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The training and generalization errors of three well-known learning algorithms are calculated using
methods of statistical physics. We focus in particular on inconsistent algorithms that are unable to per-
fectly classify the training examples, and show that the asymptotic behavior of these algorithms is
different from the case of consistent algorithms. Our results are in agreement with bounds derived by
computational learning theorists. We further find that the replica-symmetric theory is stable everywhere
for two of the algorithms studied, which leads us to conjecture that it is the exact solution in these cases.
We also demonstrate that one of the algorithms studied performs almost indistinguishably from the
Bayes learning algorithm, while having the advantage of being implementable in a single-layer network.

PACS number(s): 87.10.+e, 02.50.+s, 05.20.—y

I. INTRODUCTION

Much recent progress in the theoretical understanding
of the learning ability of neural networks has come from
two different sources. On the one hand, researchers in
the computational learning community have pursued a
line of investigation pioneered in the 1970s particularly
by Vapnik and Chernovenkins [1], which focused on the
analysis of the worst case performance of learning algo-
rithms. We refer in what follows to work along these
lines as the VC theory, although many new results have
been obtained since the seminal work of Vapnik and
Chernovenkins. While these analyses have produced an
impressive array of results under very general conditions
[2], it has not been clear how these results relate to
specific instances, or to the average case performance. In
particular, the VC results usually take the form of upper
bounds on the worst case performance of any consistent
learning algorithm for arbitrary probability distributions
over both the space of examples and the space of learning
tasks. Thus it is not clear how tight these bounds are and
how they are related to the average case performance of
specific learning algorithms in typical situations. The
term consistent refers in the learning context to algo-
rithms which are able to learn the training examples per-
fectly, i.e., do not misclassify any of them.

A second line of research, initiated by the papers of
Gardner [3] and Gardner and Derrida [4], is concerned
with the calculation of the average case performance of
specific learning algorithms, under very restrictive condi-
tions. In particular, the results obtained so far are limit-
ed to the class of single-layer feedforward neural net-
works, with particularly simple probability distributions.
This approach suffers from the additional problem of not
being mathematically rigorous. We note, however, that
results obtained with this approach have in general given
very good agreement with computer simulations [5,6].
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Moreover, at the present time we are not aware of any al-
ternative technique for calculating the average case per-
formance.

An initial attempt at bridging the gap between the two
approaches discussed above has been recently taken in
Ref. [7]. One of the main thrusts of that paper is that the
results obtained from the general VC dimension analysis
provide, in fact, rather tight bounds on the average case
performance as calculated by the statistical physics ap-
proach poineered by Gardner. In this paper, however,
we cover a situation which has only very recently been
addressed by VC-dimension theorists [8]. In particular,
we focus on learning algorithms that produce hypotheses
which are not necessarily consistent with the training ex-
amples, but that nonetheless produce small generalization
errors. Three batch mode algorithms are considered in
the present work: (i) the zero-temperature Monte Carlo
algorithm [9], (i) the perceptron learning rule [10], and
(iii) the relaxation algorithm [11]. We will show that a
careful choice of a single parameter in the latter algo-
rithm yields performance results which are almost indis-
tinguishable from the Bayes learning algorithm studied
recently by Opper and Haussler [12], while having the
merit of being implementable in a single-layer network.
The Bayes algorithm, on the other hand, requires a hid-
den layer in order to be implemented.

Our study incorporates a margin parameter « which
biases the algorithms to favor networks less sensitive to
the effects of noise in the training data. However, since
in this case the quantity to be minimized is not the
classification error [see the definition in Eq. (2.10) below],
but rather the training error, such networks can in fact
produce nonzero classification errors for large enough
training sets. Thus the tuning of « allows us to distin-
guish between consistent and inconsistent algorithms.
We also find that the asymptotic dependence of the gen-
eralization error on the size of the training set is different,
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depending on whether the learning algorithm is con-
sistent or not. We note that Griniasti and Gutfreund [13]
have recently investigated these learning algorithms in
the context of recurrent neural networks, with particular
emphasis on their retrieval properties.

The remainder of this paper is organized as follows. In
Sec. II we introduce the model in detail, after which we
present in Sec. III the results of its analytic solution
within the replica symmetric theory. This section also in-
cludes a discussion of the stability of the solution, as well
as a comparison of the results with the annealed approxi-
mation. The results of the replica symmetric theory are
discussed in detail in Sec. IV. Finally we present a sum-
mary of our results in Sec. V, together with some open
questions.

II. MODEL

We consider the problem of learning from examples in
single-layer neural networks. We assume the examples
presented to the learning network, to be referred to as the
student, are drawn from another single-layer perceptron,
which we name the teacher. The examples are drawn
from a probability distribution v(S), while the teacher
function f is drawn from a probability distribution 7(f).
The main question we address in this paper is that of ob-
taining average learning curves for the three algorithms
under study. By learning curve we refer to a plot of the
generalization error as a function of the size of the train-
ing set. The average will be taken with respect to these
two probability distributions. We then compare the per-
formance of these algorithms to that of the optimal Baye-
sian classifier, analyzed recently by Opper and Haussler
[12].

