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Gain saturation in bunched free-electron lasers
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We propose a model of gain saturation in free-electron lasers operating with a bunched electron beam.
A simple method to evaluate the steady-state intensity as a function of the optical cavity length is given
and the result is in close agreement with the intensity measured in the Los Alamos free-electron-laser ex-
periment [B. E. Newnam et al., Nucl. Instrum. Methods A 237, 187 (1985)].

PACS number(s): 41.60.Cr

Simple models, based on reliable physical assumptions,
have allowed a deeper understanding of the basic free-
electron-laser (FEL) mechanisms. This is indeed the case
of the spectral bandwidth in FEL oscillators, which has
been treated by Kim within the context of an appropriate
physical ansatz and with a relatively simple mathematics
[1]. As far as FEL oscillators operating with a nonrecir-
culated electron beam are concerned, the results of Ref.
[1] rely upon the assumption that the FEL gain exhibits a
dependence versus the laser intensity analogous to that of
conventional lasers [2]. Such an hypothesis, put forward
in Ref. [3], has been checked and confirmed by a careful
numerical analysis. In this paper we will show that the
gain-saturation scaling can be extended to the FEL
operating in the pulsed regime, thus including lethargy
and longitudinal-mode-competition effects. We will also
show that the analytical results, for example, for the out-
put intensity, are in close agreement with the experimen-
tal data.

Denoting with I the saturation intensity and with
g =0.85g, the small-signal gain (see Table I for further
specification concerning the symbols), the scaling relation
proposed in the second citation of Ref. [3] reads
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The above formula was justified by drawing a parallel
between the FEL and conventional laser dynamics. The
physical role of the FEL saturation intensity can be easily
understood. In conventional lasers I is the intensity that
halves the population inversion. In the free-electron
laser, the dynamics is governed by the pendulum equa-
tion
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where WV, defined as
V=(k +27/A,)z —wt —¢,; , (3)

is the relative phase between the electron and the electric
field, and
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is the frequency of the slow-motion oscillation, which is
proportional to the electric field E;. It can be shown that
for I =1Ig (see Table I) we have QL /c ==, which means
that at the end of the undulator, the electrons trapped in
closed orbits have traveled halfway around in the phase-
space plane.

TABLE I. Specification of symbols.
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1, = Electron-beam current

Lo | L homogeneous bandwidth
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N = number of undulator periods

A,= undulator period

L,=NA, = undulator length
T ;= radio frequency period
1 k?

FE)=§lJo(&)—J1(O), &=+ T+ k?

Ay
Ao= ™ (1+K?)= laser wavelength
Y

E

myc?

eBy/V2A,
K =———-—= undulator parameter

2mrmgc
45L
8oA

0, =0.456
L o=cT cavity length
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8L = displacement from L

A= NA,= slippage length
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One of the distinguishing features of the FEL in the
bunched regime is the so-called lethargic behavior [4]. If
a FEL is driven by the electron beam produced by a rf ac-
celerator, with a bunch-to-bunch distance given by cT,
one of the constraints necessary for the FEL operation is
that the light pulses and the electron bunches overlap in
the interaction region. This is achieved by imposing the
condition

Lc:Trf% ’ (5)

where L, is the cavity length, and » is an average refrac-
tive index found by the light during one round trip. The
light interacts, with positive gain, with the electrons trav-
eling at a speed lower than c¢. The refractive index n is
then larger than 1 and depends on the strength of the in-
teraction, i.e., from the gain itself. The FEL gain is then
a function of the cavity length and of the slippage dis-
tance, which is the difference between the distance
covered by the light and by the electrons while passing
through the undulator

A=L,(1—B,)=N2, . 6)

A quantitative analytical picture of the dependence of
the gain versus the above parameters is given by the su-
permode (SM) theory [5]. In Ref. [5] it has been shown
that the gain (of the first supermode) can be parametrized
in terms of the cavity shortening 8L from the empty
value (n =1) and in terms of the slippage distance, as
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48L
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with o, being the electron-beam rms length. The value
0, =0.456 is relevant to the synchronism cavity length
for the quasicontinuous electron-beam operation (u, —0).
The above relation is valid in the small-signal limit and
takes into account the cavity shortening due to the
lethargic effect. When the laser intensity grows, the gain
is reduced because of the saturation process. As a direct
consequence, the lethargic effect becomes less important
and the optimum cavity length in saturated conditions is
generally different from that in the small-signal regime.
The behavior is analytically reproduced assuming the fol-
lowing gain function, which should extend the validity of
(1) and (6) to the bunched electron-beam operation and to
the saturated regime, respectively:
iy ] ,
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We have, indeed, that the optimum cavity-length correc-
tion is a decreasing function of the laser intensity
0 = 0, 1—exp(—1)

(12)

and that the maximum gain (in ) scales with the intensi-
ty according to Eq. (1).

The behavior of the laser intensity in steady-state con-
ditions can be obtained by imposing that the net gain
over one round trip is zero, i.e.,

t
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G(6,u.,T) (13)

where T, are the overall round-trip losses.

