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Surface reflections and boundary conditions for diffusive photon transport
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Boundary conditions for the photon-diffusion equation with internal surface reflections are obtained
for one, two, and three dimensions, both from transport theory and from approximate solutions of the
corresponding Milne equations.
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I. INTRODUCTION

Internal surface reflections have recently been shown,
both experimentally and theoretically [1—4], to be of con-
siderable importance in the diffusive transport of light
through highly random media. Large effects come about
when multiply scattered light that attempts to leave the
medium at angles exceeding the critical angle is prevent-
ed from doing so by total internal reflection. Optical
photons reinjected into the medium execute a second, in-
dependent random walk before once again attempting to
exit. Although the fraction of the light that is reflected
into the medium can vary greatly from one system to
another, and depends strongly upon surface properties,
an angle-averaged reflectivity R -50%%uo per pass is not
atypical. Thus the average time a photon spends in the
medium, the average path length it traverses, and the
average number of scattering events it undergoes before
exiting are all significantly increased due to surface
reflections.

Three approaches have recently been put forward for
incorporating surface reflections into the theory of
diffusive photon transport. Lagendijk, Vreeker, and
DeVries modified the diffusion-equation Green s function
to include these reflections, and re-solved for an number
of optical properties [1]. Freund and Berkovits showed
how an already known result that had been obtained by
neglecting surface reflections could be resummed over all
passes to yield a final result that included these reflections
[3]. Zhu, Pine, and Weitz showed that the surface
reflections could be included by introducing a simple
modification of the boundary conditions to the diffusion
equation [4].

Generally speaking, the diffusion-equation boundary
conditions involve specifying how the diffusive photon
density p goes to zero near a boundary. Although a "nat-
ural" condition would be to have p vanish at the physical
boundaries of the medium, this is not required by the
physics of the problem and is known not to be the case.
An alternative possibility would be to specify some dis-
tance from the boundary at which p vanishes. But the
diffusion equation itself contains no suitable length scale
that could be used for this purpose, so one must go out-
side the theory. Turning to a microscopic theory of pho-
ton transport, one typically solves for some property,
compares this with the corresponding diffusion-equation

solution, and based upon this comparison one extracts a
boundary condition by matching the two solutions in
some way. However, since transport theory and diffusion
theory are not fully consistent, choosing different proper-
ties for the comparison will generally result in somewhat
different boundary conditions.

The final results of Zhu, Pine, and Weitz [4] have an
especially appealing simplicity. The physical basis for
these results, however, appears to be unclear. Zhu, Pine,
and Weitz obtain a transport theory expression for the
partial photon fluxes inside the random medium that they
write in terms of scatterer properties and the photon den-
sity and its gradient. They then extend this expression
into the vacuum outside the medium, thereby populating
the vacuum with a fictitious set of scatterers that have the
same scattering properties (mean free path) as the real
scatterers inside the medium. They. also assume that the
vacuum contains a fictitious diffusive photon density p„,
which is a linear extrapolation of the density p inside the
medium. A boundary condition for the real photon den-
sity p is then obtained by requiring the total flux of ficti-
tious photons that diffuse out of the vacuum back into
the medium to be zero, so that the populated vacuum has
no net effect on the photon density inside the medium.
But the back-diffusing flux from the populated vacuum
can only be made to vanish if the vacuum photon density
p„contains both positive and negative components, so
that the back-difFusing flux of fictitious positive photons
is canceled by the back-diffusing flux of fictitious negative
photons. Since p, is taken to be a linear extrapolation of
p, the point at which p, must cross from positive to nega-
tive values in order to meet the above requirement is then
used as the boundary condition for p itself, i.e., that point
outside the medium at which p extrapolates to zero.

