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Nonlinear analysis of a grating free-electron laser
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A two-dimensional nonlinear model of a grating free-electron laser is formulated that includes the
effects of self-field forces, finite beam emittance, energy spread, and gyromotion of electrons in a guide

magnetic field. The start-oscillation current and enregy spread requirement for operation at either 100
or 10 pm are determined. The designs call for an electron beam of moderate energy ( & 1 MV). The ex-
traction efficiency is determined by numerical simulation. Three different examples are studied in order
to elucidate the nonlinear stage of the interaction. We analyze the examples of an infinitely thin beam, a
finite-thickness beam with laminar flow, and a finite-thickness beam with full transverse motion. For a
thick beam we find the interesting result that the effect of electron gyration about the beam axis is to
enhance the extraction efficiency as compared to that for a beam with laminar flow. The numerical re-
sults for the extraction efficiency are found to be in close agreement with analytical estimates based on a
model in which the electrons are trapped in the slow wave associated with the grating structure.

PACS number(s): 41.60.Cr, 52.75.Ms

I. INTRODUCTION

In a conventional free-electron laser (FEL) the radia-
tion wavelength is given by A, =A, /2y„where A, is the
wiggler period and y, =(1—

U, /c )
'~ is the relativistic

mass factor associated with the axial electron velocity U, .
Based on this formula the operation of a conventional
FEL in the ir region of the spectrum necessitates the use
of multimegavolt electron beams. In practice, for volt-
ages in excess of 1 MV the accelerator and the attendant
shielding represent a large fraction of the cost and bulk of
a FEL. Consequently, alternative sources of ir (and
shorter-wavelength) radiation are under consideration in
a number of laboratories. An example of this is a free-
electron source of radiation based on the Smith-Purcell
mechanism [1]. In this device an electron beam is made
to pass in close proximity of the surface of a metallic
grating. Interaction of the electron beam with the slow-

wave structure of the grating leads to bunching of the
beam and amplification of radiation [2—20]. Since only
moderate energy (less than a few MeV) electron beams
are required, the grating FEL has the potential of devel-
oping into a truly compact, tabletop source of ir radia-
tion.

At the Naval Research Laboratory a grating FEL ex-
periment is underway whose ultimate goal is the genera-
tion of high-power radiation in the near-ir windows in the
atmosphere. A key element of this experiment is the use
of state-of-the-art, high-brightness electron beams ob-
tained from novel cathode materials and designs.

A schematic of the experimental setup, also known as
the orotron configuration [2]; is shown in Fig. 1. A virtue
of this configuration is that the electron beam may be
made to interact with a spatial harmonic whose group ve-

locity is nearly zero and consequently the energy drained
from the radiation field is reduced. This is illustrated in

Fig. 2, which indicates schematically one of the infinite
set of dispersion curves for an open resonator formed by
two reflecting surfaces, one of which is a plane mirror
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FIG. 1. Schematic of an open resonator configuration for a
grating FEL oscillator. Space between upper mirror and upper
surface of grating is referred to as region I; region II refers to
the slots in the grating.
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FIG. 2. Schematic of a dispersion curve for the grating FEL
oscillator in Fig. 1. The axial wave number is denoted by k, .
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and the other is a periodic slow-wave structure such as a
grating.

In this paper we shall formulate a nonlinear model of a
grating FEL with allowance for electron-beam emittance
and gyromotion in a guide magnetic field. We shall make
use of the model to obtain design parameters for experi-
ments aimed at the generation of 100- and 10-pm radia-
tion using a &1-MV electron beam. The nonlinear ex-
traction efficiency is determined by means of numerical
simulation of the grating FEL. A principle objective of
this paper is to explore the nonlinear stage of the interac-
tion. To elucidate the nature of the saturation mecha-
nism, we shall describe in detail the simulation results for
the examples of an infinitely thin beam, a finite-thickness
beam with laminar flow and a finite-thickness beam with
full transverse motion. It is found that, for a thick beam,
electron gyration leads to an enhancement of the extrac-
tion efficiency as compared to the case with laminar elec-
tron flow. Assuming that at saturation the electrons are
trapped in the slow-wave structure of the grating, we ob-
tain analytical estimates for the efficiency which are in
close agreement with the numerical results.