We focus on the binary input/output case here, where
both the input and the output of the student and teacher
networks are binary *1 variables. We assume the stu-
dent is exposed to a stream of P =aN input/out-
put examples (SL,e1),(S%,¢2),...,(SPtP,  where
S'=(s!,8),...,8}) and the outputs ' are assumed to
be generated by a single-layer perceptron. Thus the tar-
gets t/ are given by

N
> Wisj
j=1

t'=sgn . (2.1)

The response of the student network to an input S’ is
similarly given by

o'=sgn
j=

The objective of the learning process is to be able to
predict the outcome of a random input with as small an
error as possible. To quantify this notion we define a gen-
eralization error which measures this probability, and is
simply given by

W)= [dv(S)e(—t0) (2.3)

where the Heaviside function ©(—to) is 0 or 1 depend-
ing on whether the network output o is correct or not.
Another quantity of interest is the training error which

N
> w;s} ] : 2.2)
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measures the cumulative error on the training set
S ...,S%andis usually taken to be of the form

P
E(W)= 3 6(W;S),
1=1

(2.4)

where the specific choice of the function &(W;S) is up to
the trainer. The learning algorithm corresponding to a
particular choice of error function would then just be
given by the gradient descent rule

dW; __ Q3E(W)
d Taw, -

(2.5)

In order to describe the error function it is useful to
define the variable
t

N
A(W,S,1) VN ng W;S; . 2.6

The first form we consider is just the 0,1 loss function,
studied in detail by Gardner and Derrida (GD) [4]. Al-
though this error function does not give rise to a
gradient-descent learning algorithm through Eq. (2.5), as
it is piecewise constant, it is still useful to investigate its
properties since it is directly related to the actual
classification error [see Eq. (2.10) below]. Moreover, the
GD error function can be minimized through simulated
annealing methods [14], although this approach is of
course much more computationally expensive than
gradient-descent learning. Following Gardner and Derri-
da [4] we define

69P(W;S)=6(k—A) . (2.7)

Obviously for k=0 this choice of error function corre-
sponds to the number of misclassifications. The second
function we are interested in is the perceptron function
(P) [10,15],

EP(W;S)=(k—A)O(k—A) , (2.8)

while the third function considered is the relaxation func-
tion (R) [15],

ER(W;S)=(k—A)*O(k—A) . (2.9)

The three error measures we focus on have been well
known for many years, although except for the first one
we do not know of any analytic calculation of the learn-
ing curves for these algorithms. The learning algorithm
corresponding to the choice (2.8) is just the celebrated
perceptron learning algorithm [10] (performed in batch
mode), while that corresponding to (2.9) is the relaxation
algorithm, introduced by Agmon [11] as a method to
solve a set of linear inequalities, and later generalized by
Mays [16] to include the margin parameter k. In fact
these authors were concerned with the on-line version of
the learning process, where the weight adaptations are
made after each pattern presentation. The relaxation al-
gorithm has recently also been studied in the context of
neural networks by Anlauf and Biehl [17].

It is important at this stage to emphasize the difference
between the training error given by (2.4) and the
classification error E,(W), which measures the number of
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misclassifications on the training set. This distinction is
only relevant, of course, in the case k> 0. For «=0, both
the classification and the training error will be shown to
vanish for any a. Thus we define

P
E(W)= 3 O(—t'd'),

=1

(2.10)

with ¢/ and o/ being given by (2.1) and (2.2), respectively.
As we point out in Appendix B, the classification error
(2.10) becomes nonzero above a critical value of «, after
which it increases to a maximum and then decreases to
zero for a— . The fact that the classification error is
nonzero substantiates our claim that for x>0 the algo-
rithms are in fact inconsistent. It may be argued at this
stage that introduction of the margin term x does not
seem to make much sense, since it produces a nonzero
classification error. However, as we show below, if the
training set is of limited size, it is always better to train
the network with nonzero «, thus sacrificing a nonzero
classification error for a minimal generalization error.
Moreover, Mays [16] has shown that training with x>0
speeds up the learning, although this is an issue we do not
address here.

It should further be noted that if a ground-state energy
of zero exists for one of these error functions, it exists for
all three. Thus we expect that as long as the number of
training examples is not large, so that the training error is
zero, all three error functions will produce identical re-
sults. The difference between them becomes apparent
when the training error is nonzero. It should also be not-
ed that with these definitions it is quite possible to have
the generalization error smaller than the training error
for k> 0. This is due to the fact that we have defined the
generalization error in Eq. (2.3) as the probability of
misclassification, without reference to «, while the train-
ing error vanishes only if A(W,S,?)>« for all training
patterns. We believe that this is the sensible definition in
this case, since the generalization error should not be
defined with respect to the learning parameter «.

At this stage it is useful to introduce a probabilistic ele-
ment into the problem. Since the only information avail-
able to us is the training error, we would like to consider
the space of all networks of a given training error. As we
are assuming no prior knowledge, it is natural to require
that all networks of a given training error are equivalent.
Within the space of all networks (of a given architecture)
it is useful to introduce a probability distribution which is
constrained solely by the given average training error.
Using the maximum entropy principle, which requires
that we pick the probability distribution of maximal en-
tropy which obeys the constraints (in this case on the
training errors), we are immediately led to the standard
Gibbs distribution

PW)=Z e PEW) (2.11)
where the partition function Z is given by
Z= [du(W)e PEW (2.12)

and B=1/T is the inverse “temperature.” In order to
impose a measure du(W) on weight space, we follow
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Gardner [3] and restrict the weights to be real variables,
confined to lie on the surface of the N-dimensional sphere
of radius N,

(2.13)

Having defined a probability distribution over the
space of networks we may proceed now to define the
average training and generalization errors as follows:

