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We present the method and results of two phase-separation experiments performed on the binary-
polymer blend polyisoprene-poly(ethylene-propylene). Elastic light scattering and optical microscopy
were used to follow the phase separation after quenches into the coexistence region of the phase dia-
gram. For off-critical quenches, we observed the formation of spherical droplets which obtained nearly
monodisperse radius distributions over some fraction of the free-growth period. These results are inter-
preted within the framework of a heterogeneous nucleation process and diffusion-driven dynamics. For
critical quenches, we observed the well-known bicontinuous infinite-cluster morphology normally associ-
ated with spinodal decomposition, but with two distinct growth modes. In the bulk, we observed
L(t)~t'3, which is consistent with diffusion-driven dynamics, whereas near the sample walls we ob-
tained a fast growth with L(¢)~¢3/% inconsistent with either diffusion- or interface-driven dynamics.
We attribute this large exponent to wetting effects, but still lack any theoretical understanding of the

phonomenon.

PACS number(s): 05.70.Fh, 64.60.—1, 68.45.Gd, 61.14.Hg

I. INTRODUCTION

In recent years there has been a great deal of attention
paid to systems which display nonequilibrium statistical
mechanical behavior. There have been investigations of
the kinetics and dynamics of phase transitions from both
the theoretical and experimental points of view for some
two decades or more now [1,2]. Two-component mix-
tures which show a miscibility gap comprise a particular-
ly accessible class of such systems, wherein the phase
transition under study is phase separation, either via spi-
nodal decomposition or nucleation and growth, depend-
ing on the parameters used. Studies have been carried
out in a broad diversity of systems, including micellar
solutions [3], colloids [4], metal alloys [5], glasses [6], po-
lymers [7,8], and critical binary fluids [9].

In order to study phase-separation kinetics, one must
have a system in which phase separation can be initiated
at a time of the investigators’ choosing. This requires a
firm knowledge of that system’s phase diagram, in order
that abrupt changes in one or more of the thermodynam-
ic fields (usually temperature) can be effected to take the
system from the region of the phase diagram where it
does not separate into phases, i.e., where the homogene-
ous mixture is thermodynamically stable, to the region
where it will separate.

We were motivated in the present research by a dearth
of experimental results concerning the early stages of nu-
cleation and growth and spinodal decomposition in previ-
ous work with binary fluid systems. In the case of the
classical work by Knobler and co-workers [10] and Gold-
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burg and co-workers [11], intermediate- and late-stage
data could be collected only by staying very close to the
coexistence curve (¢ =|T — T oo | /Teoex <107°). In the
case of spinodal decomposition, these studies relied on
critical slowing down to render the dynamics accessible.
We have found relief from this constraint, as have others,
[12,13] by studying polymer blends. We used mixtures of
poly(ethylene-propylene) (PEP) at molecular weight
(MW) equal to 5000, and polyisoprene (PI) at MW equal
to 2000, which were very well suited to phase-separation
studies because their interactions are of the appropriate
strength to all on the critical temperature to be some-
where near room temperature. Furthermore, with
viscosities of order 400 times that of water, the dynamics
of phase separation were sufficiently slow to allow them
to be followed, even at early and intermediate times, for
reduced temperatures ¢ of order 103 to 10~ 2. The phase
diagram for this system is depicted in Fig. 1.

The difference in the index of refraction between PEP
and PI is just under 1% for the pure materials, and so
ranges from essentially O to 0.2%, depending on quench
depth, for the constituent phases in this separation pro-
cess. Typical domain sizes ranged from 100 nm to 100
pm in these experiments, and so were best probed with
elastically scattered light. We chose a charge-coupled-
device (CCD) detector for our light-scattering experi-
ments because of its two-dimensional nature, allowing us
to perform azimuthal averages of the structure function
in the case of isotropic scattering, or to detect anisotro-
pies in the scattering signal, should they exist. In addi-
tion, these detectors have a superb dynamic range (14
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FIG. 1. Phase diagram for the polyisoprene-poly(ethylene-
propylene) system used to study phase-separation dynamics of
critical and off-critical quenches. The results communicated in
this paper are for the samples at ¢p;=0.48 and 0.60, in the case
of the monodisperse spheres and fast mode, respectively. The
dashed and dotted curves are the spinodal and coexistence
curves, respectively, for a best-fit Flory-Huggins free-energy-
density calculation. The data are the experimentally measured
phase-separation thresholds for various concentrations.

bits) and adequate sensitivity to detect even the slightest
scattering signal with only 5 mW of incident laser power,
in principle being capable of detecting single photons,
and in practice capable of detecting as few as ten imping-
ing on a single pixel. The practical ramification of this
sensitivity is that ‘“‘snapshots” of the structure function
can be made with exposure times as low as 0.1 s. The
speed is important when collecting data from time-
evolving systems.

By exploiting the unique characteristics of our light-
scattering apparatus, and indeed those of the PEP-PI sys-
tem, we were able to observe and characterize several
novel phenomena in the area of phase-separation kinetics.
In off-critical quenches on the PEP-rich side of the phase
diagram (¢#=0.48), we observed the nucleation of
minority-phase droplets, which proceeded to grow as ex-
pected for free diffusion; i.e., the radius R (¢)~t!/2. The
novelty lay in the fact that for a finite window of time the
distribution of droplet radii narrowed to the point where
the polydispersity decreased to below 3%, and then in-
creased again. It was during the monodisperse regime
that the droplets’ radii grew like ¢!/2. We sought to un-
derstand this phenomenon in terms of a heterogeneous
nucleation process, in which there is some fixed number
of sites on which minority-phase droplets can nucleate.
Once they are saturated, no new droplets are introduced.
The explanation of the observed dynamics depends on the
assumption that the droplets are not interacting. At later
times, however, they do begin to interact, and growth
proceeds by the Lifshitz-Slyozov (LS) [14], process with
no new nucleation, regardless of whether the initial nu-
cleation was homogeneous or heterogeneous. Thus the

observation of a monodisperse droplet distribution during
some early time window is a hallmark of heterogeneous
nucleation. This discriminant can be used whenever
structure data can be collected at early enough times. In
previous studies [15] of nucleation in low-molecular-
weight simple liquid systems, reduced times that were
sufficiently early were not accessible, and initial nu-
cleation was almost universally attributed to the homo-
geneous process, more or less by default. This is an im-
portant consideration when, for instance, interpreting
data in the context of the Langer-Schwartz [16] theory,
which only applies to the case of homogeneous nu-
cleation.