II. NONLINEAR FORMULATION

In this section we shall derive a set of equations that
describe the motion of the electrons in the electromagnet-
ic field inside the open resonator and in the presence of
an axial magnetic guide field. The orientation of the
coordinate axes is indicated in Fig. 1, with the origin of
coordinates chosen such that the grooves in the grating
lie in the region x &0. Region I denotes the space above
the grating surface and bounded by the upper mirror and
region II denotes the space in the grating slots, i.e., x &0.
It is assumed that the interaction of electrons with the z
component of the electric field is the dominant rnecha-
nism for amplification of the electromagnetic field. Con-
sequently, only TM modes will be considered herein. The
dependence of the fields on the y coordinate is assumed to
be negligible.

A. Resonator field

The z component of the resonator electric field can be
written as

8,(x,z, t) =E,(x,z)exp( i cot )+c.c. , —

where co=2'/A, is the frequency, A, is the free-space
wavelength, and E,(x,z) represents the spatial variation
of the field. In region I, E, is expressible as a sum of all
the even spatial harmonics representing TMIo„modes:

E,(x,z) =Eosin[k„(D —x)]

E„ is the amplitude of the nth spatial harmonic, with
wave number k„. The wave numbers k„and k„will be
identified in the following.

In order to simplify the analysis it will be assumed
herein that in region II the field corresponds to that of a
TEM standing wave in each slot:

sin[k„(x +b)]
E'(x) Ao

(k b}
(3)

sin(~ns/d ) sin(k„D )E„=2EO
m.ns/d sinh(k„D)

(4)

and from the continuity condition on 8 one obtains the
dispersion relation

cot(k„D)= ——cot(k„b )
d

2

+2 g oth(k, D)
sin(mls/d)

k, ~Is/d

In the following it will be assumed that only the n =1
spatial harmonic is resonant with the electrons and there-
fore the only relevant component of the slow-wave struc-
ture. That is, A, /d =1/P„where P, =U, /c is the ratio of
the axial electron velocity to the speed of light. All other
spatial harmonics are assumed to be nonresonant.

B. Trajectories, beam emittance, and energy spread

The equations of motion of the jth electron, of charge—
e~ and rest mass tn, interacting with the n =1 spatial

harmonic represented in Eq. (2) are given by

dg =2trcP~J /d co,
dt

d y, /e[E, 13,) sinh[k&(D —x )]exp(ig )+c.c. ,dt 2mc

where b is the depth of each groove. The assumption of a
TEM mode in region II is strictly valid for s «d, where s
is the groove width.

In writing Eqs. (2) and (3) the fields have been ex-
pressed in such a way as to automatically satisfy the
boundary condition E,=0 at the metallic boundaries, i.e.,
at the bottom of each slot and at the surface of the upper
mirror. The other relevant components of the elec-
tromagnetic field (i.e., 8 and E„) may be obtained from
Maxwell's equations. It follows from the wave equation
that k =co/c and

k„=[(2trn /d) —(co/c) ]', (n =1,2, 3, . . . ) .

From the continuity condition on E, one obtains

+ g E„cos(2~nz/d)sinh[k„(D —x)],
n=1

(2)

where d is the grating period and D is the distance be-
tween the upper surface of the grating and the upper mir-
ror. In Eq. (2), Eo is the amplitude of the n =0 (i.e., fun-
damental} spatial harmonic, with wave number k„, and

where PJ. =2m.z /d cot. To analyze th—e motion of elec-
trons in the x-y plane it will be assumed that the motion
in this plane is unaffected by the radiation field. The
forces in the transverse plane arise from the self-electric
and the self-magnetic fields plus that due to the axial
guide magnetic field 80. For a strip beam the equations
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of motion of an electron are

dx 2 dp—n~bx =—n,
dt2

dx
dt

(8)

where Qo= ~e~80/ymc is the relativistic gyrofre-
quency in the guide field, y=(1 —v~/c2)
Q&=(4nnb~e.

