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We investigate an alternative model for the propagation of directed waves in strongly disordered
media. The basic ansatz of our approach is that impurity scattering events can be described by the ac-
tion of random Smatrices. This approach has two important advantages over those considered in previ-

ous works. First, it yields a numerical discretization in which unitarity is manifestly preserved. Second,
the model enables one to compute certain averages over disorder exactly. The beam positions [(x~) ]
and [(x)2] characterize the transverse fluctuations of a directed wave front, where ( ) indicates an

average over the wave profile for a given realization of randomness, and [ ] indicates quenched

averaging over all realizations. We confirm the well-known result that the beam width [(x )] grows

linearly with the propagation distance, t. We also obtain numerically in two and three dimensions (2D
and 3D) the behavior of the beam center [(x)'] as a function of t The re. sults suggest that [(x)~] scales
as t' in 2D and as lnt in 3D. We show how these scaling laws emerge in a natural way from the prob-
lem of two interacting random walkers. Connections to the problem of directed polymers in random
media are also explored.

PACS number(s): 42.25.8s, 05.40.+j, 71.55.Jv

I. INTRODUCTION AND SUMMARY

The problem of wave propagation in random media is
one of longstanding theoretical interest [1,2]. Only re-
cently, however, have we begun to appreciate its connec-
tion to other problems in the physics of disordered sys-
tems, such as electron localization [3,4], directed poly-
mers in random media [5], and anomalous diffusion [6,7].
Several authors [8—10] have suggested that the diff'usion

of directed wave fronts in disordered media is described,
to a good approximation, by the Schrodinger equation for
a particle in a random time-dependent potential. In this
paper, we propose a model, based on random S matrices,
to explore the consequences of this description. An im-
portant aim of our study is to contrast the resulting be-
havior of waves with the types of diffusion known to
occur in other disordered systems.

The approximations that reduce the full wave equation
[8] to the parabolic Schrodinger equation describing
directed waves have been discussed most recently by
Feng, Golubovic, and Zhang (FGZ) [10]. Here, we
briefly review this reduction starting with the Helmholtz
equation for propagation of a scalar wave 4 in a random
medium. The static solution for N satisfies

[V +k n (x,y, z)]4(x,y, z)=0,
where n (x,y, z) is a nonuniform index of refraction that
describes the landscape of disorder in the host medium.
Following FGZ, we decompose n (x,y, z) =n o
+5n (x,y, z}, where no is the disorder-averaged index of
refraction, and 5n (x,y, z) contains local fluctuations due
to randomly distributed scattering centers. The problem
of directed waves arises in anisotropic media in which the
scattering potential set up by these fluctuations varies

slowly in the x direction, so as to favor coherent propaga-
tion along the z direction. For such a wave parallel to the

nOz
z axis, we can set 4(x,y, z)=%(x,y, z)e ', thus reducing
Eq. (1.1) to

+2ikno = + +k 5n (x,y, z)W .
Bz z Bx By

(1.2)

i =[YV —V(x,y, t}]%,. O'0
(1.3)

with y = (2kno )
' and V =k 5n . Equation (1.3) appears

in several contexts besides the problem of directed waves
in random media. A quantum-mechanical description of
motion in dynamically disordered media has particular
relevance for the problem of diffusion in crystals at finite

Wave propagation according to Eq. (1.2) can be alterna-
tively regarded as the scattering of photons by the Quc-
tuations in n. We are interested in circumstances where
the individual scattering events lead to a sequence of
small fluctuations in the transverse momentum com-
ponents of the z-directed paths. We would also like to ig-
nore any backscattering, i.e., large changes in the longitu-
dinal component of the photon momentum. For these
conditions to hold, we require 5n && n and
B,5n «kno5n . These conditions may be satisfied in
anisotropic media [8—10] (e.g. , with long fibers along the
z axis). The parabolic wave equation is thus obtained by
ignoring the second derivative term on the left-hand side
of Eq. (1.2). The analogy to the Schrodinger equation
now becomes apparent, after the change of variable z~t,
which reduces Eq. (1.2) to
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temperature [7,11,12]. Random time-dependent poten-
tials have also been used to model the environment of a
light test particle in a gas of much heavier particles [13].
Thus although, as we shaH discuss later, the applicability
of Eq. (1.3) to wave propagation in random media is
somewhat limited, the study of its general scaling proper-
ties is of much intrinsic interest.