The second major result of the present research is the
discovery of a fast growth mode in the case of critical
quenches. It has been well established theoretically
[17,36] and experimentally [18] in the nonlinear pattern-
coarsening regime of spinodal decomposition that the
pattern-length scale grows with time as L (1)~¢'/? in the
case that material transport is by diffusion alone, and
L (t)~t in the case that bulk hydrodynamic flows driven
by surface tension are allowed. By contrast, we have ob-
served power-law growth with an exponent L (1)~13/%,
which, on the basis of a dynamical scaling argument, we
have shown to arise from a two-dimensional scattering
structure. We conjecture that this phenomenon is associ-
ated with some long-range van der Waals mediated, or
wetting effect. Recently, the role played by wetting in
binary systems has received much theoretical and experi-
mental attention, [19-21] although a derivation for the
t3/2 behavior has eluded theorists.

The remainder of the paper will consist of sections on
each of the following topics: The apparatus which was
devised for making the elastic light-scattering measure-
ments, preparation and characterization of the samples,
detailed descriptions of each of the novel phenomena,
and finally some concluding remarks.

II. EXPERIMENT: CCD LIGHT-SCATTERING
APPARATUS

A cutaway view of the scheme for mounting and tem-
perature controlling the sample is shown in Fig. 2(a).
The assembly consisted of a brass block which contained
passages through which temperature-regulated water was
passed. A close-tolerance aluminum sample carrier was
inserted into this brass block, with a thermally conduct-
ing paste enhancing thermal contact between these
pieces. The sample cell was held in position by an alumi-
num plate with a hole in the center to allow the incident
laser beam to pass through and was also brought into
thermal contact with the carrier with the help of con-
ducting paste. The water circuit in the brass block was
fed from the circulation pump of a Lauda bath and circu-
lator. The water in the bath was regulated at the quench
temperature to an accuracy of £5 mK. This water sup-
ply was switched by a solenoid-actuated valve. The valve
was open for the quench and the duration of the phase-
separation experiment, but closed for the anneal period
and at all other times, as shown in Fig. 2(b). During an-
nealing, with the water flow turned off, the temperature
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of the sample was regulated by a Lakeshore DRC82 tem-
perature controller operating a Minco self-adhesive
heater tape attached to the front of the brass block. A
thermistor situated beside the sample cell itself provided
the regulation temperature to the controller. The sample
cell consisted of two fused quartz disks 21 mm in diame-
ter and 1.2 mm in thickness. Annular spacers of outside
diameter 16 mm, inside diameter 10 mm, and thicknesses
between 0.2 and 1.0 mm were used to contain the poly-
mer blend between the quartz disks. Some additional ex-
periments were performed with wedged samples, wherein
the thickness ranged from O to 1.0 mm over the 21 mm
diameter of the disks. The entire assembly was then
sealed with a bead of epoxy on the outside of the annular
spacer, between the disks. In order to prevent oxidiza-
tion the sample material was packaged in these sealed
cells in a dry-argon-gas environment.

As noted earlier, the detector we chose to measure the
structure factor for these phase-separating samples was a
CCD chip. A Tektronix 512X 512 pixel device with Pel-
tier cooling regulated to —40°C was used throughout the
present experiments. The pixel size for this device is 27
pumX27um. At a 50-kHz readout rate, this CCD was

(a)

Brass block with water passages

Aluminum Thermistor
sample carrier Sample cell with
fused quartz windows

Solenoid Valvemple Heater,
<> 4
(b) N
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Shunt Valve

Bath/Circulator

FIG. 2. Apparatus for holding the sample and effecting rapid
changes in its temperature. (a) A cutaway view of the brass
block which held the sample carrier and sample cell in these ex-
periments. Water of a controlled temperature was passed
through the holes, maintaining a constant temperature in the
cell during phase separation. A thermistor gauged the sample
temperature. The laser impinged on the sample via the hole in
the top plate of the sample carrier. (b) A schematic view of the
system of valves with which the temperature quenches were
effected. The high-temperature regulator sensed the thermistor
adjacent to the sample cell and in turn drove a heater mounted
on the brass block. The solenoid valve was closed during this
period and the shunt valve allowed the bath water to continue
circulating. For the quench the solenoid was opened, the heater
turned off, and the shunt closed. The thermistor was then used
to monitor the sample temperature.

capable of 14-bit dynamic range, allowing single exposure
determinations of the elastic structure factor for all ac-
cessible momentum transfers. This apparatus was pack-
aged commercially by Photometrics Ltd. to include a
controller unit which enabled data to be acquired au-
tomatically by a dedicated personal computer. The ma-
jor effect of the basic design of the apparatus was expend-
ed on behalf of the problem of directing the scattered
light from the sample’s scattering volume onto the ap-
proximately 1 cm X1 cm CCD chip. We required all of
the light scattered by up to 45° to be directed onto the
chip, corresponding to photon momentum transfer mag-
nitudes in the sample of up to 75000 cm ™~ !. A further re-
quirement of the design dictated that all rays emanating
from the entire scattering volume in a given direction
(corresponding to a given momentum transfer) be direct-
ed onto a single pixel of the CCD. This rather subtle
design feature was indeed a challenge to satisfy, but was
determined to be necessary to achieve the full resolution
of the detector.