~ /yy, m)' is the relativistic plasma fre-

quency, and nb is the beam density. %e assume herein
that the electrons are emitted from the surface of a field-
free cathode with no velocity along the y axis. Therefore,
setting the canonical momentum equal to zero, i.e.,
P =ym(dy/dt —Qox)=0, Eq. (8) simplifies to

d x +0 x=O,
dt2

where Q~= Qu —Qb. To solve Eq. (10) we put [22]

x (t) =(X(t)exp[i/(t)+L9],

(10)

and substitute in to obtain equations for X(t) and P(t). It
must be emphasized that in Eq. (11)X and P are the same
for all the electrons and that 0~( 1 and 0 0&2m. are
parameters that may be chosen to represent any desired
distribution of electrons. The equations for X and P are

2X —X "~ +Q'X=O, (12)
dt

X2
dt

(13)

In Eq. (13) e is a constant that may be shown to equal the
beam emittance as follows. Examination of Eq. (11) re-
veals that the trajectories in the plane (x,dx/dt) are ellip-
tical, with a maximum area of m.ev, . This allows one to
immediately identify e as the (unnormalized) emittance of
the electron beam and Eq. (12) then takes the form of the
well-known envelope equation [22]:

2 2V2dX ~2 z

dt X
(14)

EVzx=) 0 cos(Qt+8), (15)

For a matched electron beam X(t)=Xb =const and Eq.
(14) may be solved to obtain X& =(eu, /Q)'~ . Making
use of this, the motion in the x-y plane is found to be
given by

1/2

follows that
~ ( 5v, ) ~

= ( ( v„+v~ ) ) /2v. Next, evaluating
u„and u„with the aid of Eqs. (15) and (16) one obtains

'2
y' nxb ~0

5y, = 1+ (17)

C. Radiated power in the small-signal regime

The small-signal analysis of Eq. (18) proceeds by taking

E, and y, as constants and solving the equation iterative-

ly, assuming that the right-hand side is a small term.
Since this analysis is standard we shall not repeat it here.
From the small-signal analysis of Eq. (18) the power radi-
ated by an electron beam of thickness 2Xb passing at a
distance 5 above the grating is given by [13,20]

d C„~ tviE, i It, [A] I.,
dt 16 Io p, y,

sinh(2k ~Xb )

2k, Xb

Xcosh[2k, (D —X —5)]—1 g(8), (19)

where Iu = l.7 X 10, Ib [A] is the beam current in

Amperes, g (8 ):—d (sin8/8 ) d 8,
co 2& zI.
Vz d 2

where it has been assumed that g is uniformly distributed
in the interval [0,1]. This spread in energy will contribute
to the inhomogeneous broadening of the radiation from
the electron beam.

Equations (6), (7), (15), and (16) form a closed system of
equations for the analysis of the electron dynamics of a
grating FEL. They form the basis for the numerical re-
sults presented in Sec. III. It is useful at this point to
derive the "pendulum" equation [21] for the phase by
neglecting the motion in the x-y plane. Setting
u„=O, u~ =0, and y =y„Eqs. (6) and (7) can be combined
into a single equation for f'
d'@, n le IE,

sinh[k, (D —x )]exp(iP )+c.c . (18)
dt2 y3 md

' J J
ZJ

Equation (18} shows that the motion of an electron con-
sists of synchrotron oscillations which, in the case of the
grating FEL, take place in the potential well formed by
the electric field of the spatial harmonic.

1/2
0

y =g sin(Qt+(9) .0 (16) and I., is the interaction length along the z axis.

It is convenient to relate the half-width of the electron
beam X„=(eu, /Q)'~ to the effective spread in the axial
energy on the beam (5y, )mc, where ( ) indicates an

average over the electron distribution. To do this, we
first note that v, =v —(u„+u }, where v is the electron
speed, v„=dx/dt, u =dy/dt, and 5y, =p, y, 5p„where
5p, is the spread in p, . From the first of these relations it

D. Start-oscillation condition and gain of grating FEL

In the configuration indicated in Fig. 1 a mirror is

placed above the grating to form an open resonator for
the oscillator. If Q denotes the effective quality factor of
the resonator, the start-oscillation condition is expressed

by
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dD„
Q

rad ~ (21)

where C„d, the total radiation energy stored in the opti-
cal cavity, is given by

2 E„2„~ sinh(2k„D )

(22)

Ib [A]=800( —1nR )
L,3 sin2(k„D ) sin(n. s /d)

2k iXb
X . exp[2kt(Xb+5)] .