For generality, we examine the problem of directed
waves in d dimensions. The solution to the appropriate
Schrodinger equation is then given by the Feynman
path-integral formula [8,14,15]

%(x, t)= f '
Xlx(r) exp i f d~

(0,0) 0 2p d7

2

+ V(x(r), ~)

(1.4)

where x(r) now describes a path in d —1 dimensions. In
writing Eq. (1.4), we have chosen the standard initial con-
dition that at time t =0, the wave function is localized at
the origin. The beam positions [ ( x ) ] and [ ( x ) ]
characterize the transverse fluctuations of the wave func-
tion + about the forward path of least scattering. Here
we use ( ) to indicate an average with the weight
~ql(x, t)~ for a given realization, and [ ] to indicate
quenched averaging over all realizations of randomness.
Roughly speaking, [(x) ] describes the wandering of the
beam center, while [(x ) —(x) ] provides a measure of
the beam width.

Path integrals similar to Eq. (1.4) also appear in the
two closely related problems of directed polymers (DP)
[5] and strong localization [16—18]. In the former prob-
lem %(x, t) represents the (positive) Boltzmann weight for
the ensemble of DP configurations which connect the ori-
gin to (x, t): each path contributes an energy cost due to
line tension, and a potential energy due to encounters
with random impurities [5]. This problem is thus ob-
tained by setting y and V(x, ~) imaginary in Eq. (1.4).
The quantum tunneling probability of a strongly local-
ized electron is also obtained by summing over all paths
connecting the initial and final sites. In this case each
path also acquires a random phase due to the effects of
magnetic impurity scatterings [16]. This problem can
thus be described by an imaginary y, but a real V in Eq.
(1.4). We can thus pose the more general problem of
studying the characteristic fluctuations of path integrals
of the form Eq. (1.4), when the y and V can take any
values in the complex plane. Numerical and analytical
evidence seems to indicate that DP and tunneling prob-
lems show similar scaling behavior [16,18]. We shall
present some evidence indicating that the point corre-
sponding to real y and V in the complex plane, i.e.,
representing directed waves, is the only point in this
space that shows new scaling behavior for fluctuations.

A special property of Eq. (1.3) which is valid only for
real y and V is unitarity, i.e., the norm fdx~4(x, t)~ is

preserved at all times. (In the DP and tunneling prob-
lems, the norm clearly decays with the length t. ) This
additional conservation law thus sets apart the directed

wave problem from DP, and in a sense makes its solution
more tractable. This unitarity is of course a natural
consequence of particle conservation for the Schrodinger
equation, but has no counterpart for directed wave prop-
agation. It is likely that a beam of light propagating in a
random medium will suffer a loss of intensity, due to ei-
ther backreflection, inelastic scattering, or localization
phenomena [19].

Recent efforts to understand the diffusion of directed
waves in random media have focused on the scaling be-
havior of the beam positions [(x ) ] and [(x) ] at large
t. Lattice models have been used here with some success.
It has been shown using density-matrix techniques, for
instance, that [(x ) ] scales linearly in time as a conse-
quence of unitarity [11]; recent numerical simulations
[20,21] also support this view. The scaling behavior of
[(x) ] at large t, however, has yet to be resolved. The
first numerical work in this area was done by FGZ [10],
who used a discretization procedure in which the norm of
the wave function was not strictly preserved. In 2D, they
found that [~ (x) ~] grew superdiffusively as t" with v= —,',
while in 3D, they found a phase transition separating re-
gimes of weak and strong disorder. Recent numerical
studies on directed waves in 2D cast doubt on the validity
of these results when the time evolution is strictly uni-
tary. Medina, Kardar, and Spohn [20], for instance, find
that [(x) ] scales subdiffusively in 2D as r ", with
v=0. 3. Likewise, Bouchaud, Touati, and Sornette [21]
report behavior compatible with v= —,'. They also conjec-
ture that the wave function becomes "multifractal" in
that an infinite number of critical exponents are required
to describe its evolution.