Figure 3 is a schematic representation of the light-
scattering apparatus in plan view. The light from a 5-
mW helium-neon (He-Ne) laser, linearly polarized per-
pendicular to the plane of the page, impinged on the sam-
ple cell. The scattered light was collected by an off-axis
paraboloidal mirror, whose focus is essentially at the po-
sition of the scattering volume. In this configuration, the
mirror served to columnate the scattered ray bundle,
whereupon it could be passed through a pair of positive
lenses which share a focus, and onto the CCD. The con-
focal pair of lenses, which acted as a beam reducer, were
moved together along their optical axis to facilitate the
focusing of light of a given momentum transfer onto a
single pixel on the detector. Naturally, the CCD also had
to be adjusted along the optical axis of the beam reducer

5 mW HeNe
Laser

- A/4 plate
JPola:izing Beamsplitter

<1

4% of beam
= Sample

CCD

Paraboloidal Beamstop Chip

Mirror

FIG. 3. Plan view of the light-scattering apparatus. The
light from the 5-mW HeNe laser impinged on the sample via an
attenuator (quarter-wave plate and polarizing beam splitter) and
glass plate oriented to extract, from the incident beam, an
intensity-calibration beam. The sample sat at the focus of an
off-axis paraboloidal mirror capable of collecting light scattered
by up to 45° from incidence. The pattern of scattered light, a
remnant of the main beam, and the intensity-calibration beam
were than transferred to a 14-bit CCD camera connected to a
personal computer. The apparatus had two decades of dynamic
range in scattered-photon momentum transfer, and nearly five
decades in intensity.
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to yield the best resolution in the structure function. The
fine adjustments of the optical apparatus’ design were
made with a three-dimensional ray-tracing program.

- In order that there was an on-board calibration of the
incident intensity, a glass flat was inserted upstream of
the sample and oriented to reflect approximately 4% of
the incident beam onto secondary flat mirrors which in
turn directed it onto a masked portion of the CCD. The
spot thus formed was integrated and used to normalize
the structure data, thus allowing a direct comparison of
intensities, regardless of the upstream attenuation of the
incident beam. The beam stop used was simply a highly
absorptive neutral density filter. By allowing a remnant
of the main beam to pass onto the detector we could lo-
cate the position of zero momentum transfer with cer-
tainty, as well as check the turbidity of the sample on-line
to make sure we were still in the single scattering regime.

The final complexity in the design of the optics was
calibration of the mapping from photon momentum
transfer to position on the CCD, and verification that all
rays which were scattered into a given direction led to a
single pixel. In the scattering plane (the page in Fig. 2),
this was effected by placing a 100 line pair per millimeter
grating in the position of the sample. When the sizes of
the interference peaks, where they hit the CCD, were less
than one pixel, the requirement that all scattered rays
emanating from a plane perpendicular to the incident
beam direction, into a given direction, hit the same pixel,
was satisfied. In order to extend this result to the rest of
the scattering volume, the grating was moved parallel to
the incident beam a total of 1 mm. In order to fully cali-
brate the entire surface of the CCD, a jig was made to ro-
tate the grating in a plane perpendicular to the incident
beam. The set of coaxial light cones which resulted from
the interference maxima of the grating being swept
through 180° were imaged by making an exposure of
duration appropriate to the angular velocity of the grat-
ing, i.e., half the period of rotation. This step allowed us
to confirm that the curves created in this manner were no
more than one pixel thick, provided the grating plane was
within the scattering volume.

Furthermore, we were able to assess the symmetry of
these curves as a confirmation of the correct alignment of
the off-axis paraboloidal mirror, and finally we could fully
calibrate the entire surface of the CCD.

III. EXPERIMENT: SAMPLE PREPARATION

The atactic cis-1,4 PI material, [CsHg]y, was syn-
thesized using the anionic polymerization technique with
sec-butyl lithium as the initiator. Chains were proton
terminated. These samples contained approximately
20% trans configured material and approximately 5%
3,4-P1. These contamination levels were assessed using
solution nuclear-magnetic-resonance (NMR) spectrosco-
py. For the present studies, PI with molecular weight
2000, corresponding to a polymerization index N of 29+1
was used in the blends. The PEP material,
(CsHg 4D3 )y, was made from another batch of PI (with
N =73%1) by saturating the double bonds in a high-
pressure deuteration process. The deuteration was ca-

talyzed with palladium on a calcium carbonate support,
and resulted in both straight addition and substitution of
deuterium. H-D stoichiometry was determined using the
density gradient column technique. The polymer was dis-
solved in cyclohexane in a 2% by weight solution. Deu-
teration was carried out in a bomb reactor at 70 °C under
34-atm deuterium gas pressure. The polymer solution
was stirred under these conditions for 24 h. Bond satura-
tion exceeded 99.5% as determined by solution NMR.
Deuteration, not hydrogenation, was used in the
preparation of the PEP in order to match the densities of
the blend constituents over the range of temperatures of
interest. Density mismatch never exceeded 0.1% in the
present experiments, eliminating gravity as a possible
effect in the phase-separation dynamics. The molecular
weights used were chosen to render the critical tempera-
ture in the neighborhood of room temperature. Homo-
geneous blends were ensured by mixing dilute solutions of
the PEP and PI together at temperatures well in excess of
the critical temperature and then drying them in a vacu-
um oven. Samples were then loaded into the cells de-
scribed above and stored in an oven at 60°C in prepara-
tion for the quench experiments. The glass transition
temperature for all samples was below —50°C.

