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In an idealized model of a traveling-wave amplifier operating in the linear regime it is assumed that all
the transients have decayed. This implies that the electromagnetic wave has an amplitude which is con-
stant in time but may vary in space according to the interaction process. In an idealized model of an os-
cillator, the situation is reversed. The amplitude of the electromagnetic wave is constant in space and it
may vary in time. We present a generalized formulation of the interaction in a traveling-wave tube
which includes reflections and spatial and temporal transients. Within this framework it is shown that,
in an amplifier, the reflections cause time variations of the amplitude that are ultimately revealed as a
broadening of the spectrum. The “transition” to an oscillator is also investigated. In the case of an os-
cillator, it is shown that in addition to the well-known temporal transient (lethargy) there is a spatial
transient. This is due to the fact that it takes part of the system length for the “fresh” electrons entering
the oscillator to get bunched. Beyond this transient the amplitude is constant in space, as anticipated by

the idealized theory.

PACS number(s): 41.60.Cr, 52.75.Ms, 41.75.Fr

I. INTRODUCTION

A significant amount of experimental and theoretical
effort [1-17] has been directed toward generation of mi-
crowave power using slow-wave structures. The devices
under investigation fall in two categories: amplifiers or
oscillators. Each of these categories can be divided in
two subcategories corresponding to the way the phase ve-
locity is slowed down: periodic boundary condition or
dielectrically loaded waveguide. In the first case, a very
large number of spatial (Floquet) harmonics are excited
for a given frequency; each harmonic having a different
phase velocity. The system is designed so that the har-
monic which is synchronous with the electrons is dom-
inant. In the other case, a waveguide is partially filled
with dielectric material and, if properly designed, only a
single wave may propagate through. There are advan-
tages and disadvantages to both systems but the interac-
tion process is always the same.

The energy exchange is between an ensemble of elec-
trons and an electromagnetic wave which has a phase ve-
locity that is relatively close to the average velocity of the
particles. A strong magnetic field guides the electrons so
that their motion is mainly longitudinal. As a result, it is
the z component of the electric field (TMy, mode) which
is practically the only one which participates in the in-
teraction process. Moreover, only the wave which is
propagating parallel to the electrons is interacting. The
power flow can be either parallel to the beam if the phase
and the group velocity have the same sign or antiparallel
otherwise, the system being referred to as a forward-wave
or backward-wave device, respectively. Although only
the propagating wave interacts with the electrons, a
backward wave always coexists in the structure because
of the impedance mismatch at both ends. This wave pro-
vides the positive feedback necessary for the operation of
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the system as an oscillator or can be destructive in an
amplifier. Experimental results in the past three years
have led to a theoretical study to understand the effect of
reflections in an amplifier. The outcome of this effort so
far has been (i) to show that the product gain bandwidth
in an amplifier is constant and it equals the bandwidth of
the amplifier when no electrons are injected [12]. (ii)
Asymmetric sidebands may occur in an amplifier due to
amplified noise at frequencies selected by the constructive
interference of the two counterpropagating waves [16].
(iii) It is possible to tune an amplifier in a narrow range of
frequencies by introducing a ‘“quarter-wavelength cavity”
in the interaction region [17]. One of the main con-
clusions of this effort was that the convenient picture that
a system may operate either as an amplifier or as an oscil-
lator is too simplistic and any device operates somewhere
in between these two regimes.

Let us first explain what we mean by the simplistic
models of an amplifier or oscillator. As a linear device,
an amplifier should be designed to operate in such a way
that the time variation of the output signal is determined
only by the generator at the input. For this purpose
three conditions have to be satisfied: (1) the reflected
wave has to be negligible, (2) the electron pulse is very
long (on the time scale we wish the system to be linear),
and (3) the system does not reach saturation. Within the
framework of this idealized picture what remains to be
established is the space variation along the interaction re-
gion. In other words, the amplitude of the electromag-
netic wave is an amplifier is constant in time but it varies
in space according to the interaction process.

If zero reflection is one of the conditions for no varia-
tions in time of the amplitude in an amplifier, it is exactly
the opposite case for an oscillator. In fact the latter is
designed with two “short circuiting” planes that confine
most of the electromagnetic energy; in addition there is
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no external generator. These (idealized) planes impose
some boundary conditions which practically enforce the
spatial variation of the electromagnetic wave. As elec-
trons are injected, the problem is to determine the time
variation of the electromagnetic waves and the electrons.
Within this idealized framework it is assumed that the
amplitude of the electromagnetic wave in an oscillator is
constant in space but it varies in time according to the in-
teraction process.

In practice we always have some reflected wave in an
amplifier and therefore the amplitude cannot be constant
in time whereas in an oscillator, it is expected to have
some variation in space. The goal of this study is to in-
vestigate these deviations from the idealized models of an
amplifier or an oscillator.