Somewhat surprising is the fact that a continuum for-
mulation of the wave problem leads to different results.
An exact treatment of the continuum Schrodinger equa-
tion (1.3) has been given by Jayannavar and Kumar [12].
They show that for a random potential 5 correlated in
time, [(x )] t as t—~oo. This behavior is modified
when there are short-range correlations in time [13],but
the motion remains nondiffusive in that the particle is ac-
celerated indefinitely as t ~ ~. Lattice models introduce
a momentum cutoff p,„-a ', where a is the lattice
spacing, and therefore do not exhibit this effect. The
momentum cutoff generated by the lattice discretization
is in some sense artificial. Nevertheless, in a real fluctuat-
ing medium, we do expect on large time scales to recover
the lattice result, i.e., normal diffusion. The reason is
that dissipative effects do generate an effective momen-
tum cutoff in most physical systems. (Strictly speaking,
even in the absence of dissipation, relativistic constraints
lead to a velocity cutoff U =c. ) The presence of such a
cutoff for the wave propagation problem, and hence the
physical relevance of lattice versus continuum models, is
still a matter of debate. While there is no underlying lat-
tice, one suspects on physical grounds that there does ex-
ist an effective momentum cutoff for propagating waves,
related to the speed of light in the background medium.

In this study, we investigate a model for the propaga-
tion of directed waves in strongly disordered multiple-
scattering media. Our model is formulated on a discrete
lattice and reproduces the result that the beam position
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[(x )] grows linearly in time. We find also that [(x)~]
scales as t with v= —,

' in 2D and as lnt in 3D. Our ap-
proach is noteworthy in several respects. First, our model
is formulated in such a way that unitarity is manifestly
preserved in numerical simulations, without resorting to
complicated checks. Second, we implement scattering
events in a manner consistent with the local conservation
of probability flux. Third, we perform all averages over
disorder exactly, whereas previous studies resort to
averaging over a necessarily finite number of computer-
generated random environments. Finally, we look at
scaling behavior in systems that are an order of magni-
tude larger than those previously considered.

The rest of the paper is divided into two parts. In Sec.
II, we develop our model in considerable detail, with em-
phasis on the simplifying features that permit one to
compute averages over disorder exactly. At the end of
this section, we present the results of our 2D and 3D nu-
merical simulations. Then, in Sec. III, we interpret our
results in light of well-known properties of random walks.
We conclude with some final comments on the connec-
tion to the DP problem.

up later. As is customary in the study of directed waves,
we identify the time axis with the primary direction of
propagation. Our first step, then, is to consider diffusion
processes on the 2D lattice shown in Fig. 1. It is amusing
to note that this lattice has also been used for discretizing
the path integral of a relativistic particle in one dimen-
sion [14].

The wave function in our approach takes its values on
the links of this lattice. We use 4+(x, t) to refer to the
amplitude for arriving at the site (x, t) from the +x direc-
tion. At t =0, the wave function is localized at the ori-
gin, with %'+(0,0)= 1/&2. Following the sum-over-
histories prescription, our next step is to assign a
complex-valued amplitude to each trajectory on the lat-
tice emanating from the origin. Transfer-matrix tech-
niques lend themselves naturally to this purpose. To each
site on the lattice, we therefore assign a 2X2 unitary ma-
trix S (x, t) Th. e values of the wave function at time t + 1

are then computed from the recursion relation

4+(x —l, t +1) S)((x,t) S,~(x, t) 4+(x, t)

(x+1,t+1) S2, (x, t) S22(x t) qi (x, t)

II. THE MODEL (2.1)

Previous numerical investigations of the problem have
started by rewriting the Schrodinger equation (1.3) as a
difference equation. Such an approach has the advantage
of reducing straightforwardly to the continuum descrip-
tion as the unit time increment is shrunk to zero. Unfor-
tunately, the naive discretization of Eq. (1.3) does not
preserve the unitarity of time evolution. Since most evi-
dence suggests that it is precisely the constraint of unitar-
ity that gives rise to a new universality class for directed
waves, this breakdown is quite serious. Realizing this,
previous workers have enhanced the above discretization
in ways to mitigate the breakdown of unitarity [10,20,21].
We take a different approach and look for a discretization
that manifestly preserves unitarity.