(T, P,k)=P "((E(W))), 2.14)
€(T,Pe)={ (e(W)) 1)), (2.15)

where the thermal average ( ) is taken with respect to
the probability distribution 2(W) and { )) is an average
over the probability distribution of the examples v(S).
We assume that the examples S/ are independent, identi-
cally distributed +1 variables, with  Prob(1)
=Prob(—1)=1 . Note that in principle we should also
average over the probability distribution of the teacher
P(f). However, as we point out in Appendix A, if cer-
tain assumptions are made about this distribution one can
do away with this further average. The free energy is

given by the quenched average
F(T,P,k)=—T«InZ) , (2.16)

for which the training error as well as the entropy may be
obtained by the thermodynamic formulas

_ 1 3(BF)

“=p og (2.17)
__OF

S=—<r- (2.18)

It is also useful to define the average classification error
€

c?

€.(t,P,c)=P "((E.AW))r ), (2.19)

where E (W) is given by (2.10). It is not difficult to see
that €, obeys the relations €, <¢,, as well as €. <¢,.

In what follows we will concern ourselves with the
zero-temperature limit B— «. However, as we are in-
terested in deriving explicit expressions for the training
errors we must consider the nonzero temperature case
first, then taking the limit in Eq. (2.17) after calculating
the derivative. We note that learning at nonzero temper-
ature has been shown to be advantageous when the train-
ing examples themselves are noisy [18]. We limit our-
selves in this study to the case of error free examples.

Probably the most interesting question one can ask
about the above learning algorithms is how well they gen-
eralize. Using the framework of statistical physics, as ap-
plied by Gardner and Derrida [4] to this class of prob-
lems, we are able to answer this question. As we show in
Sec. IV, the three algorithms have different generaliza-
tion abilities. We do not address here the issue of the
convergence properties of these algorithms. For a discus-
sion of this issue the reader may consult the textbook by
Duda and Hart [15].
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III. THE REPLICA APPROACH

The mathematical problem we are faced with at this
stage is the calculation of the average free-energy density
in the thermodynamic limit N — o, where the average is
taken with respect to the probability distribution of the
examples dv(S). Since the free energy is related to the
logarithm of the partition function, we resort to the well-
known replica trick

Jim (InZ )= fim fim SZN =1 (3.1)

N—oon—0 n
In order to proceed we follow a common strategy in the
physics literature, by first calculating limy_, ,«(Z")) and
then taking the limit n—0. While this interchange of
limits has been shown to be valid for the spin-glass prob-
lem [19], we do not know of any arguments for its validi-
ty in general.

Using the standard approach to these problems [3,4]
we proceed to evaluate limy_, ,{(Z")), obtaining the fol-
lowing expression:

dqaﬂdaaﬂ
) nyy
Jim €27 fg 2mi /N
a<p
[ dR ,dR,
2mi /N

—NF(4,580p R0 R )

xe ©(3.2)
The integrals are then evaluated in the limit N — o by
the standard saddle-point method [20]

m ) 1,2
f I1 dxie M@ =@2m)™/2N~"/% |Det _OF
i< ax,.ax, X,
xe M 140 % ) (3.3)

where x, is the saddle point at which 8F /dx =0, and it is
assumed that the Hessian matrix 3*F /3x;0x ;» evaluated
at x,, is a positive definite matrix (i.e., the point x, is a
true minimum).

Since the expression for F is rather lengthy, we direct
the reader to Appendix A where it is explicitly displayed.
The physically meaningful order parameters g,z and R,
are given by

1 8

qa3=<—W"-W> , (3.4)
N n

Ra=<%W“-W°> , (3.5)

n

where the averages are with respect to the probability
measure

dn(W)= ] du(W%exp

a=1

2 aaﬂwa.wﬁ
a,B

a<p

+ zﬁawa-w°] . (3.6)
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Thus we see that g, is related to the correlation between
two solutions a and S, while R, is related to the overlap
of a solution a with the teacher.

A. The replica symmetric solution

To proceed further, one is required to solve the
saddle-point equations for general n and then take the
limit n—0. This procedure is in general very complex.
In order to make progress, however, it has been cus-
tomary to make an ansatz concerning the solution of
these equations. In particular, the most commonly used
replica-symmetric assumption is just that all the variables
take on values independent on the replica index, i.e.,

(3.7)
(3.8)

an:q’ aaﬁza Va<Br
R,=R, R,=R Va.

With this ansatz in mind, one proceeds to obtain the
following expression for the free-energy density in the
limits N — c and n —0:

_1|1=r2
_Bf_? -q+ln(1—q) +aG,(q,r) . (3.9

The specific forms for the functions G, at nonzero tem-
perature, for the three cases studied, are again given in
Appendix A, as they are rather lengthy. The variable r
appearing in (3.9) is related to R by

__R

vM
where M =N"'S.(W?)%.. We further assume that the
teacher weight components W_ obey the law of large
numbers [21] and thus M approaches a definite limit
when N— . We elaborate on this assumption in Ap-
pendix A. It is interesting to note at this stage that all
reference to the teacher probability distribution has van-
ished, since M was eliminated from the expression for the
free energy through a rescaling of the order parameter R.
Thus we conclude that if the replica theory is correct, the
properties of the system are independent of the specific
teacher distribution, as long as the random variable M
approaches a definite limit for large N. We note that this
situation occurs only because the student weights are
real. In the case where these weights are constrained to a
discrete and bounded set of values [6] we need to consider
the full probability distribution of the teacher weights.