Slilh 2k X (23)

In writing Eq. (23) the maximum value of g(8), defined
prior to Eq (20), .is taken to be equal to 0 54 Ad. di.tional-
ly, the effective refiectivity R of the optical cavity has
been introduced by making use of the formula relating
the reflectivity to the cavity quality factor [23], i.e.,

Q =coD /c (
—lnR ).

As illustrative examples, Tables I and II list sets of pa-
rameters for grating FEL's using a 100-kV electron beam
to generate radiation at A, =100pm and a —,'-MV electron
beam to generate radiation at A, =10 pm. Several points

where A is the cross-sectional area of the optical cavity.
In writing Eq. (22) the contribution of the field energy in
the grating slots has been omitted. According to our ear-
lier assumptions only the n =1 spatial harmonic is excit-
ed by the electron beam. Noting that k, D )&1, with the
aid of Eq. (4) we identify the first term in Eq. (22) as the
predominant contribution to the expression for
Making use of Eqs. (4), (18), (21), and (22) one obtains an
estimate for the start-oscillation current which is expres-
sible in the form

should be noted in connection with these tables. First,
the start-oscillation current is determined from Eq. (23)
by inserting the value of k„obtained from a solution of
the dispersion relation in Eq. (5). Equation (5) generally
has an infinite number of roots corresponding to all the
discrete modes in the open resonator. The entries in
Tables I and II indicate the lowest start-oscillation
currents corresponding to the roots of Eq. (5) that fulfill
the resonance condition A, /d = 1/p, . Second, the Q value
has been chosen so that the cavity fill time is reasonably
short compared to the expected duration of the electron
beam pulse. Third, the relative energy spread is evalu-
ated with the aid of Eq. (17). Fourth, the function g (8),
defined prior to Eq. (20), is the well-known derivative of
the spontaneous line shape (sin8/8) . The predominant
region of gain is limited to the range 0&8 & m.. Evalua-
tion of B8/M, at fixed v, (for homogeneous broadening)
allows one to estimate the spread in the wavelengths, 5A, ,
of the emitted radiation. That is

5A/A=P. ,(,A/L, ) ,.

Fifth, the output power is given by gIb V, where g is the
extraction eSciency and V is the beam voltage. The ex-
traction eSciency is obtained from the numerical results
presented in Sec. III. Finally, the gain per pass, defined
by

L, d6"„d/dt

Uz @rad

is also indicated in Tables I and II.

III. EXTRACTION EFFICIENCY: NUMERICAL
SIMULATIONS AND ANALYTICAL ESTIMATES

The extraction eSciency g, defined as the fraction of
the electron beam kinetic energy that is converted into
electromagnetic radiation energy, is a key figure of merit

TABLE I. Design parameters for a grating FEL oscillator
operating at 100pm.

TABLE II. Design parameters for a grating FEL oscillator
operating at 10pm.

Wavelength A,

Voltage V
Current Ib
Output power
Gain/Pass G
Interaction length L,
Guide magnetic Beld 80
Beam thickness o. =2Xb
Beam-grating gap 5
Grating period d
Groove width s
Groove depth b
Grating-mirror separation D
Cavity cross-sectional area A
Effective reflectivity R
Cavity quality factor Q
Relative energy spread 5y, /(y —1)
Relative wavelength spread 6A, /k

100 pm
100 kV
125 mA
57.5 W
4%
2 cm
3 T
50 pm
0 pm
55 pm
27.5 pm
27.5 pm
1 cm
1 cm
99%
6x10'
0.2%
0.3%

Wavelength A,

Voltage V

Current Ib
Output power
Gain/Pass G
Interaction length I.
Guide magnetic Seld 80
Beam thickness u„=2Xb
Beam-grating gap 5
Grating period d
Groove width s
Groove depth b
Grating-mirror separation D
Cavity cross-sectional area A