The fundamental motivation for our approach is the
path-integral description of quantum mechanics. Rather
than discretizing the wave equation (1.3), we seek to im-
plement the sum-over-histories prescription of the path
integral (1.4). To this end, let us consider the general
problem of a quantum particle on a space-time lattice, in-
itially localized at point A. We propose to assign a
complex-valued amplitude to each particle trajectory on
the lattice that emanates from A. Additionally, we want
to impose the physical requirement that the probability
current of the particle satisfies a local conservation law.
The normalized wave function of the particle at point 8
can then be computed by summing the amplitudes of all
trajectories that connect A to 8. The number of these
trajectories is finite due to the discretization of space
time. We now show that the sum-over-histories ap-
proach, combined with the requirement of probability
conservation, gives rise to a model in which the unitarity
of time evolution is manifestly preserved.

For concreteness we introduce the model in 2D. A dis-
cussion of its generalization to higher dimensions is taken

The S matrices are required to be unitary in order to lo-
cally preserve the norm of the wave function.

The S-matrix procedure outlined above weights each
trajectory on the lattice with a complex amplitude. Con-
sider, for example, the trajectory in which the particle,
incident at the origin from the —x direction, takes two
steps in the +x direction and then two steps back. The
amplitude A assigned to this trajectory is given by the
product of S-matrix elements:

(0 0)

FIG. 1. Lattice discretization for directed waves in d=2.
The wave function 4+(x, t) is defined on the links of the lattice,
while random scattering events occur at the sites.
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A =S2i(0,0)S~i(1,1)S2q(2, 2)S22(1,3) . (2.2)

and

[(x(t)) ]= g [P(x„t)P(x2,t)]x,x2 .
X ),X2

(2.4)

In general, a trajectory of L links on the lattice is weight-
ed with an amplitude derived from the product of L S-
matrix elements. The value of the wave function 0'+(x, t)
is obtained by summing the individual amplitudes of all
directed paths which start at the origin and arrive at the
point (x, r) from the +x direction. To simulate the effect
of a random potential, we choose the S matrices random-
ly from the group of 2X2 unitary matrices. We thus
achieve a unitary discretization of the path integral in Eq.
(1.4), in which the phase change from the random poten-
tial V (x, t ) is replaced by an element of the matrix S (x, t).
The recursion relation in Eq. (2.1) is the coarse-grained
analog of the Schrodinger equation (1.3); unlike a simple
difference equation, however, Eq. (2.1) enforces the local
conservation of probability flux and leads to a sum-over-
histories solution for the wave function. Unitarity is
manifestly preserved.

Besides these advantages, the S-matrix approach also
has a natural physical interpretation of the problem of
directed waves in random media. The basic idea is sim-

ple: at time t, we imagine that a random scattering event
occurs at each site in the lattice at which either 4+(x, t)
or 4 (x, t) is nonzero. The matrices S (x, t), which relate
the ingoing and outgoing amplitudes at each lattice site,
can then be regarded as scattering matrices in the usual
sense. A picture of a typical scattering event is shown in
Fig. 2. A lattice S-matrix approach for the study of elec-
tron localization and the quantum Hall e6'ect has been
used by Chalker and Coddington [22]. A related model
has also been recently proposed [23] to investigate the lo-
calization of wave packets in random media. These mod-
els also include backscattering and hence involve a larger
matrix at each site.