Following Gardner and Derrida [4] we realize that in
the zero-temperature limit B—c we may expect two
types of solutions. The first one, with ¢ <1, is given sim-
ply by setting B= oo in Egs. (A9)-(A11) of Appendix A,
obtaining an equation valid in all three cases,

r (3.10)

- _pm=l (g _
Blin:o( Bf) > | 124 +1n(1—gq)
+ [ Dt H(EDInH(&,) (3.11)
where
rt
i ———— (3.12)
gl \/q—rz
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£,= K+\/:]-I
VIS

We have also introduced the standard definitions

(3.13)

e )
t= —dt
br="77

and
H(x)=["Dt .

Solving the saddle-point equations resulting from set-
ting the derivatives of f with respect to g and r to zero we
find that for a <a (k) they possess solutions with g <1.
At a., however, ¢ — 1 and the equations become singular.
Note that for k=0, o, = 0, so that there always exists a
solution with g <1 in this case. This transition to g =1
at a finite value of a has been observed already by
Gardner and Derrida [4] in the context of a random map-
ping and by Gyorgi and Tishby [18] in the context of
learning from examples with noisy input patterns. For
a>a,, we must thus consider the limit when S— c and
1—¢—0 while B8(1—g) < . Defining

x=pB(1—q),

we find the following expressions in the zero-temperature
limit:

(3.14)

oo 1=rl @ etV 2
f > +xf_K Dt H(&)(k+1)
+2afj+‘/2_DtH(§) , (3.15)
P 1-——-r2 [0 4 —Kk+x 2
= += Dt H +1t)
f - xng (E)k
daf: Dt H(E)[x —2(k+1)], (3.16)
2 ©
fR=— 12x’ + li“zx [ DeHE W+, (31D
where
rt
- (3.18)
§ Vi1i—r?

The values of the order parameter x and r are then ob-
tained by setting the derivatives of f with respect to each
of them to zero.

The zero-temperature training energy can be obtained
by Eq. (3.9) together with the identity

(T =0)=-L1 tim 2B

L (3.19)

In the range a<a,, where Eq. (3.11) is valid, we find
€, =0, while for @ > a, we obtain

e?Dzzfj’KwE;DtH(g) , (3.20)

ef’zszmptH(g)[(x+t)—x] , 3.21)
2

R_ @ K+t

€l 2f7KDtH(§) Tiar (3.22)
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We immediately observe that when x — o the training
errors vanish in all cases, which is consistent with the re-
sults obtained below a,. The fact that the three error
functions give rise to the same free energy below . is ex-
pected, since it is clear from the basic definitions [Egs.
(2.7)—(2.9)] that if a zero ground-state energy exists, it ex-
ists for all models simultaneously.

B. Stability of the replica symmetric solution

As we mentioned above, the calculation of the integral
(3.2) in the limit N — o was performed by the saddle-
point method. In order to check that the replica sym-
metric solution is in fact a minimum and not just a saddle
point, it is necessary to calculate the Hessian matrix ap-
pearing in Eq. (3.3) and check that it is in fact positive
definite. Following the analysis of Gardner and Derrida
[4] one can show that the local stability of the replica
symmetric solution is determined by the condition

ayey <1 (3.23)

where y, and ¥, are the transverse eigenvalues [22] of the
matrices 3°G, and 3°G, evaluated at the replica-
symmetric saddle point. The expressions for G, and G,
are given in Appendix A.

After some algebra, we obtain the following expres-
sions for the stability conditions in the three cases of in-
terest:

—K+\/Z .
2a [ DtH(£)<1, Gardner-Derrida (3.24)
2af_K+thH(§)<1 , perceptron (3.25)
2
2a |~ i’;x [ DeHE)<1, relaxation (3.26)

where § is defined in Eq. (3.18).

C. The annealed approximation

For the sake of completeness we present the results ob-
tained for the annealed approximation. As is well
known, in this case we replace ((InZ)) by In{(Z)),
which greatly facilitates the calculation. The result, at
zero temperature, obtained for all three learning algo-
rithms is
K—rt

V1i—r?
(3.27)

L}er:o(—ﬁf)zg1n(1—r2)+zaf0 DtH

The saddle-point equation resulting from setting df /dr
to zero is

—k2201—r?)

r=-2v1—,2 ¢

, (3.28)
21 o
fo DtH

K—rt
Vi1—r?
which possesses a single solution with » <1 for any finite

a. This should be compared to the situation arising in
the replica symmetric theory where the saddle-point
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equations resulting from Eq. (3.11) become singular at a
finite value of a, thus giving rise to a phase transition in
that case. Moreover, the annealed approximation also
predicts that the training error vanishes for any a, which
contradicts the replica symmetric results. These results
supply further support to the observation by Seung, Som-
polinsky, and Tishby [5] that the annealed approximation
gives qualitatively correct results in the consistent case,
while failing for the inconsistent one.

