial conditions —both on the initial
configuration and the initial random Maxwellian veloci-
ties. They do not usually rise as fast as sho~n in Fig. 7.
Our work indicates that for any initial configuration, the
DOMC simulation converges much faster than either
standard MC or MD simulation.

dynamic systems with strong inhomogeneity and local
anisotropy. This approach is particularly intended for
simulations of macromolecules, although we expect it to
be useful in other situations. These methods make essen-
tial use of information gathered during the course of the
simulation, which requires a slight relaxation of the usual
restriction of Monte Carlo simulations to Markov pro-
cesses. Our calculations have shown that under normal
conditions, all systematic errors introduced by the non-
Markovian nature of the simulation are negligible.

An important advantage of the current approach is the
automatic optimization of any kind of MC move that
would be useful in accelerating the convergence of the
simulations. Large-scale collective motions can be em-
phasized, simulations can be carried out in either internal
coordinate space or Cartesian space, or a mixture of
both. This has far-reaching implications, especially in
the calculation of free-energy differences by free-energy
perturbation, multistage sampling, or umbrella sampling
techniques, where lack of proper convergence can make
the simulations very long and time consuming [33].

By providing for each incorporation of NOE and/or
crystallographic constraints, the ARM and the DOMC
method can be used for efficient structure refinement us-

ing simulated annealing techniques in either NMR or
crystallographic studies. Such applications of the ARM
and the DOMC method are already in progress.

We have demonstrated the efficiency of these methods
by applying them to a small molecule that exhibits many
of the characteristics that make simulations of larger
molecules difficult. However, the structure of proteins
presents certain problems that require specialized tech-
niques beyond the scope of the present paper. Simula-
tions of larger molecules, including progress on simulated
annealing to find protein conformations, are planned to
be discussed elsewhere.
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APPENDIX: d =2 AND d =3 DOMC METHOD

To extend DOMC equations to higher dimensions, we
first consider an effective anisotropic simple harmonic os-
cillator of the form

%=—,
' gk, ,x,x, ,

where k;- represents the spring constants. We use a
transformation matrix D to generate moves I g,. I in an el-

lipsoid (or an ellipse for d =2) given by

3

g, = gD;g, .
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Ig ] is a random vector chosen from a unit sphere (unit
circle for d=2). The optimum jump size scales as the
contours of constant energy and is determined by a di-
mensionless parameter Fgiven by

F2 1 PDt'k'D,

where D' is the transpose of the transformation matrix D
and P= 1/ks T. F is a scale factor chosen to optimize the
efficiency of the simulation. The matrix k is determined
from the simulation using

[~Entri ]= ,' gk-;, [n;rljritrl ]

In this linear system of equations, hE denotes the change
of energy for an attempted move Iti, ] and the square
brackets indicate an average over all attempted moves,
whether or not they were accepted [26]. The matrix D is
then obtained from

1/2
2

in in
n

where A,„ is an eigenvalue of k and V is the corresponding
normalized eigenvector. D is then updated every cycle to
adapt to the changing local environment of each atom.
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