In view of the importance of the boundary conditions,
a derivation whose physics is transparent would clearly
be desirable. Here, I derive a set of boundary conditions
for one, two [5], and three dimensions (1D, 2D, and 3D)
by comparing the (real) photon current leaving the medi-
um as obtained from transport theory with the photon
current that is obtained from diffusion theory. I also
compare the photon density obtained from diffusion
theory with the photon density obtained from a Milne
equation [6] that has been modified to include surface
reflections, and I obtain a second set of boundary condi-
tions for 1D, 2D, and 3D. All these boundary conditions
have the same general form
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II. DIFFUSION THEORY

In obtaining intrinsic boundary conditions for the
diffusion equation, we need only consider the simple case
in which external sources are absent from the boundary
region and photon absorption may be neglected. The
photon density p(r, t) in the medium is assumed to obey
the continuity equation Bp/Bt= —V J, where J(r, t) is
the photon current density. Diffusion theory enters when
the current density is taken to be diffusive,

J= —DVp, (2a)

where in d dimensions the diff'usion constant is

~SD= «s (2b)

and ~s, which is the mean time between scattering events,
includes both the transit time and a possible time delay
hr= Bp/Bco [g] due to phase shifts y arising from scatter-
er resonances at the incident frequency co [9]. Inserting J
into the continuity equation and assuming the steady
state yields the diffusion equation,

DV p=0. (2c)

Taking the boundary to be the plane z =0, and assuming
for simplicity that p=po(Z), with Z =z/As,

po= C(b, +Z), (3)

where C depends upon the strength of the (distant) source
and 6 is to be determined from the boundary conditions.
With these assumptions, the photon current density at
the boundary JB is

JB JdiffZ & (4a)

where the z axis is taken along the normal to the bound-
ary, A,s is the scattering mean free path, and the subscript
8 implies evaluating the indicated quantities at the
boundary. The sought-after constant b d(R ) depends
upon dimensionality d and the average surface reflectivity
R. Equation (1), which is sometimes called the "radiation
boundary condition" for reasons unrelated to our prob-
lem [7], is also of the same general form as the 3D bound-
ary condition obtained by Zhu, Pine, and Weitz [4].

p»ab

Io~s L'+ b, —Zo
(b.+Z) (0 & Z & Z ) (5a)L'+26

Io~s ~+Zo (L'+6 —Z) (Zo &Z &L'),

(Sb)

where L'=L /ks.

III. TRANSPORT THEORY

(7)

where in view of the exponential cutoff, the sample depth
along the z axis has been extended to infinity. Equation
(7) may now be used to develop a boundary condition for

p for arbitrary surface reflectivity R.
Diffusion theory itself is incapable of providing an ex-

pression for S(8), since all the theory "knows" about the
migration of photons is the diffusive current relationship
Eq. (4). Writing the corresponding transport current
density Jz-= —J„,„,~z, where in 3D, for example,

The number of photons dns /dt scattered per unit time

by a volume element du is

des 1
pdU

dt 7S

so that each volume element acts as a secondary source
that emits a total photon flux fr =dns/dt isotropically
into 4m. An initial flux fo emitted into some particular
solid angle is attenuated by scattering. After some dis-
tance r, the flux f that still maintains the original direc-
tion is f =foexp( —r/As). This form is assumed to hold
on all length scales, including r &A,s, so that implicit in

this, the usual form of transport theory, is a continuum
white-noise model for the random medium rather than
the usually claimed model of discrete pointlike scatteries.

The photon flux S(8) escaping from the medium
through the surface into a cone of solid angle d0 that
makes an angle 8 with the normal to the boundary may
be measured using a collimator constructed from a bun-
dle of long tubes, each of which accepts dQ. At 8=0,
the total cross-sectional area of the colimator equals the
sample surface area A. As 8 is increased, however, the
number of tubes that see the sample decreases as cosO,
but this loss is exactly compensated for by the 1/cos8 in-
crease in sample area seen by each of the remaining
tubes. Since the transmission coefficient of the surface is
1 —R, in 3D for example, S (8) is

T

S(8)=(1—R) dQ f dz p(z)exp
z

4n o A,scosL9

J; =D Bp

B
(4b) J„,„, =—f dy f d8sin8cos8S(8),

0 0

If the sample is a slab of thickness L, and photons are
injected with uniform intensity Io in the plane Z =Zo,
then the photon density p»» which satisfies the boundary
condition Eq. (1) is

and equating Jt p Jdff yie1ds a relationship between
an integral of p and its normal derivative at the boundary
that could, in principle, serve as a boundary condition.
Of course, such a boundary condition is too difficult to
work with in practice, and so we expand the photon den-
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sity near the boundary in a two-term Taylor series
IC2 =—[Fo( i