Effective reflectivity R
Cavity quality factor Q
Relative energy spread 5y, /(y —1)
Relative wavelength spread 5A, /A,

10 pm

2
MV

400 mA
186 W
47%
4 cm
10 T
10 pm
0 pm
9 pm
4.5 pm
4.5 pm
1 mm
1 cm
99%
6x 10'
0.03%
0.02%%uo
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of any source of high-power radiation. An estimate for
the extraction efficiency is obtained by considering the
maximum tolerable spread 5v, in the axial velocity and
the corresponding spread in the detuning,

~
58 ~, where 8

is defined in Eq. (20). As usual, the requirement that
~68~ be less than vr leads to an upper bound for the ex-
traction efficiency, which can be expressed in the form

(
2 1)3/2

L, y, —1
(24)

An estimate of the energy spread on the electron beam
may be made by using Eq. (17). The gain in Tables I and
II, which is based on the model of a cold, monoenergetic
beam, is achieved provided this relative energy spread is
small compared to the extraction efficiency indicated in
Eq. (24). The numerical results to be presented verify this
assumption.

In this section we shall discuss the results for the
efficiency obtained froin a numerical solution of Eqs. (6),
(7), and (15) for the electrons comprising the beam and
compare the results with analytical estimates. In subsec-
tion III A a 100-kV beam is used to generate 100 JMm ra-
diation and in subsection IIIB a 1/2 MV beam is em-

ployed to generate 10 pm radiation. Each subsection is
divided into two parts. In Secs. IIIA1 and IIIB1 we
discuss the example of an infinitely thin beam (i.e.,
X& ~0). The example of a finite-thickness electron beam
is, of course, more important since it is closer to reality.
Besides this, however, numerical simulations and analyti-
cal calculations allow us to explore and gain a deeper un-

derstanding of the nonlinear stage of the interaction. The
beam with finite thickness is examined in Secs. IIIA2
and III B 2, with case (a) presenting the results in the case
of laminar flow and case (b) presenting the results in the
case of the beam with full transverse electron motion.

sal in velocity is attained after a time -m/0
y 0 where

Q,„„ois the synchrotron frequency. From Eq. (18),
1/22„ lelE,0

~ 0 '
3

sinh[ki(D —Xo)]
my,

(25)

0.6-

0.4-

0.2-

0

0.3

~o 0.2

0.1

In Eq. (25), Xo is the x coordinate of the beam centroid.
In the examples where the beam is taken to be infinitely
thin, Xo is, of course, the x coordinate of the beam, i.e.,

A. Radiation wavelength A, = 100pm

l. Injinitely thin beam

Figure 3(a) shows the efficiency of generation of 100-
pm radiation as a function of the electric-field amplitude
of the fundamental spatial harmonic for a cold, infinitely
thin electron beam. The efficiency in this case has been
optimized with respect to the detuning e defined in Eq.
(20) to obtain the maximum extraction. For the idealized
case of a monoenergetic, infinitely thin beam, space-
charge efFects are eliminated by using a very small beam
current. Inserting the corresponding numerical values,
the efficiency according to Eq. (24) is 0.72%, which is to
be compared with the code result of 0.63% indicated in
Fig. 3(a).

Following Eq. (18) we have noted that the motion of
the electrons in the radiation field is in the form of syn-
chrotron oscillations in the potential well formed by the
slow wave corresponding to the n =1 spatial harmonic.
The saturation mechanism in this process is similar to
that in the conventional FEL. That is, the maximum ex-
traction efficiency is obtained when an electron loses all
its initial kinetic energy in the potential well and, in the
moving frame, its initial velocity is reversed. The rever-

0

0.4

(c)

0.2

0
0 6

E (kv/cm)

12

FIG. 3. Extraction efficiency g vs amplitude of fundamental

spatial harmonic Eo for X=100-pm radiation using a 100-kV
beam. Beam axis is 25 pm above grating surface. (a) Infinitely
thin beam. (b) Finite-thickness beam with laminar Aow (Xb =25
pm). (c) Finite-thickness beam with full transverse motion