IV. EXPERIMENT: DATA ACQUISITION
AND PROCESSING

A dilution series of samples was prepared with volume
fraction PI ranging from 0.32 to 0.84 in increments of
0.04. Each of thesc samples was then cooled from the
storage temperature of 60 °C until a sharp increase in the
forward scattering was observed to occur. Provided the
cooling rate is sufficiently slow compared to the time for
phase-separating domains to reach a size comparable to
the wavelength of the laser light, “cloud-point” measure-
ments of this sort yield a reliable estimate of the position
of the phase-separation threshold, the locus of which for
all concentrations constitutes the coexistence curve. This
sort of procedure resulted in Fig. 1. It is notable that the
samples never actually became cloudy. In order to stay
in the single scattering regime we required the attenua-
tion due to scattering to stay below 20%, even in the late
times. Once the phase-coexistence curve was determined
by this method for each member of the dilution series, a
best fit was made to the data using the Flory-Huggins
free-energy density [22],

fl)= gojénq) n (1—@)In(1—¢) txell—g) 1)
PI PEP

where ¢ is the volume fraction of PI in the mixture, and
Np; and Npgp are the polymerization indices of the two
species. The Flory interaction parameter has tempera-
ture dependence given by

a
X(])——T-f-b s (2)

so below T,, f(¢) has the familiar double-well form.
Given that the chemical potential u is equal to 9f /9g, it
follows that the equilibrium compositions of the coexist-
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ing phases will be given by the abscissas of the two points
on the free-energy density curve which have a common
tangent. It is the locus of these common tangency points
which makes up the coexistence curve. The stability of a
concentration fluctuation, furthermore, is given by the
curvature of the free-energy density, so that the locus of
inflection points in f(¢) is the stability threshold. Inside
this curve, called the spinodal, the homogeneous state is
thermodynamically unstable, and the phase separation
proceeds via spinodal decomposition, at least in the clas-
sical mean-field picture [23]. The classical spinodal is de-
picted as a dashed line in Fig. 1. Between the spinodal
and coexistence curve, the disordered state is metastable,
and the phase separation proceeds via nucleation and
growth. In this region, infinitesimal amplitude fluctua-
tions dissipate, while those exceeding a critical amplitude
and critical size are able to grow. The a and b of (2) are
the only parameters of the fit. They are 51.9 K and
—0.12, respectively, for the curve shown in Fig. 1. In-
dependent small-angle neutron-scattering measurements
[24] of the binary-liquid structure in the one-phase region
yielded a =26.5 K and b=—0.037, which compare
favorably with the phase-diagram determination of these
parameters. Notice that the critical composition

Pe=—F7—= —=~0.6 (3)
¢V Npp+V Ny

is not a fitting parameter. The success of the theory to
correctly identify ¢, is encouraging when relying on the
Flory-Huggins theory for binary-polymer mixtures. For
those compositions far from criticality, the Flory-
Huggins theory appears to have failed to reflect the posi-
tion of the coexistence curve as determined on the basis
of the cloud-point measurements. One must realize that
the volume fraction of the minority phase becomes van-
ishingly small close to the coexistence curve as the com-
position deviates significantly from critical, as does the
signal in the previously described measurement of the on-
set of strong forward scattering. In actuality, by the time
the signal can be measured, the system may have been
rather deeply quenched into the metastable region. Far
from criticality, cloud-point measurements are not ex-
pected to be reliable determinants of the coexistence
curve. This is of little consequence for the results being
reported here. For the two samples of interest (¢ =0.48
and 0.60), the position of the onset of phase separation
was determined to an accuracy of 5 mK.

For both the critical and off-critical quenches, the ex-
periment consisted of allowing the sample to equilibrate
in the disordered state, approximately 0.1°C above the
phase-separation threshold, and then effecting a quench
to a final temperature below the phase-separation thresh-
old by between approximately 0.1°C and 1.0°C. After
the quench, determinations of the structure were made by
measuring the scattering with the CCD camera, with the
interval between measurements typically increasing ex-
ponentially, in deference to the power-law behavior ob-
served in the measurable quantities over some time win-
dow. At the high temperature equilibration point, the
temperature was regulated by the Lakeshore temperature

controller. The temperature was read with a Yellow
Springs Instruments thermistor with a nominal resistance
of 100 kQ at 25°C. The controller in turn supplied
current to the Minco tape heater attached to the brass
block as described in Sec. II. The quench was effected by
simultaneously turning off the heater and routing water
of preregulated temperature through the passages of the
brass block. This was was pumped from a Lauda circula-
tor and regulator, resulting in characteristic quench times
on the order of 15 to 20 s. Typical temperature-profile
data are shown in Fig. 4 for a variety of quenches.

The structure functions were calculated by averaging
together 11 adjacent rows of the CCD, the row corre-
sponding to the scattering plane, and the five rows both
above and below this plane. This averaging helped
reduce the speckle in the structure functions, and in-
creased the sensitivity to low light levels at large momen-
tum transfer by improving the photon counting statistics.
For each quench, at time ¢ =0, the scattering function
was measured before the phase separation started. These
data were subtracted from all subsequent data sets to
eliminate the effects of scattering from imperfections on
the glass surfaces and any other static effects, such as the
dark current from the CCD chip. The transformation
from pixel index to photon momentum transfer, g, was
effected with the calibration curve which was measured
as described in Sec. II above.

With this, the reader will notice that the expectations
of the experiment were conceptually rather modest. In
the case of the off-critical quench, we merely sought to
measure the mean radius and polydispersity, as a func-
tion of time, of the distribution of droplets that nucleate
and grow after quenching into the metastable region of
the phase diagram. Our method allowed us to make very
accurate determinations of these dynamical variables in
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FIG. 4. Traces of temperature vs time for several quenches.
Only the first 1000 s are shown, the stability indicated for that
period being typical of that observed for quenches of up to 10¢ s
duration. The quench time was about 30 s, regardless of quench
depth, and except for a transient of approximately 200 s dura-
tion, the temperature remained stable to within =5 mK of the
quench temperature.
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the range of time for which the polydispersity did not
exceed approximately 12%. For the critical quenches,
we endeavored to measure the characteristic length scale
of the spinodal pattern as it coarsened in time. With the
excellent dynamic range of the CCD, we were able to
determine the existence of two nonlinear growth modes,
each characterized by a different kinetic exponent.