We are interested in the beam positions

(2.3)

Here, P (x, t) is the probability distribution function
(PDF) on the lattice at time t, defined by

(2.&)

(Defining the weights directly on the bonds does not sub-
stantially change the results. ) Note that unlike the DP
problem, P (x, t) is properly normalized, i.e.,

g P(x, t) =1

and Eqs. (2.3) and (2.4) are not divided by normalization
such as Q, P(x, t). This simplification is a consequence
of unitarity, and makes the directed wave problem tract-
able.

The average [ ] in Eqs. (2.3) and (2.4) is to be per-
formed over a distribution of S matrices that closely
resembles the corresponding distribution for V in the
continuum problem. However, by analogy to the DP
problem [5], we expect any disorder to be relevant.
Hence, to obtain the asymptotic scaling behavior, we
consider the extreme limit of strong scattering in which
each matrix S(x, t) is an independently chosen, random
element of the group U(2). With such a distribution we
lose any preasymptotic behavior associated with weak
scattering [13]. The results are expected to be valid over
a range of length scales a «x «g, where a is a length
over which the change of phase due to randomness is
around 2', and g is the length scale for the decay of in-
tensity and breakdown of unitarity. Since the parabolic
wave equation was obtained from the full wave equation
(1.1) by assuming that the scattering potential varied
slowly along the propagation direction
(8,5n «kn05n ), it is fair to inquire if the conditions
for the validity of such path integrals are ever satisfied in
transmission of light. By way of a partial answer, we pro-
vide an idealized macroscopic realization in which a beam
of light is incident upon a lattice of beam splitters ar-
ranged as in Fig. 3. Each splitter partially reflects and
partially transmits the beam, both in the forward direc-
tion. (Note that as long as the beam width is smaller
than the size of each slab, the beam does not encounter
variations of n along the t direction, and will not be back-
scattered. ) In this strong-scattering limit, the effect of an
impurity at (x, t) is therefore to redistribute the incident
probability fiux P(x, t) at random in the +x and —x
directions. On average, the flux is scattered symmetrical-
ly so that the disorder-averaged PDF describes the event
space of a classical random walk:

t![P(x, t)]=
[(t —x)/2]![(t +x)/2]! (2.6)

Ut

t irne

FIG. 2. Scattering event at a lattice site. Time flows in the
horizontal direction. A 2X2 5 matrix relates ingoing and out-
going amplitudes.

Substituting this into Eq. (2.3), we find [(x (t)) ]=t, in

agreement with previous studies [11]. Consider now the
position of the beam center [(x(t) ) ], given by Eq. (2.4).
Unlike [P (x, r ) ], the correlation function

[P(x&, t)P(x2, t)] does not have a simple form. An exact
calculation of [(x(t) ) ] thus proves rather difficult.

One way to proceed is to perform numerical simula-

tions, based on Eq. (2.1), in which averages over disorder
are computed by sampling a finite number of computer-
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As before, we imagine that at times t&0, disorder-
induced scattering events occur at all sites on the lattice
where P (x, t) is nonzero. Now, however, we implement
these events by assigning to each lattice site a random
number 0~ q (x, t) ~ 1. The probability distribution func-
tion P(x, t) is then directly evolved according to the re-
cursion relation

(0,0)

FIG. 3. Lattice of beam splitters in d =2. In black: a pair of
paths contributing to 8'(r, t), the disorder-averaged probability
that two paths are separated by 2r at time t.

generated random environments. For the purpose of
computing [(x(t)) ], however, this S-matrix algorithm
has a large amount of unnecessary overhead. All the in-
formation required to compute beam positions is con-
tained in the function P(x, t). Moreover, we are not in-
terested in those quantities, such as transverse probability
currents, for which a complete knowledge of 4+(x, t) is
required. A better algorithm, for our purposes, would be
one that directly evolves P(x, t) rather than the wave
functions 4+(x, t).