Z' —Zi )+RFo(Z'+ Z) ],1 (14b)

Bp
p(z) =ps+z

az

1+R
1 —R

6m —8+8R
3m(1 —R)
5+3R

4(1 —R)

(10a)

(10b)

(10c)

which corresponds to Eq. (3). We then obtain Eq. (1)
with

K~ =
—,
' [E,( (Z' —Z( )+RE, (Z'+ Z) ],

with

duF„(x)=, exp( —xu) .
u "(u —1)'

(14c)

Approximate solutions to Eq. (13) are easily developed

by iteration. Since our ultimate purpose is to obtain
forms for 6 by matching the diffusion and Milne equation
solutions, we chose as our zeroth-order iterate p0 the
diffusion solution Eq. (3). Inserting this into the right-
hand side of Eq. (13) yields a first iteration

IV. MILNE THEORY

In the steady state, the rate at which a volume element
AU emits photons equals the rate at which it captures
photons radiated by neighboring regions. This leads to
an integral equation for the photon density known as the
Milne equation [6]. Using Eq. (6), and setting for the mo-
rnent R =0, we may write for 3D, for example,

p, (Z) =C[5+Z+e„(Z;R)],
where

e, =—,
' [1+R —b (1—R ) ]exp( —Z),

E2 =—[(1+R)F2 (Z) —b (1—R )F, (Z) ],1

as= —,
' [(1+R)E,(Z) —b, (1—R)E~(Z)] .

(16)

(17a)

(17b)

(17c)

p(r)Av = f d r'p(r') exp
b,Q(r' —r) r' —r

voi 4m ~S

(1 la)

where the solid angle EQ subtended at r by AU as seen
from the point r' is bQ =ba /~r' —r ~, and Aa =hv /As is

an element of area. Assuming as before p=p(Z) and
defining an integration variable u =1/cos6), where 8 is
the polar angle measured from the inward-directed
boundary normal, and again extending the sample depth
to infinity, we obtain the 3D Milne equation in standard
form,

b, ,(R)= (19a)

In 1D, 6 can be chosen such that p&=p0 for all Z, in

which case p0 is an exact solution to the problem. This is

not possible in 2D and in 3D, but for any order n of itera-
tion we can achieve equality on average by choosing 6
such that

f dZ[p„(Z) —p„,(Z)]=0 . (18)
0

Using the exact result for 1D and performing the calcula-
tion to second order for 2D and 3D yields

p(Z) =
—,
' f dZ'p(Z')E, (

~

Z' —Z~ ),
where

~ duE„(x)= f exp( —xu)u"

(1 lb)

(12)

b,q(R) = 4,(R),
3(1—R)

where

(19b)

(19c)

IC& =
—,
' [exp[ —~Z' —Z~ ]+R exp[ —(Z'+Z)] J, (14a)

are the generalized exponential integrals [10].
When the surface reflectivity R is nonzero, then in ad-

dition to the direct line-of-sight path connecting r to r,
there may be additional ballistic paths that connect these
points via surface reflections. The most convenient mod-
el for calculation is a perfectly flat, specularly reflecting
surface, for which there is only one additional path con-
necting r' to r that needs be included. As the surface
reflectivity R is anyway taken to be an angle-independent
average, there is little point in considering surface models
of greater complexity, and with a specular surface we ob-
tain the modified Milne equations

p(Z)= f dZ'p(Z')Kd(Z', Z), (13)
0

where the kernels Kd depend upon the dimensionality d,
and are

1 —(2/m )(1—R)
1 —(1—

m /4)(1 —R )

1 —
—,', (1—R)

4~(R) =
1 ——'(1—ln2)(1 —R )

(20a)

(20b)

Comparing Eqs. (10) and (19) we observe that in 1D
transport theory, diffusion theory, and Milne theory are
all consistent. In 2D and 3D, however, inconsistencies
arise, and the transport values of 6 are always larger than
those obtained from Milne theory.