V. EXPERIMENT: RESULTS AND DATA ANALYSIS

A. Monodispersed spheres

For off-critical quenches, we modeled the scattering as
essentially that from a dispersion of dielectric spheres,
with Gaussian distributed radii of width o and mean R,
neglecting coherent (structural) effects between spheres.
The distribution of sphere radii is given by

_(R _RO)Z l

(4)

na’Ro(R) N__ exp

 oV2r 202

)
So.r,(9)=Tou ~°f 14u2+e 29[ (42—1)cos2u —2u

where u =gR,. The parameters of the fit were R, o,
and I,=N(4wR}/3)% all are functions of time. This
fitting function was not expected to be valid in the limit
g <<Rgy I where the structure function deviates from the
uncorrelated-sphere approximation due to coherent
scattering effects. For ¢ >R, !, S,(q) is an excellent ap-
proximation to the scattering from a dispersion of
spheres, and in practice yielded very reliable determina-
tions of o and R Ref. [26]. Notice that in the limit that
o —0 we recover the single sphere scattering:

Sor,(@)=2g,(q) - 8)

Figure 5 shows measured structure functions with their
best-fitted SayRO(q) shown as a solid line, for several typi-

cal values of 0 and R,. The small-g deviation between
the model function and the data is consistent with
suppression of forward scattering due to coherent effects
between spheres, in the form of a liquid structure factor.
There is the possibility of further attenuation in the
near-forward direction due to the form factor for the de-
pletion zone which surrounds each droplet. We have not
attempted to model these effects in our fit functions.

In order to put an upper limit on the polydispersity, o,
we allowed the higher-¢ data more weight in the fits.
This was effected by assigning a weight factor for the ith
data point in the structure factor w; =S, !, where S; is
the intensity for that point. We wanted to ensure that
the polydispersity parameter was well determined. This
means that by counting the number of resonances which
are discernible in the structure function, one may deter-
mine the ratio p=o /R, directly. - The model function
tended to overestimate the depths of the low-g nodes
when the recipe outlined above for the determination of u
was followed, though this can barely be seen in Fig. 5.
This failure on the part of the modeling has been attribut-

where N is the number density of spheres in the scatter-
ing volume. The form for the scattering from a single
dielectric sphere in the Rayleigh-Gans limit is given by
(25]

Am

SR(g)= 3

R3j1(qR)

2
) (5)

4 .
F(squ —gR cosqR)

where j,; is the first spherical Bessel function. The total
scattering signal for such an uncorrelated dispersion of
spheres is

So.r, (@)= fowna,RO(R)ZR(q)dR : (6)

After a little algebra, and some simplification based on
the fact that we expect o to be significantly smaller than
R, we get the following function which we used to fit the
data:

sin2u ]} , (7)

f
ed to weak multiple-scattering effects. Multiple scatter-
ing of about 10% of the photons would easily account for
the shallow nodes (being in mind that the intensity axis in
Fig. 5 has a logarithmic scale), without affecting the
determination of o and R,

Figure 6(a) shows the evolution of the radius of the
spheres plotted as a function of time on logarithmic axes.

1

A line with slope 1 is also plotted, to demonstrate that

with minimal deviation, we observed the growth law
R(t)~t'? 9)
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FIG. 5. Monodisperse-spheres structure functions for several
times as indicated after a quench of AT =0.40°C into the coex-
istence region at gp;=0.48. The mean radii as fitted by (7) in
the text are 0.868, 1.46, 2.28, and 3.31 um for the earliest to lat-
est times, respectively. The polydispersity parameters, o /Ry,
for the same times are 7.4%, 7.9%, 7.5%, and 11.1%.
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over the range of time that the polydispersity is small
enough to allow fitting by the model function of (7). Fig-
ure 6(b) shows the radius-normalized polydispersity, u, as
a function of time for the AT =0.40°C quench whose ra-
dii appear in Fig. 6(a). One can see that over the range of
times for which the polydispersity is measurable, there is
a distinct tendency towards a minimum, followed by an
increase. The final piece of experimental certainty is evi-
dent in Fig. 7, wherein we have plotted the intensity pre-
factor of the fits, I,,, versus the radius, R, on logarithmic
axes. From (7) we expect

2

47R}

3

I,=N , (10)

so the fact that we observed I,~R§, as shown in Fig. 7,
is quite convincing evidence that over the range for
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FIG. 6. Radius and polydispersity vs time for the mono-
disperse spheres. (a) R, as fitted by (7) for various quench
depths. Notice that for the shallowest quench (AT=0.15°C),
there was only a small time window for which the polydispersity
was sufficiently small to allow fitting by (7). A line with slope %
has been plotted for comparison, to show that R ~t!/? is ap-
proximately obeyed throughout the monodisperse regime. (b)
Polydispersity o /R, for the 0.40°C quench, showing a high
value (about 10%) at early times, then decreasing to a minimum
(about 6% in this case), and then rising again as the droplets be-
gan to interact. In deeper quenches we observed polydispersi-
ties as low as 3%.
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FIG. 7. The best indication that the number density of
spheres remained constant during the monodisperse regime.
The intensity prefactor I, of fits to (7) plotted vs mean radius R,
for those fits, clearly showing the I, ~ R § relationship discussed
in the text.

which we were making the measurements, the total num-
ber of spheres in the scattering volume, N, remained con-
stant. Furthermore, to compare the values of N for
different quenches, we fit the I, versus R, data with the
the function f(x)=bx® The prefactor b from these fits
is proportional to N, and except for some scatter which
is to be expected in such heavily processed data, not only
is N constant in time for a given quench, it would appear
to be almost constant from quench to quench at distinct
temperature differences. This fact is reflected in the
strong clustering of the data at different quench depths
along the same slope-6 line in Fig. 7.