One may wonder if such an algorithm exists, since in
general it is not possible to simulate the dynamics of the
Schrodinger equation without reference to the wave func-
tion. Consider, however, the scattering event shown in
Fig. 2. Probability Aux is locally conserved; hence,

(2.7)

As the S matrix that connects these waves is uniformly
distributed over the group U(2), its action distributes the
outgoing waves uniformly over the set of spinors whose
components satisfy Eq. (2.7). A straightforward calcula-
tion shows in turn that the ratio

P (x, t + 1)=q(x —l, t)P (x —1, t)

+ [ 1 —
q (x + 1, t) ]P (x + 1,t) . (2.10)

When the numbers q in Eq. (2.10) are distributed uni-
formly between 0 and 1, this set of rules for evolving
P(x, t) is equivalent to the previous one for evolving
4+(x, t) In f.act, we will see later that except in very spe-
cial circumstances, Eq. (2.10) leads to the same scaling
behavior as long as [q]=—,'.

So far, then, we have sketched two algorithms that can
be used to investigate the scaling behavior of [(x(t) ) ].
Method 3 evolves the wave functions 4+(x, t) through a
field of random S matrices. Method B evolves the PDF
P(x, t} directly, with much less overhead. The exact
equivalence of these two methods depends crucially on
our choice of a uniform distribution for the S matrices
that appear in Eq. (2.1}. If the S matrices are not chosen
from a uniform distribution over the group U(2), then the
ratio q defined by Eq. (2.8} will not be distributed over the
interval [0,1] in the same way at all lattice sites. It is easi-
ly seen, moreover, that a nonuniversal distribution for q
invalidates the logic behind Eq. (2.10). We emphasize,
however, that the scaling behavior of [(x) ] should not
depend sensitively on the details of the distribution used
to generate the S matrices in Eq. (2.1); a broad range of
distributions should belong to the same universality class
of diffusive motion. Consequently, the simplifying as-
sumption of a uniform distribution should not destroy the
generality of the results for directed waves in random
media and/or quantum mechanics in a random time-
dependent potential. Method B thus retains the essential
elements of the problem, while from a computational
point of view it is greatly preferred.

In fact, the greatest virtue of method B is that it per-
mits an even further simplification. Indeed, though fas-
ter, more efBcient, and conceptually simpler, method B
still shares an obvious shortcoming with method A. In
both, averages over disorder are performed in an approxi-
mate way by sampling a finite number of computer-
generated realizations of randomness. %e now show how
method B can be extended to compute these averages in
an exact way.

Define the new correlation function

(2.8) W(r, t)= g [P(x,t)P(x+2r, t)] . (2.11)

P(x, t =0)=5„O . (2.9)

is uniformly distributed over the interval [0,1]. This re-
sult, which holds for all scattering events on the lattice,
can be used to evolve P (x, t) directly, without reference
to the wave functions 4+(x, t).

Let us examine in detail how this is done. At t =0,
P (x, t} is localized at the origin:

From Eq. (2.9), we have the initial condition

W(r, t =0)=5,o . (2.12)

The value of W(r, t) is the disorder-averaged probability
that two paths, evolved in the same realization of random
ness, are separated by a distance 2r at time t. %e can
compute this probability as a sum over all pairs of paths
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FIG. 4. Lo -lo lg- og p ate of the wanderin- o ering of the beam center

e [see Eq. (2.13)] is indi t d
'

e propagation distance t in d =2.'n = . The value of
is in icated in parentheses.

t'~' (D =1)
mo —. 1nt (D =2)

const (D =3) .
(3.1)

From the ne numencal results of Sec. IIec. , it is clear that the
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same scaling laws describe the wandering of the beam
center, [(x) ], in d =D +1 dimensions, for d =2 and 3.
We now show that this equivalence is not coincidental;
moreover, it strongly suggests that d„=3 is a critical
upper dimension for directed waves in random media.

To this end, let us return to our model for directed
waves in d =2. The recursion relation for W(r, t) can be
used to transform the right-hand side of Eq. (2.14), with
the result

[(x(t)) ]=@g W(0, r) . (3 2)

In the preceding section, we saw that the disorder-
averaged correlation function W(r, t) describes the time
evolution of two paths in the same realization of random-
ness. We can also regard W(r, t) as a probability distri-
bution function for the relative coordinate between two
interacting random walkers. In this interpretation, the
value of e in Eq. (2.13) parametrizes the strength of a
contact interaction between the walkers. If e=O, the
walkers do not interact at all; if @=1,the walkers bind on
contact.