IV. ANALYSIS OF THE RESULTS

The first question we address in the context of the
replica-symmetric solution is its stability. Thus, using
Eqgs. (3.24)-(3.26) we would like to know what are the re-
gions in the (a,k) plane where the replica-symmetric
solution is stable. We plot in Fig. 1 the curve k 4r(a),
above which the replica-symmetric solution becomes un-
stable for the Gardner-Derrida error function (2.7). The
second line appearing in the figure, k. (a), is the critical
line above which learning with zero training error is im-
possible. As we can see, there is a large area of the (a,«)
space in which the replica-symmetric solution is stable.
The situation in the case of the perceptron and relaxation
algorithms is even better. We find that the replica sym-
metric solution is stable for every a and «. Thus it would
seem like the replica-symmetric solution is the exact solu-
tion for this problem. To show this we present the stabil-
ity conditions (3.25) and (3.26) for a— o, thereby
demonstrating that our solution is stable even in this re-
gime. We find in this limit

e“ﬁﬂ

<1, perceptron 4.1)

a

m[1—2H (k)]
2

<1,

relaxation . 4.2)
2ak

0.8 4

0.6

0.0 T T T ]

o] 5 10 15 20
a

FIG. 1. Phase diagram in the (a,x) plane. The solid line
marks the critical above which the training and classification er-
rors are nonzero. The dashed line is the instability line for the
Gardner-Derrida error function, above which the replica-
symmetric solution becomes unstable. The replica symmetric
solution for the perceptron and relaxation models is stable
everywhere.

0.5 1

0.4 1

o
e}

T 1
8 10

FIG. 2. Generalization error versus a for the Gardner-
Derrida error function for k=0 (solid line), x=0.5 (long
dashes), and k=1 (short dashes).

These equations are obviously satisfied for any «, and
thus we conclude that the replica-symmetric solution is
stable for the perceptron and relaxation error functions.
We note that in the context of the random mapping prob-
lem, Griniasti and Gutfruend [13] have also demonstrat-
ed the increased range of stability of the replica-
symmetric solution for the perceptron and relaxation er-
ror functions as opposed to the Gardner-Derrida func-
tion.

Having established the stability of the replica-
symmetric solution in the three cases, we wish to study
their performances as predicted by the theory. In Fig. 2
we plot the generalization error against a for the
Gardner-Derrida error functions for k=0,0.5,1.0. As
can be seen in the figure, if a is small, the generalization
error is minimized for large k. It is also interesting to
note that for x>0 the generalization error changes its be-
havior drastically at a,, the point at which the training
error starts to deviate from zero. Qualitatively similar
behavior can be observed in Figs. 3 and 4 for the percept-
ron and relaxation algorithms, respectively, although the

0.5

0.4

0 2 4 6 8 10

FIG. 3. Same as Fig. 2 for the perceptron error function.
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curves are much smoother in this case.

In order to compare the error functions we have plot-
ted in Fig. 5 the generalization errors for the three mod-
els studied at k=0.5. For comparison we also present
the results for the Bayes algorithm, taken from Opper
and Haussler [12]. Similar curves can be obtained for
other values of k. We have found that the generalization
error for the relaxation algorithm is always smaller than
the other two. We also present a comparison of the train-
ing errors at k=1 for the three error functions in Fig. 6.
We observe that for large values of « the training error of
the relaxation algorithm is always lowest, followed by
that of the perceptron.

Looking at Fig. 5 we observe that the Bayes learning
algorithm seems to decrease faster than the other algo-
rithms we have presented. In fact, solving the saddle-
point equations for large a we find to leading order in
1/a

172
1 pr« 1
>0)= |— — .
€.(k>0) [’ﬁfODt] Ve perceptron (4.3)
) 172 )
>0)= |—= [‘Dt(k—1)}| —= laxati
€,(k>0) 2 fo (k—1) l Ve relaxation
(4.4)

while Opper and Haussler [12] find for the Bayes algo-
rithm

caes  0:44

B . (4.5)

We note, however, that the prefactors to the 1/Va
terms in Egs. (4.3) and (4.4) vanish for k=0. It is thus
clear that a nonzero value for k changes the asymptotic
behavior from a ! to @ /2. In fact, for k=0 we get

g(K=0)zQ'—6£ , (4.6)
a

which holds for all learning algorithms, and agrees with
results of Opper and Haussler [12] and Seung, Sompolin-
sky, and Tishby [5]. An interesting observation at this
point is that the asymptotic expressions we obtained in

0.0 |

FIG. 4. Same as Fig. 2 for the relaxation error function.
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0.5

0.4

FIG. 5. Generalization error vs a for the Gardner-Derrida
(upper solid line), perceptron (long dashes), relaxation (short
dashes), and Bayes (lower solid line) learning algorithms. We
used k=0.5 for the first three algorithms.

Eqgs. (4.3) and (4.4) seem to violate the upper bounds ob-
tained from VC dimension analysis by Haussler, Kearns,
and Schapire [7]. However, this is not the case. The re-
sults of the above authors assume that the learning algo-
rithm learns the training set perfectly, while we show in
Appendix B, that with a nonzero value for « the
classification error is positive above a,. Thus the algo-
rithms we have discussed do not fall in the realm of prob-
lems investigated by Haussler, Kearns, and Schapire, and
thus need not obey the bounds. We note that Seung,
Sompolinsky, and Tishby [5] have recently also found an
a~ 1”2 asymptotic decay of the generalization error for a
related problem. However, in their case the replica-
symmetric solution was unstable in the regime a— o
and it was not clear whether this behavior would persist
if the exact solution were obtained. In our case, on the
other hand, since we find the replica-symmetric theory to

0.4 4

0] 2 4 6 8 10

FIG. 6. Training error vs a for the Gardner-Derrida (solid
line), perceptron (long dashes), and relaxation (short dashes)
learning algorithms at k=1.
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be stable everywhere, we believe the above asymptotic re-
sults are exact.