(Xb
——25 pm).
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the distance of the beam from the grating surface.
In optimizing the detuning 8 [defined in Eq. (20)] for

an infinitely thin beam we are, in effect, choosing the fre-
quency ~ such that the electrons at x =Xo undergo —

—,
'

of a synchrotron oscillation in the interaction length L, .
The discrepancy between the value for the efficiency cal-
culated from Eq. (24) and the peak value in Fig. 3(a) is a
reQection of the fact that the electrons are somewhat
smeared in the potential well in which they are trapped.
Since they do not oscillate in the potential well as a "ma-
croparticle, " we expect a reduction in the extraction
efficiency compared to the upper bound given in Eq. (24).
This is consistent with our results.

2. Finite-thickness beam

2~ lelEi .
Q,„„= sinh[k, (D —x)] .

my,

1/2

(26)

is the synchrotron frequency of electrons at a distance x
from the grating surface, Q,„„ois defined in Eq. (25), and
( ) indicates an average over the interval Xo &x &2', .
The quantity F+ may be viewed as the amount by which
the interaction length L, in Eq. (24) is effectively in-
creased, thus leading to a reduction in the extraction
from the electrons located at x &Xo. Similarly, for elec-
trons with x (Xo the extraction is also reduced. For
these electrons the mean synchrotron frequency is greater
than QsynO

(Q,„„)
7

+synO

where ( Q,„„)is the average, over the interval 0 & x & Xo,
of the synchrotron frequency defined Eq. (26). Consider-
ing both groups of electrons together, the extraction
efficiency is expected to be reduced, relative to the
infinitely thin beam case, by F, where

Case (a): electron beam with laminar fiow Figu. re 3(b)
shows the efficiency for a finite-thickness beam with the
gyration of the electrons artificially suppressed in the nu-
merical code. This figure indicates a peak efficiency of
0.36%, which is smaller than the value for the case of the
infinitely thin beam shown in Fig. 3(a).

For a thick beam the synchrotron frequency varies ac-
cording to the x coordinate of the electrons. Consequent-
ly, the inner electrons experience a field that is larger
than the optimal value and they execute more than —,

' of a
synchrotron oscillation. The outer electrons, on the oth-
er hand, experience a smaller field than the optimal value
and thus do not complete the —,'-synchrotron motion
necessary to completely transfer their energy to the radia-
tion field. It is simple to obtain an estimate of the factor
by which the extraction efficiency is reduced. The fre-
quency Q,„„o is greater than the mean synchrotron fre-
quency of electrons located at x & Xo by

Syno

(Q,„„) '

where

F= '(—F +F ) .

X exp(ig )+c.c. , (27)

where 4=k, (D Xo)+ir(Qt—+8) and I„ is the modified
Bessel function of the first kind of order r. Equation (27)
may be simplified by noting that the electrons gyrate
many times as they transit the interaction region; i.e.,
Q/Q, „„o»1,where Q is the gyration frequency defined
following Eq. (10) and Q,„„ois the synchrotron frequency
defined in Eq. (25). Assume that QJ =%i+5$i, where 'Pi
is slowly varying and 5$J is small and rapidly varying.
Upon inserting this into Eq. (27) and averaging with
respect to the rapid oscillations, we obtain

~lelE,
Io(k, (Xs )sinh[k, (D —Xo)]I JPld

Xexp(i+. )+O(Ef )+c.c. , (28)

where the I, is the slowly varying part of the relativistic
factor. Equation (28) shows that for an electron (with
given g) 0) the synchrotron frequency is not identical to
that for an electron located on the beam axis, i.e., the fre-
quency given by Eq. (25). Since Io) 1, the synchrotron
frequency is effectively increased by QIo. This implies
that the electron undergoes more than —,

' of a synchrotron
oscillation in the interaction length, thus transferring less
energy to the radiation and reducing the overa11 extrac-
tion. For the beam as a whole, the extraction efficiency is
expected to be reduced by (Io (k, /Xi, )), where ( ) in-
dicates an average over the random variable g. Inserting
the appropriate numerical values we find
(Io (kigXb)) =1.24, which is close to the ratio of the
peak efficiencies in Figs. 3(a) and 3(c), i.e., ,',",= l. 37.