Once the values of 6 and p, are given, the above equa-
tion implicitly specifies the steady-state intensity, whose
value can be obtained with the help of a pocket calcula-
tor. Figure 1 shows the plot of the steady-state intensity
versus the parameter 6. The values of the other parame-
ters, i.e., the saturation intensity, the u., and the losses,
are the same as those of the Los Alamos FEL experi-
ment, reported in Ref. [6]. The squares refer to the ex-
perimental data reported in the quoted reference. The
agreement between the experimental results and the re-
sults obtained with Eq. (13) is apparent. The data have
been compared imposing that the maxima are coincident,
since there is no information about the absolute cavity
length of the experiment. The different behavior of the
tail of the theoretical curve is probably due to the
difference between the Gaussian longitudinal electron-
beam distribution assumed in the SM theory and the
Lorentzian shape reported in the experiment. Moreover,
Eq. (13) has been obtained assuming the contribution of
the first SM only. Especially in small p. conditions,
when the small-signal gain is nearly the same for all the
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FIG. 1. Steady-state intensity vs 8.
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SM’s (see, e.g., Ref. [3]), Eq. (13) is affected by an error
due to the contribution of all the higher-order SM’s that
should reduce the sharp decrease of the intensity when
the cavity length approaches the nominal value. We
must stress that the result summarized in Fig. 1 is essen-
tially analytical since no fit parameters have been includ-
ed in Eq. (10).

In Ref. [3] other types of gain-saturation formulas have
been proposed,

G/I)=—2 — (14a)

1+1 /1

and

GU/Ig)= £ ,

(14b
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where a has been fixed around 0.14 by fitting the numeri-
cal data. Equations (14) have the advantage of being very
close to the usual expression given for conventional laser
saturation. Equation (14a) holds, however, for the not
strongly saturated regime, while (14b) holds even for
I/I¢>>1. The drawback of (14b) is the extraneous pa-
rameter a, which cannot be accounted for on an analyti-
cal basis. To appreciate better the difference between the
various gain versus intensity scaling relations, we plot in
Fig. 2 a comparison between Egs. (1), (14a), and (14b) and
the numerical solution. The extension of the above for-
mulas to the bunched-beam regime is still given by Eq.
(10), simply redefining the function f(I)in Eq. (11) as

FU/Ig)= (15)

&

GU/Ig)
where G (I /1) is given by Egs. (14a) and (14b). Even if
the agreement with the numerical data is slightly worse
and their range of application is in some way restricted,
Eqgs. (14a) and (14b) have the advantage of providing an
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FIG. 2. Gain vs intracavity intensity for different scaling re-
lations.
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FIG. 3. Steady-state intensity vs 6 calculated from different
gain vs intensity scaling relations, considering a small-signal
gain g =0.15.

explicit expression for the steady-state intensity, which
reads

I,/Ig=—8, (16a)
1 4 172
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In Figs. 3 and 4 we plot the steady-state intensity
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FIG. 4. Steady-state intensity vs 6 calculated from different
gain vs intensity scaling relations, considering a small-signal
gain g =0.3.



45 GAIN SATURATION IN BUNCHED FREE-ELECTRON LASERS _ 8845

versus O obtained from Egs. (13), (16a), and (16b). It is
evident that when the ratio I', /g, becomes large, the pre-
diction of (16a), based on the scaling relation (14a), be-
comes less reliable.

The above expressions show that simple models for
FEL saturation can be developed. The equations we pro-
posed indeed yield a good agreement with both experi-

mental and numerical results. We believe, therefore, that
this type of analysis can be an efficient tool to obtain pre-
liminary information on the FEL saturated behavior.
Furthermore, combining the analysis developed so far
with that of Ref. [1], other important information such
as the bandwidth dependence on the cavity mismatch can
be obtained.

[1]1 K. J. Kim, Phys. Rev. Lett. 66, 2746 (1991). For further
insight on the problem of FEL linewidth, see also A.
Gover, A. Amir, and L. R. Elias, Phys. Rev. A 35, 164
(1987); 1. Kimel and L. Elias, ibid. 35, 3818 (1987); 38,
2889 (1988); B. Levush and T. M. Antonsen, Nucl. In-
strum. Methods Phys. Res. Sect. A 285, 136 (1989); T. M.
Antonsen and B. Levush, Phys. Fluids B 2, 2971 (1990).

[2] W. W. Rigrod, IEEE J. Quantum Electron. QE-14, 377
(1978).

[3] G. Dattoli, S. Cabrini, and L. Giannessi, IEEE J. Quan-
tum Electron. (to be published); Phys. Rev. A 44, 8433

(1991).

[4] W. B. Colson, in Laser Handbook, edited by W. B. Colson,
C. Pellegrini, and A. Renieri (North-Holland, Amsterdam,
1990), Vol. 6.

[5] G. Dattoli and A. Renieri, in Laser Handbook, edited by
M. L. Stitch and M. S. Bass (North-Holland, Amsterdam,
1985), Vol. 4.

[6] B. E. Newnam, R. W. Warren, R. L. Sheffield, J. C. Gold-
stain, and C. H. Brau, Nucl. Instrum. Methods A 237, 187
(1985).