In the annealed approximation we find that the asymp-
totic results obtained for the consistent case k=0 behave
similarly to the replica-symmetric results. On the other
hand, in the inconsistent case k >0, we find very different
asymptotic behaviors in the two theories. This result
provides extra support to the observation of Seung, Som-
polinsky, and Tishby [5] that the annealed approximation
provides a reasonable approximation in the consistent
case, while failing badly in the inconsistent case. In par-
ticular we find for the annealed approximation

eg(K=O)z—1— , 4.7)
a

K 1
72 Vina
In Fig. 7 we present the learning curves for k=0,0.5,1.0
obtained using the annealed approximation. While they
seem to agree qualitatively with the replica-symmetric re-
sults, they scale very differently for a— . In fact, the
result (4.8) for the inconsistent case violates the upper
bound of Haussler [8]. Moreover, as mentioned above,
this approximation predicts zero training error, and thus
zero classification error, which contradicts the replica-
symmetric results.

From the above results it would seem that while it is
advantageous to set k >0 for small a, keeping k positive
give very poor asymptotic behavior compared to the k=0
case. It is therefore interesting to choose an optimal « in
such a way that for every a the generalization error is
minimized. We plot in Fig. 8 the curve k°P(a) for the
three algorithms studied. Note that the curve for the GD
case coincides with the curve for the critical k, k. (a),
given in Fig. 1. In all cases we find that to minimize the
generalization error, for a given q, it is always best to
train with k>0, and slowly decrease k as the size of the
training set increases. It is interesting to observe that
minimization of the generalization error for the percept-
ron and relaxation algorithms is achieved with nonzero

€, (k>0)=~ (4.8)

0.5

0.4

0.0 T T T

FIG. 7. Generalization error vs a in the annealed approxima-
tion for k=0 (solid line), k=0.5 (long dashes), and k=1 (short
dashes).
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FIG. 8. Optimal value for k vs a for the Gardner-Derrida
(solid line), perceptron (long dashes), and relaxation (short
dashes) learning algorithms.

training (and classification) errors, even in the absence of
noise in the examples themselves. We believe that in this
case the finiteness of the training set (i.e., the fact that a
is finite) introduces an effective sampling noise. This re-
sult is similar to that of Gyorgi and Tishby [18], who
found that optimal generalization for noisy examples is
achieve by training at nonzero temperature, i.e., forcing
the training error to be nonzero. We show here that this
is the case even in the noise-free situation. In distinction
to the results of Ref. [18], however, we find that as the
size of the training set increases the classification error
needed to achieve optimal performance decreases to zero,
since the sampling noise vanishes for large a. We plot in
Fig. 9 the optimal generalization curves for the three al-
gorithms, taken at k=«°P', and again compare them to
the Bayes algorithm. On the scale of the figure, the per-
formance of the Bayes and relaxation algorithms and of
the Gardner-Derrida and perceptron algorithms are in-
distinguishable. We note that in order to get a transition

0.5 1

FIG. 9. Minimal generalization error vs a for the Gardner-
Derrida and perceptron (solid line) and relaxation and Bayes
(dashes) learning algorithms.
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FIG. 10. Simulation results for training (A ), generalization
(0), and classification (@) errors for the relaxation algorithm
with «=1. The simulations were performed with N =69 and
averaged over 150 cases. The lines are the predictions of the
replica-symmetric theory.

from the 1/V a behavior for k>0 to the 1/a behavior for
k=0, we must have k°P'«1/a for large a. In their
analysis of the Bayes algorithm Opper and Haussler [12]
show that to get the optimal Bayesian performance re-
quires the addition of a layer of hidden units with H — «
hidden units. What we find here is that, provided we are
able to determine «°P!, we can achieve a performance al-
most identical to Bayes, with a single-layer perceptron.
We hasten to add that we are aware of the fact that the
generalization error for the choice «°' still scales as
0.62/a compared to the Bayesian 0.44/a. However, for
any finite a we can choose « so that the generalization er-
ror is very close to the Bayesian result. For example, in
the range 0 < a =< 10 we find the two results never differ by
more that 1073,

Finally, in order to demonstrate the validity of our re-
sults we compare the theoretical predictions for the train-
ing, classification, and generalization errors with comput-
er simulations. In Fig. 10 we present simulation results
for the relaxation algorithm with margin parameter k=1.
As can be seen in the figure, already for N =69 the re-
sults fit the theory very well. The increase in the
classification error beyond a,. can be seen clearly in the
simulation results. The expected asymptotic decay in €,
occurs beyond the range of a investigated. Similar agree-
ment has been observed for other values of the parameter
K.

V. CONCLUSION

We have focused in this paper on the analysis of three
well-known learning algorithms for single-layer feedfor-
ward neural networks. While much work has been devot-
ed to the convergence properties of these algorithms [15],
we have studied their generalization performance as the
size of the training set « increases. Interestingly we find
that the algorithms which learn faster also generalize
better. Our main results can be summarized as follows.
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(i) The replica-symmetric theory has been shown to be
stable for the perceptron and relaxation algorithms. It
would thus be challenging to try to derive these results in
a mathematically rigorous way (i.e, without using repli-
cas).