According to Eq. (3.2), the wandering of the beam
center [(x(t)) ] is proportional to the mean number of
times that the paths of these walkers intersect during
time t. If e=O, the number of intersections during time t
obeys the scaling law in Eq. (3.1), since in this case, the
relative coordinate between the walkers performs a sim-
ple random walk. The numerical results of Sec. II indi-
cate that the same scaling law applies when 0 & e & 1: the
contact attraction does not affect the asymptotic proper-
ties of the random walk. To elaborate this point, we ex-
pand W(r, t) as a power series in e:

The zeroth-order term in this series, Wo(r, t), describes a
simple random walk, while higher-order terms represent
corrections due to the contract attraction e. Substituting
into Eq. (3.2) and using the D = 1 result of Eq. (3.1) give

(3.3)

The scaling properties of higher-order corrections follow
from simple dimensional arguments, with the result that
the series converges rapidly for large t. We conclude that
v= —,

' exactly in d =2.
The above argument is readily generalized to d & 2, in

which e has the units of [t] '. The result is that the
wandering of the beam center, [(x) ], in d =D+1 di-
mensions obeys the scaling laws in Eq. (3.1), with next-
order corrections smaller by relative factors of
O(alt '). Moreover, the argument leads to an upper
critical dimension d„=3 above which the typical wander-
ing of the beam center remains finite even as the propaga-
tion distance t ~ 00. In summary, three classes of behav-
ior are thus encountered in this model. For @=0, i.e., no
randomness, the incoming beam stays centered at the ori-
gin, while its width grows diffusively. For 0&@&1,the

beam center [(x ) ] also fluctuates, but with a
dimension-dependent behavior as in Eq. (3.1). In the lim-

it of @=1,interference phenomena disappear completely.
(This limit can be obtained by replacing the beam
splitters of Fig. 3 with randomly placed mirrors. ) In this
case, the beam width is zero, and the beam center per-
forms a simple random walk.

To conclude, we compare the situation here to the one
of directed polymers in random media [5]. In the replica
approach to the DP problem, the nth moment of the
weight %(x, t) is obtained from the statistics of n directed
paths. Disorder averaging again produces an attractive
interaction between these paths, with the result that the
paths can be regarded as the world lines of n quantum
particles interacting through a short-range potential.
The large t behavior of nth-order moments is then related
to the ground-state wave function of the corresponding
n-body problem in d —1 dimensions. In d =2, the Bethe
ansatz can be used to find an exact solution for particles
interacting through 5-function potentials: Any amount
of randomness (and hence attraction) leads to the forma-
tion of a bound state. The behavior of the bound-state
energy can then be used to extract an exponent of v=

3

for the superdiffusive wandering of the single DP in the
quenched random potential.

By contrast, the replicated paths encountered in the
directed wave problem [such as the two paths considered
for Eq. (2.11)],although interacting, cannot form a bound
state. This point was first emphasized by Medina, Kar-
dar, and Spohn [20], who showed that the formation of a
bound state was inconsistent with the constraints im-
posed by unitarity on the lattice. This result also emerges
in a natural way from our model of directed waves. In
d =2, for instance, it is easy to check that
W(r, t)-(1—e5„0) ' is the eigenstate of largest eigenval-
ue for the evolution of the relative coordinate. Hence, as
t ~~, for randomness 5 correlated in space and time,
there is no bound state. This result holds in d ~2 and is
not modified by short-range correlations in the random-
ness. The probability-conserving nature of Eq. (2.13) is
crucial in this regard [24]. Small perturbations that
violate the conservation of probability lead to the forma-
tion of a bound state. In the language of the renormaliza-
tion group, this suggests that the scaling behavior of
directed ~aves in rando~ media is governed by a fixed
point that is unstable with respect to changes that do not
preserve a strictly unitary time evolution. Numerical and
analytic results support the idea that this fixed point be-
longs to a new universality class of diffusive behavior.
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