While the droplet-radius distribution is narrow, Eq. (7)
is an excellent model function for the determination of
the average radius. As was noted above, however, R,
cannot be reliably determined once the scattering reso-
nances at higher g values have been washed out. In this
regime, we resorted to fitting the Porod [27] slope to the
tail of the structure function. Clearly in the short-length
limit, the scattering is determined by the details of the in-
terface between the two phases. In three dimensions, and
for sharp interfaces, the tail is expected to have the fol-
lowing functional form:

lim S(q)=Pg*. (11)

q —> 0
The Porod slope, then, is —4, by virtue of the fact that
when S versus g is plotted on logarithmic axes, it tends to
a straight line with slope —4 as g gets large. This is
shown in Fig. 8 for the tails of several structure functions
measured at various times after a quench of 0.31°C into
the two-phase region at @p;=0.44. The prefactor P of a
Porod-law fit is proportional to the total interfacial area
in the scattering volume [28], and is shown as a function
of time for this quench in Fig. 9. During the free-growth
regime, when the droplets do not interact, their mean ra-
dius can be seen in Fig. 6(a) to grow as ¢!/2, which, since
their number remains constant, means that the surface
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FIG. 8. Porod-law fits to the high-g portion of the structure
functions. The intensity has undergone a background subtrac-
tion. The Porod prefactor [see Eq. (11)] is proportional to the
total surface area within the scattering volume. For earlier
times, when the structure function was ringing due to the mono-
disperse distribution of droplet radii, this parameter was not as
well determined as it was at later times. The Porod slope of —4
is shown for direct comparison with these structure functions.
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FIG. 9. The Porod prefactor vs time for an off-critical
quench of AT=0.31°C. The circles indicate the time-evolution
of the prefactor in fits of the sort illustrated in Fig. 8. This pre-
factor is proportional to the interfacial area of the scattering
structure, as discussed in the text. In the free-growth regime we
observed R,~1t'"?, so P~t, as expected. The triangles are
droplet radii as determined by fits to (7), and the line has slope %
on the radius (left) axis) and slope 1 on the prefactor (right) axis.
The two techniques are complementary in that when (7) is a
good model for the structure function, the Porod prefactor is
poorly determined due to the high-q ringing, as indicated by the
deviation of the circles from power-law behavior at earlier
times. It is interesting to note that in the limit of fully-
interacting droplets, when the volume of minority phase had sa-
turated at its equilibrium value, we expected the radius to
behave as ¢!/3. In this Lifshitz-Slyozov coarsening regime, we
therefore expected the Porod prefactor to cross over to a t 173
behavior, as was indeed observed as the time approached 10°s.

area grows as . This is reflected in the slope of 1 (as read
from the right-hand scale; 1 is for the left-hand scale) in
the earlier stages of the plot in Fig. 9. After approxi-
mately 10° s, there has been a crossover to the fully-
interacting-droplet regime, where the volume fraction of
minority phase has saturated at its equilibrium value, and
thereafter remains constant. In this regime, mean drop-
lets radius is expected on the basis of Lifshitz-Slyozov
theory to increase as ¢!/3, meaning that the total interfa-
cial area, hence P, should behave like ¢ ~!/3. This is indi-
cated by the crossover to a slope of — 1 at about 5X10°s
in Fig. 9.

B. Fast mode

For the critical quenches, we observed the well-known
ring associated with the bicontinuous infinite-cluster
morphology seen in spinodal decomposition [29]. There
is an extensive literature concerning appropriate choices
for the line shape appropriate to this sort of structure
function [30]. Figure 10 shows the temporal evolution of
the structure function after a quench of a sample at the
critical composition @,=0.60 by 0.64°C. The two
modes, that corresponding to the standard growth ex-
ponent of 1, and the fast mode with its attendant 3
growth, can clearly be seen to develop as time evolves.
Figure 11 is a photomicrograph of the sample during
phase-separation again clearly showing the large-sale
structure of the fast mode and the smaller-scale structure
of the slow mode. In the present research we were most
interested in finding the time evolution of the peak posi-
tion, and so chose a simple form for the model line shape:

Iy(1)

S(g)= . 12
7 {1+x°[g—q,,(D]*}? 12
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FIG. 10. The scattered intensity as a function of photon
momentum transfer g at various times after a 0.65°C quench
below the critical temperature T,. The loci of the maxima of
the fast-mode peak and the slow-mode peak are indicated by
dashed lines. The maximum intensities for the two peaks
displayed are 3.4 and 2.0 arb units for the slow and fast modes,
respectively.
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FIG. 11. A series of photomicrographs of the fast-coarsening structure. At times greater than 400 s the coexistence of the two
different length scales corresponding to interface and bulk growth is visible. The magnification in all the pictures is the same and the

length of the bar in the first picture is 50 um.

This model function was chosen simply because it has the
necessary features of a quadratic maximum for the peak,
and in the large-g limit, S(g)~¢ %, in accordance with
the Porod law for scattering from an interface. We were
primarily interested in the peak position as a function of
time, g,,(t), and the maximum scattered intensity as a
function of time, I,(¢), so this function served very well
as a peak finder when fitted to the data with a nonlinear
least-squares fitting routine. We limited the range of the
fitting in g space to approximately the interval g,, £gq, ),
where g, , is the difference between g,, and the point
where the structure function falls to half its peak value.
The parameter x, with dimensions of length, reflects the
full width at half maximum, i.e., Ag =1.29/x. Figure 12
shows typical structure functions at various times after a
quench of AT=0.25°C below the critical temperature.
Also indicated is the interval for peak fitting to (13) and
the model line shape on that interval. Clearly in the re-
gion of interest the model function adequately mimics the
data, so that the fitting parameters I, and ¢,, could be
determined as a function of time. For those structure
functions with both a fast-mode and a slow-mode peak
evident, initial values of the parameters had to be insert-
ed by hand into the nonlinear least-squares fitting routine
for each of the two peaks separately, so that both peaks
could be found. Figure 13 shows typical plots of the peak
in the structure function, g,,, versus time, ¢, on logarith-

mic axes, showing the fast and slow modes’ coarsening
behavior as a function of quench depth.