(ii) The scaling behavior of the generalization errors in
all three learning algorithms differ depending on whether
the margin parameter « is zero or not, or equivalently on
whether the algorithm is consistent or not. In particular,
for k=0, €, <a ! while for k>0, ¢, <a™ /%

(iii) The three learning algorithms studied yield identi-
cal behavior in the consistent case k=0 at zero tempera-
ture. Thus the easily implementable perceptron and re-
laxation algorithms should be preferred. Obviously for
nonzero temperature, the algorithms behave differently
even for k=0, since they give rise to distinct free energy
functions. In the inconsistent case « >0, the performance
of the algorithms is markedly different, even at zero tem-
perature, with the relaxation algorithm clearly outper-
forming the other two.

(iv) It is possible to choose the margin parameter x so
as to minimize the generalization error, in which case the
relaxation algorithm is almost indistinguishable from the
Bayes algorithm. The optimal value of « is a decreasing
function of the training set size a, approaching zero when
a— « with a power-law behavior a~!. This result is im-
portant since the latter algorithm has been shown to be
exactly implementable in a neural network setting only
with H — o hidden units. We hasten to add that we do
not claim, of course, that the two algorithms yield identi-
cal results.

(v) We find that for finite a, optimal generalization is
achieved with a nonzero classification error of the train-
ing set, even though the examples are noise free. We be-
lieve this is due to the effective sampling noise introduced
by the finiteness of a. As the number of examples in-
creases, the minimal generalization error is obtained for
vanishing classification error.

(vi) The annealed approximation has been shown to
give qualitatively correct results for the generalization er-
ror in the consistent case k =0. However, for « > 0 it fails
to predict the transition to a state with nonzero training
error, and thus yields grossly incorrect training errors, as
well as the wrong asymptotic results for the generaliza-
tion errors. Moreover, the latter results contradict the
upper bound of Ref. [8].

We first observe that the asymptotic behavior €, <a ™
of the generalization error in the consistent case (where
the training error is zero for arbitrarily large a) agrees
with the results derived from the VC-dimension analysis.
As expected, the results fit neatly between the upper
bound [2] and the lower bound [23] derived by VC theory
for consistent learning algorithms. While the VC ap-
proach is very general and assumes very little about the
learning process, the statistical approach we have fol-
lowed has made very restrictive assumptions. In particu-
lar, we have (i) assumed a single-layer “network,” (ii) re-
stricted the probability distributions of the examples and
of the target function to particularly simple forms.
Moreover, and perhaps more importantly, the VC results
are worst case results, while our results are average case

1
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results. It would be interesting to see whether this kind
of agreement still holds for multilayered problems, for
which to the best of our knowledge, we at present have
no average case results (although some results have been
obtained for the random map problem in multilayered
networks [24-26]).

Remarkably we also find our average case results in the
inconsistent case k>0 to be in agreement with a recent
VC theory analysis by Haussler [8]. The above author
finds that the generalization error in this case is bounded
above by a constant times a~'/? which agrees with our
average case results. It thus seems that the results ob-
tained by the VC theory and the statistical physics ap-
proach agree both in the consistent as well as the incon-
sistent cases. Since we do not know of a lower bound in
the inconsistent case, it is still possible that there are
cases for which the generalization error decreases faster
than a~!”2
|

8883
ACKNOWLEDGMENTS

The research of R.M. is supported by DARPA Con-
tract No. F49620-90-0042 (DEF). J.F.F. is supported in
part by Conselho de Desenvolvimento Cientifico e
Tecnoldgico (CNPq).

APPENDIX A: THE REPLICA EQUATIONS

We give below the expressions for (( Z”)) within the
full replica space, together with the expressions obtained
within the replica symmetric framework. We assume the
examples S; are independent, identically distributed *1
random variables with Prob(1)=Prob(—1)=. While
the calculations are rather tedious, they have become
pretty standard by now and will not be repeated.

B dq o549 dR,dR,
«zmy=[ ) R 1) M5y P [N [~ 3 dasllon™ gRaﬁawo(aaﬁ,ﬁa>+a61(qag,Ra (A1)
a<pB a<pf
where
n
Go=i1n f I1 du(W%exp | 3 9,,W*WF+ 3 R, W=W° (A2)
N a=1 a<pB a
and
dx dx —
Gl=1nnyf I ——exp [—Bf(y,x,,)-i—iEJ?a(xa—yRa/\/M )]
a 217. a
Xexp [— 3 Qaiﬁ(an—RaRﬁ/M)—%Eic‘i(l——Rﬁ/M)] (A3)
a,B a
a<pB
. [
with energy density:
_1 3 op 2

M= 3 (W) (A4) —Bf’—-% -ql—_—;—-l—ln(l—q) +aG,(gr)  (A8)
At this stage we make the assumption that the random “RIVM
variable M approaches a definite limit as N— . This where we have defined r =R /V'M and
assumption translates in fact into an assumption about G§P=2 f ® Dt H(&)In[H(E,)+e PH(—E,)], (A9

the probability distribution of the teacher function. For
example, assuming the components W} are independent,
identically distributed random variables, one can use the
law of large numbers [21] to prove that the fluctuations of
M vanish in the large-N limit. However, the law of large
numbers may hold under more general conditions.