Inserting the appropriate values, we find F =1.8. This is
fairly close to the value of 0.63/0. 36=1.7 for the ratio of
the peak efficiencies in Fig. 3(a) and 3(b).

Case (b): Electron beam with full transuerse motion
Figure 3(c) shows the extraction efficiency for a warm,
finite-thickness electron beam (Xb =25 p,m). (See Table I
for other parameters in this example. ) The peak
efficiency indicated in Fig. 3(c), g=0.46%, is observed to
be smaller than the peak efficiency for the infinitely thin
beam example in Fig. 3(a) but higher than that for a thick
beam with laminar /tow. This is an important result
which we shall discuss further.

For a thick beam the synchrotron frequency varies ac-
cording to the x coordinate of the electrons. As a conse-
quence of their gyromotion, however, the electrons rotate
about the beam axis and sample the transverse profile of
the electric field as they cross the interaction region.
This tends to restore, to some extent, the extraction to
the value obtained in the case of an infinitely thin beam.
To assess the effect of electron gyration on the extraction
quantitatively, Eq. (15) may be substituted into Eqs. (6)
and (7) to obtain

d'g, rrl e I E,
2'1/ P7ld

X [(—1 )"exp(4 ) —exp( —4 ) ]
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B. Radiation wavelength A. =10pm

l. Infinitely thin beam

Next we examine an example of 10-pm radiation gen-
erated by a —,'-MV electron beam. Table II shows the pa-
rameters for this example. Again, for comparison pur-
poses it is useful to know the extraction efficiency for the
case of the infinitely thin beazn. The peak extraction
efficiency in this case is 0.11%, as indicated in Fig. 4(a),

0.10-

0.08-

0.06-

0.04-

which is to be compared to the value of 0.13% as deter-
mined from Eq. (24).

2. Finite-thickness beam

Case (a): Electron beam with laminar flow. Figure 4(b)
shows the extraction efficiency for the case of a finite-
thickness beam with the gyration of the electrons
artificially eliminated. The peak efficiency is observed to
be 0.068%. In this case, F=1.6, which is in good agree-
ment with the ratio of the peak efficiencies in Figs. 4(a)
and 4(b), namely, ,",,', = 1.6.

Case (b): Electron beam with full transverse motion Fi-.
nally, in Fig. 4(c) we show that the extraction efficiency
for the case of the finite-thickness beam with full trans-
verse motion is 0.093%. Inserting the appropriate nu-
merica1 values, we find (Io~ (k, gXb ) ) = 1. 14, which is in

close agreement with the ratio of the peak efficiencies in
Figs. 4(a) and 4(c), i.e, ,",,', = 1.18.

IV. DISCUSSION AND CONCLUDING REMARKS
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The grating FEL has the potential of developing into a
truly compact, tabletop free-electron source of ir radia-
tion. In this paper we have presented a preliminary study
of a possible set of design parameters for a source utiliz-
ing a 100-kV electron beam to generate 100-pm radiation
and one utilizing a —,'-MV beam to generate 10-pm radia-

tion. The design parameters have been obtained from a
small-signal analysis of the pendulum equation. This
equation describes the synchrotron oscillations of elec-
trons in the slow-wave structure associated with the grat-
ing.

The nonlinear evolution of the grating FEL has been
analyzed with the aid of a particle simulation code. This
code follows the motion of electrons through given fields
and allows an accurate estimation of the nonlinear ex-
traction efficiency to be made. We have made use of an
alternative method of following the transverse motion of
the electrons in the presence of an axial guide magnetic
field and the self-fields which naturally incorporates the
effects associated with the finite emittance of the electron
beam.

We have studied the extraction efficiency of the grating
FEL in detail for three examples. The example of the
infinitely thin beam is found to have the highest extrac-
tion and the example of a thick beam with laminar flow is
found to have the smallest extraction. We have found the
remarkable result that for a thick beam, gyration of the
electrons about the beam axis leads to an enhancement of
the extraction efficiency as compared to the case with
laminar flow. This is due to the fact that electron gyra-
tion tends to effectively reduce the variation of the slow-

wave electric field normal to the grating surface.
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