There have been numerous experiments performed
[31,32] which confirm the hypothesis of dynamical scal-
ing [33,34] in phase-separating fluids. Asymptotically,
the morphology of the phase-separating domains is ex-
pected to approach a form which is self-similar in time.
Under these conditions, the structure function is expect-
ed to approach a scaling form, wherein all time depen-
dence is carried in a single length scale, L (¢)~[g,,(¢)] ™},
as follows:

q

m

S(g,t)=[g, ()] °F , (13)

1)

where d is the dimensionality of the scattering structure.
Notice that there is no explicit time dependence in the
scaling function F, and so the intensity prefactor of the
fitted structure function should scale with peak position,
ie., Io(t)~[g,,(t)]7% We sought to confirm that the
slow mode was associated with coarsening of a three-
dimensional structure by plotting I, versus g,, ' on loga-
rithmic axes and showing that the locus of such points
fell on a line with a slope of three corresponding to d =3.
We made similar plots for the fast-mode data and found
that they again fell on a line, but with slope two, suggest-
ing that the fast-mode structure is two dimensional. Fig-
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FIG. 12. Structure functions at various times after a quench
0of 0.25°C below T,. The first three, at 123, 225, and 532 s, show
the fast-mode peak at approximately 1.8, 0.7, and 0.2 um ™', re-
spectively. In the next one, at 1242 s, the fast mode has gone
forward into the beam stop, but the slow mode is just beginning
to emerge at 1.1 um~'. The final two structure functions show
the slow-mode peak at about 0.9 and 0.7 um ™. Fits to (12) over
the g range discussed in the text are illustrated for several data
sets. Each successive structure function has had 0.8 arb.units
added to give the figure greater clarity.

ure 14 shows data for the 0.15°C quench. Further inves-
tigation with the microscope indicated that the structure
associated with the fast-mode growth was confined to an
approximately 10-um-thick layer adjacent to the quartz
windows which contain the sample. Obviously, if dynam-
ic scaling were to apply strictly for both the bulk and the
surface, the two subsystems could not be in diffusive con-
tact with each other. We plotted S /I, versus q/q,, to
confirm that dynamical scaling approximately applied
over the range of times measured. At very late times,
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FIG. 13. Peak position in g space vs time for ten different
quenches ranging in depth from 0.15°C and 1.00°C, represented
by the left-pointing triangles and right pointing triangles, re-
spectively. The shallowest two showed simultaneous fast-mode
and slow-mode behavior, as indicated in the figure. Several oth-
ers showed both modes, though not at the same time. The
deeper quenches showed only the fast mode, presumably be-
cause the fast mode filled the entire sample cell before the slow
(bulk) effect had the opportunity to manifest itself.
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FIG. 14. Peak intensity of the fast and the slow modes as a
function of inverse peak position. The slopes of these lines give
the dimensionality of the scattering structure, under the as-
sumption that dynamical scaling holds for both processes.

however, the surface and bulk subsystems must come into
some sort of quasiequilibrium, because eventually the sur-
face pattern disappears completely, presumably as a com-
plete wetting layer of the preferred phase forms, as was
suggested in the seminal work of Cahn [35] on the subject
of wetting in phase-separating systems.

VI. DISCUSSION

A. Monodispersed spheres

An isolated droplet of one phase, in diffusive contact
with a supersaturated sea of another phase, will grow,
provided the energy released by reducing the supersa-
turation condition in that region of space is more than
the energy required to construct the interface which en-
closes the sphere. Since the former of these quantities
scales as R 3, where R is the radius of the sphere, and the
latter as R %, the sphere is viable and will grow provided it
is large enough. By solving the diffusion equation with
the appropriate spherical boundary condition, and with
the incorporation of these ideas, a rate equation for the
radius of such a sphere can be deduced [36,14]:

a

R

4R _D

i R (14)

D is the diffusion coefficient, A is the relative supersatura-
tion, and « is the interface thickness. A is expressed in
terms of the equilibrium compositions of the coexisting
minority (droplets) and majority phases, and the overall
composition of the sample, ¢, by

q‘)maj—'(po
¢maj-—¢)min )
For R >a/A in (14), dR /dt is positive and the sphere
grows. R*=a/A is the critical radius for the viability of
a droplet. Using the ideas of Binder [37] we can con-

struct a formula for the critical radius as a function of the
temperature of the quench and the supersaturation,

A= (15)
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-1/2
ATl (16)

T.—T
VN | =

R*=2
4

c

Here, a is some statistical segment length for the mono-
mer unit, taken as 5 A for the current work. N was taken
to be 40 for the purposes of this calculation. A similar
formula for R* can be derived from the ideas presented
in the work of Joanny and Leibler [38] on interface
profiles in polymer melts, except the numerical prefactor
is 1 instead of ;. We offer no explanation for this
discrepancy, but used the Binder version simply because
it is the more recent. For the off-critical sample used
here, the temperature at the phase-separation threshold
was 1.63 °C below the critical temperature. This was tak-
en into account when calculating R * from (16) by using
T,—T=1.63°C+AT, where AT is the actual quench
depth below the coexistence curve. There is variable re-
scaling suggested by (14), in that if we rescale the radius
by the critical radius, defining dimensionless radius

__R _RA
R* o«

p (17)

’

and likewise create a dimensionless time 7 in the follow-
ing way,

T=%A3t , (18)
a

we can rewrite (14) as follows:

1

p

dp _
dr (19)

RE

The diffusion constant D has been measured by dynami-
cal light scattering [24] to be 9.0X 10~ !! cm?/s, so that
all quantities needed to effect the variable rescaling of (17)
and (18) are readily available, either by direct measure-
ment or through (15) and (16). Table I lists these quanti-
ties for the R versus ¢ data shown in Fig. 6(a), which were
then transformed into p versus 7 and plotted in Fig. 15.
Notice that under the quench-depth-dependent rescaling
all the growth data essentially collapse onto a universal
curve, with some deviations which we now discuss.

The solid lines in Fig. 15 represent forward integra-
tions of (19) from an early initial time and a variety of ini-
tial sizes (all p > 1, the critical reduced radius). As men-
tioned earlier, this equation models growth of an isolated
sphere in an infinite sea of supersaturated phase, which is
reflected by a constant A. As such, the model functions

TABLE I. Quantities for the scaled p vs 7 data shown in Fig.
15.