The functions f(y,x,) take on the following forms in
the three cases studied:

FOP(y,x,)=6(k—sgn(y)x,) , (A5)
FPy,x0)=(k—sgn(y)x,)O(k—sgn(y)x,) , (A6)
FRy,x ) =(k—sgn(y)x,)*O(k—sgn(y)x,) . (A7)

Using the replica symmetric assumption [Egs. (3.7) and
(3.8)], we obtain the following expression for the free-

Gf=2f:°DtH(§, )In[H(§2)+eBZ(1—q)/2—ﬁ(x+x/;,)
XH(V1—g —§)],

(A10)
Gt=2[" DtH(£)

e — B+ Vg2 /[1+2B(1—q)]

V1+2B(1—q)

X1In |H(&,)+

&
*H\ = s ||

(A11)
with &, and £, being given by Egs. (3.12) and (3.13).
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APPENDIX B: CALCULATING
THE CLASSIFICATION ERROR

In order to calculate the average classification error
defined by (2.19) we use the following identities:

€. =P "((E.W)) )
=P_1<<Z_1fd,u(W)EC(W)e_BE‘W)» (B1)

where

Z= [dup(Wye PEW) (B2)

Multiplying numerator and denominator by Z" ~! we
get

ec=P‘1<<Z_"f [[ dp(WE, (W)
a=1

X exp [—BEE(W“) ]» . (B3)
In the limit n -0, Z ~"— 1, and thus

€., =P 'lim <<f II du(WHE,(W')
a=1

n—0

X exp }—BEE(W“)]» . (B4)

At this stage we may go ahead with the usual replica
manipulations, finally obtaining within the replica sym-
metric theory
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va O(—yz)e B/ D

e.= [ Dt [ Dy [Doe-#o (BS)
where
z=vV1—gq +yr—tVg—r?, (B6)

and f (y,z) are given by Egs. (A5)—(A7) depending on the
error function used (and replacing x, by 2).

It is not difficult to see that in the region a <a, where
g <1, one obtains €, =0 by setting f— . This result is
expected since we know that €. <¢, and €, =0 in this re-
gion. For a > a, one must make the limit carefully, bear-
ing in mind that x =p(1—gq) is finite. After some algebra
we get the following simple expressions for the percept-
ron and relaxation classification errors:

P_ ] rt +x
ef=2f "DiH |’ (B7)
R_ 2 @ rt +2kx

Vi+2x fo Vi—r?

It is thus clear that the average classification error €, is
nonzero above a,. In fact, it displays a rather interesting
behavior, increasing from zero at a, until reaching a
maximum, after which it slowly decrease to zero. All this
time it remains bounded above by both €, and €, decay-
ing asymptotically as @~ '’2. As mentioned in the text,
the fact that the classification error is nonzero proves our
claim that for k> 0 the algorithms are inconsistent.

[1] V. N. Vapnik and A. Y. Chervonenkis, Theor. Prob. Appl.
16, 264 (1971).

[2] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. War-
muth, J. Assoc. Comput. Mach. 36, 929 (1989).

[3] E. Gardner, J. Phys. A 21, 257 (1988).

(4] E. Gardner and B. Derrida, J. Phys. A 21, 271 (1988).

[5]S. Seung, H. Sompolinsky, and N. Tishby, Phys. Rev. A
(to be published).

[6] R. Meir and J. F. Fontanari, J. Phys. A 25, 1149 (1992).

[7] D. Haussler, M. Kearns, and R. Schapire, in Computation-
al Learning Theory: Proceedings of the Fourth Annual
Workshop, edited by L. Valiant and M. Warmuth (Kauf-
mann, San Mateo, CA, 1991).

[8] D. Haussler, University of California Technical Report
No. UCSC-CRL-91-02 (unpublished).

[9] H. Sompolinsky, N. Tishby, and H. S. Seung, Phys. Rev.
Lett. 65, 1683 (1990).

[10] F. Rosenblatt, Principles of Neurodynamics (Spartan
Books, New York, 1962).

[11] S. Agmon, Can. J. Math. 6, 382 (1954).

[12] M. Opper and D. Haussler, Phys. Rev. Lett. 66, 2677
(1991).

[13] M. Griniasti and H. Gutfreund, J. Phys. A 24, 715 (1991).

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science
220, 671 (1983).

[15]R. O. Duda and P. E. Hart, Pattern Classification and
Scene Analysis (Wiley, New York, 1973).

[16] C. H. Mays, IEEE Trans. Electron Commput. EC-13, 465
(1964).

[17] J. K. Anlauf and M. Biehl, Eurphys. Lett. 10, 687 (1989).

[18] G. Gyorgyi and N. Tishby, in Neural Networks and Spin
Glasses, edited by W. K. Theumann and R. Koberle
(World Scientific, Singapore, 1990), pp. 3-36.

[19]J. L. van Hemmen and R. G Palmer, J. Phys. A 12, 563
(1979).

[20] N. G. de Bruijn, Asymptotic Methods in Analysis (Dover,
New York, 1981).

[21] W. Feller, An Introduction to Probability Theory and its
Applications (Wiley, New York, 1957).

[22]J. R. L. de Almeida and D. J. Thouless, J. Phys. 11, 983
(1978).

[23] A. Ehrenfreucht, D. Haussler, M. Kearns, and L. Valiant,
in Computational Learning Theory: Proceedings of the
First Annual Workshop, edited by D. Haussler and L. Pitt
(Kaufmann, San Mateo, CA, 1988).

[24] E. Barkai, D. Hansel, and 1. Kanter, Phys. Rev. Lett. 65,
2312 (1990).

[25] E. Barkai and I. Kanter, Europhys. Lett. 14, 107 (1991).

[26] M. Griniasti and T. Grossman (unpublished).