In addition to the value of 6, the solutions for p are
also of interest. The second-order solutions are rather
complicated and will not be presented, but the first-order
solutions are already a good approximation. This may be

seen by comparing our 3D result with the exact 3D solu-

tion for R =0 (the exact 2D solution does not appear to
be available). Using the high-accuracy approximation to
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the exact solution given by Morse and Feshbach [6], we
find good agreement between Eq. (17c) and the exact
solution for all values of Z down to and including the
boundary itself, with the maximum error never exceeding
1.6%. Since our first-order results are exact in 1D, and
are a good approximation in 3D, we surmise that they
will also be good in 2D. Thus in light of the approximate
nature of the calculations that assume scalar waves, a
simplified model for the surface, etc. , the increased level
of complexity involved in going to higher order clearly
negates any resulting (largely illusory) increase in accura-
cy.

Worth noting is that the diffusion theory solutions pp
in 2D and 3D also closely match the Milne-equal solu-
tions to within a small fraction of a mean free path from
the boundary. Indeed, for Z =0. 1 the error is already
less than 5%, for Z =0.2 the error has dropped to less
than 2%%uo, and for large Z the error decays to zero as the
functions E„(Z) and F„(Z) decrease rapidly with increas-

ing Z.

V. DISCUSSION

I„,„,~=—f dtpf d8sin8S(8) .
0 p

(21)

This procedure recovers Eqs. (19) with the minor correc-
tion terms 4&(R ) set equal to unity.

It is also of interest to compare our present results with
those obtained previously. By summing over all inter-

Since transport theory and Milne theory yield
significantly different values for hz(R ), the question natu-

rally arises as to which provides the better approxima-
tion? Milne theory appears preferable since it involves
the photon density directly, while transport theory in-

volves the photon currents. There is also another reason
for using Eqs. (19) rather than Eqs. (10). One method for
experimentally determining the diffusion constant D and
hence the mean free path is to measure the diffuse
transmittance. In performing such experiments one nor-
mally measures the transmitted intensity, collecting all or
some known fraction of the scattered light. But in com-
paring the data with theory in order to extract D, one in-

variably uses an expression for the diffusive current, such
as may be obtained from Eqs. (4) and (5). Since there is a
fundamental difference between intensities and currents,
this approach must inevitably lead to an erroneous value
for D unless compensated for by the second error. The
requisite compensating error is to calculate bz(R) by
equating the diffusive current density J~;& to the trans-
port intensity I„,„, . In 3D, for example, I„,„,„ is ob-
tained from S(8) as

mediate passes, Freund and Berkovits [3] obtained for the
diffuse transmittance

TpT=
1 —R +2RTp

(22)

where Tp is the transmittance in the absence of surface
reflections. Denoting by hp the value of 5 for R =0, as-

suming for simplicity Zo= 1, and using Eq. (5), Eq. (22)
yie1ds

1+6pT—
(1—R)L'+2(R +ho)

(23)

Equations (5) and (19) with 4&(R) set equal to unity, on
the other hand, yield

1+b,o
—R (1—b.o)T=

(1 R)L'+—2(R+ho) 2R (1——bo)
(24)
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As R approaches unity, both Eqs. (23) and (24) pass
correctly to the physically required limit T =

—,
' [3], but

only in 1D where hp=1 are they the same for arbitrary
R.

The present treatment, in line with previous ap-
proaches [1,4], has assumed isotropic (i.e., pointlike)
scatterers. For anisotropic scattering, it is well known
that diffusion theory is still valid if k, is replaced by the
transport mean free path A, T=A,s/( I —cos8), where 8 is

the scattering angle [6]. However, in transport theory
[Eq. (7)], or in Milne theory [Eq. (11a)],one may not sim-

ply replace A,s by A, T, since even for anisotropic scatterers
the attenuation of the photon flux is determined by
exp( rlks) and no—t by exp( rlA, r). Althou—gh one
often makes the ansatz that the boundary conditions ob-
tained by considering isotropic scattering hold also in the
anisotropic case, this has not been proven, and indeed re-
cent experimental results [9] suggest that there may be
significant differences. Worth noting in this respect is
that the treatment of surface reflections by Freund and
Berkovits [3] is independent of such considerations, and

may also be applied to data obtained from computer
simulations or from experiment. On the other hand, in
keeping with the approach of Zhu, Pine, and Weitz [4],
the present approach, though strongly theory dependent,
has the great advantage that an expression that neglects
surface reflections can be easily modified to include these
reflections simply by replacing b,o with h(R).
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