AT (°C) A a (A) R* (um)
1.06 0.107 18 0.170
1.00 0.102 19 0.184
0.64 0.073 20 0.276
0.40 0.050 21 0.430
0.15 0.021 23 1.10
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FIG. 15. Plot of the data in Fig. 6(a) with the time axis res-
caled by a?/DA? and the radius axis rescaled by R *. The mod-
el curves are numerically integrated solutions of (19) for various
initial conditions, showing that the monodispersity is a natural
consequence of the free growth of nucleated droplets once the
nucleation has stopped.

clearly show why the radius distribution can be initially
broad, and then, provided no new nuclei are introduced
after some critical time, narrows in time to almost an
ideal & function. Indeed, this is what was observed. For
all quenches there was a light-scattering signal at times
earlier than those for which the radius could be deter-
mined, but this distribution in radii was too broad to
make effective use of (7) as a fitting function. Another
noticeable deviation from the model in Fig. 15 is the ten-
dency of some of the curves, especially those correspond-
ing to the shallower quenches, to roll off at later times.
This effect is due to the interaction of the depletion zones
which surround each sphere, in the real sample. At some
time, depending on the quench depth, the depletion zones
begin to interfere with each other, reducing the effective
supersaturation, A, thereby slowing down the growth of
the spheres. As A decreases, R* increases (a being a
system-dependent parameter only) until it exceeds the ra-
dius of the smaller spheres in the distribution. At some
point a dynamical equilibrium obtains wherein all mo-
ments of the distribution and R * grow at the same ¢!/
rate. This is the LS coarsening regime for a system with
a conserved order parameter. Although the mean radius
could no longer be measured directly via (7), the Porod-
law prefactors plotted in Fig. 9 show the crossover from
free growth of isolated spheres to LS coarsening.

We have modified (14) to allow for A=A(t), a dynami-
cal variable. In our integrations, we have required that A
be coupled to the density of nuclei in the sample, through
the insistence that the total mass of each species be con-
served. As the droplets grow, and their depletion zones
interact, A is reduced in accordance with the conserva-
tion of mass. We have included sample calculations of
this kind in Fig. 16 for deep and shallow quenches, with
parameter values similar to those measured. Clearly for
the shallow quenches the duration of approximately un-
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fettered ¢!/? growth is shorter than for the deeper
quenches, which is consistent with what has been ob-
served in the experiments. We feel that a mechanism of
this sort fully explains the deviation of the experimental
data from the ¢!/? growth law at later times in Fig. 15.

B. Fast mode

We do not have a theoretical description of any
phenomenon which would account for the observed r3/2
growth [39]. By tacitly making the dynamical-scaling as-
sumption, we have observed that the data are consistent
with a two-dimensional structure for the fast mode and a
three-dimensional structure for the slow mode. This is
sensible and satisfying, because we certainly want to
know that we can see the conventional diffusion-limited-
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FIG. 16. Model curves obtained by numerical integration of
(14) in its dimensionless form. The supersaturation A was not
held constant, as in Fig. 15, but was a function of time as de-
scribed in the text. We observe three different regimes. At ear-
ly times we start the integration with spheres of reduced radius
between 1 and 2.5 being created at reduced times times between
1 and 10. During the free-growth period (A constant), the dis-
tribution sharpens and the radii grow like z'/2. As the depletion
zones of the spheres overlap the second regime is entered and
the growth essentially stops. In the third regime, the smaller
droplets evaporate, and the mean radius grows like ¢!/* [only
apparent in (a)]. The initial supersaturation, A(¢ =0), for (b) is
ten times larger than for (a).

growth exponent of 1 for coarsening in the bulk. Furth-
ermore, photomicrography studies of the domain mor-
phology in the late stages (after the spinodal rings have
collapsed into the beam stop of the scattering apparatus)
indicate that the fast mode with its much longer length
scales is associated with the surfaces of the sample con-
tainer. These two facts would indicate that over the com-
plete range of times for which the fast mode is observ-
able, it is somehow related to the surfaces.

We were able to eliminate all gravity-induced instabili-
ties as responsible for the fast mode. Identical experi-
ments under a representative range of conditions were
performed with the sample cell oriented with its glass
windows both parallel and perpendicular to the gravita-
tional field. The results did mot depend on the orienta-
tion qualitatively or quantitatively. Thermocapillarity, or
the motion induced by the temperature dependence of the
surface tension between the two phases, was also discard-
ed as a possible explanation for the fast-mode dynamics.
An estimate can be made of the maximum velocity possi-
ble for fluid parallel to an interface, due to a thermal gra-
dient and its attendant gradient in surface tension [40].

1 do , dT
=92 ,87 20
Umax = 4 T dx 20)

Here 7 is the viscosity (about 300 cp), o is the interfacial
tension between the coexisting phases, k is the approxi-
mate maximum domain thickness, taken to be 100 um for
the purposes of this calculation and the thermal gradient,
dT /dx, parallel to the glass, was assumed to have a max-
imum value of 0.1°C/cm. As there was no radial gra-
dient in the turbidity for shallow quenches, we deter-
mined an upper limit on the temperature gradient to be
the size of the temperature jump for these smallest
quenches. A maximal estimate for do /3T can be made
by differentiating (18) from Ref. [38]:

172

T,—T
, (21)

T,

c

3o ksT
oT \/NazTC

where the equality holds in the limit AT <<1, and a, N,
T, and kg are the monomer length, polymerization index,
temperature, and Boltzmann’s constant, respectively.
Using our deepest quench as an estimate for T — T, we
find that do /dT <5X 10~ %, meaning that v, <5X107*
cm/sec=0.05 um/100 s, which is several orders of mag-
nitude smaller than any interface velocities we observe.

By eliminating certain processes as responsible for the
fast-mode growth, and observing that the fast-mode
growth was associated with the sample windows, we have
deduced that there was a preference for the surface on
the part of one of the constituent species, that is, there
was a wetting effect responsible for this novel and ex-
tremely fast growth.
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FIG. 11. A series of photomicrographs of the fast-coarsening structure. At times greater than 400 s the coexistence of the two
different length scales corresponding to interface and bulk growth is visible. The magnification in all the pictures is the same and the
length of the bar in the first picture is 50 um.