For this purpose the equations which describe the dy-
namics of an amplifier and an oscillator are formulated in
a general form. It is shown that subject to the assump-
tions mentioned previously, this general set of equations
simplifies to the set of equations which describe an ideal
amplifier or oscillator, corresponding to the conditions of
operation. Solutions of the idealized models will be
presented. Based on these solutions, it is shown that
reflections may cause a variation in time of the amplitude
of the interacting wave in an amplifier. This immediately
implies that the spectrum of the amplified wave is
broadened, a phenomenon observed experimentally. The
effect of the reflections on the broadening is presented.
Considering a particular system, we show how the regime
of operation depends on the reflection coefficients at both
ends. For simplicity it is assumed that both coefficients
are equal, p. If |p| is small then the amplitude is indeed
constant in time and the system is operating as an ideal-
ized amplifier. Increasing the value of p, the system satu-
rates and the amplitude varies in space and in time. A
further increase of the reflection coefficient causes a zero
spatial gain and all the gain is due to variation in time of
the amplitude. In an oscillator, the variation in space of
the amplitude results from two different processes: the
first is the energy loss through the reflecting planes and
the second is the finite length it takes the radiation field
to bunch the fresh electrons entering the system.

The article is arranged as follows: in the next section
we develop the general set of equations that describe the
dynamics of an amplifier and an oscillator. In Sec. III the
idealized models of an amplifier and an oscillator are
presented. Afterward, the amplifier is examined with
special emphasis on the effect of the reflections on the
gain and spectrum of the output signal. In Sec. V we an-
alyze the interaction in an oscillator.

II. DYNAMICS OF THE SYSTEM

A. General

The presence of the strong guiding magnetic field al-
lows only transverse magnetic (TM) modes to interact
with the beam. In the present analysis we shall limit the
discussion to a single mode, namely, the TM,,. The elec-
tromagnetic field in this case can be derived from the z
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component of the magnetic vector potential that is a solu-
tion of

2—%88_ A (r,Z,I)——’[loJZ(",Z,t) (2‘1)

The current density J,(7,z,¢) has an azimuthal symmetry
and is determined by the motion of the electrons through
J(rz,t)=—e 2

(08[F —ri(D)] 11”5[2 —z(D] .

(2.2)

Since all the motion is longitudinal, r;(#)=r;(0), the dy-

namics of the electrons is a solution of

2d7/l(t)
dt

which represents the one-particle energy conservation.
In these equations V,; denotes the ith electron velocity
and y;=1/[1—(¥,,/c)*]'/%. For a solution of this set of
equations one should know the initial conditions of all
the particles, fields, and the boundary conditions imposed
on the electromagnetic field. The relation between the
magnetic vector potential and all the components of the
radiation field is given by

mc =—eV,;()E,[r=r/(1),z=2,1),t], (2.3)

E,(rzn=c 2fdt ~A,(na,0), 2.4)
1 3 | 8
E (rz,n=c?[dt 37 az Az, (25
1 94,(R,z,1)
Hy(rz,t)=———"""— 2.6)
Ho or

Based on this set of equations [Egs. (2.1)-(2.6)] we shall
determine a set of simplified equations to describe the in-
teraction between electrons and waves in a slow-wave
structure operating either as an amplifier or as an oscilla-
tor.

B. Global energy conservation

Typically the wave present in the system is oscillating
with an angular frequency o which is significantly faster
than all other variations. Furthermore, the spatial varia-
tion is also oscillatory with a wave number %, in other
words, the magnetic vector potential is assumed to have
the form

A, (r,z,t)= A (r,z,t)cos[wt —kz—p (z,1)]

+ A_(rzt)cos[wt +kz—y_(z,1)], 2.7)
where the variation of the amplitudes and phases on z
and ¢ is assumed to be much slower than that of the tri-
gonometric function. Based on this assumption we may
write the Poynting theorem

V-S(r,z,t)+ (2.8)

Wenrz,t)=—J,(r,z,t)E, (r,2,1) ,

9
ot

in an integral form



8822

3 3
S P @0=P_(z0]+ L (W 20+ W_(z1)]

dy(t)
dt

=—mc228[z —z;(1)] (2.9)

where we have ignored terms oscillating at twice the
wave frequency and substituted for J, and E, from Eqgs.
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(2.2) and (2.3). The power and the energy associated with
these two waves may be expressed in the form

2
2k 04 (rzt)
P.(z,n)= —_— .
s(m0=5 2 [arr » (2.10)
and
1 ke || 1°
[2] C
+Zp;21rfadrr Ag(rzn = 1= | == ] , @1

where o denotes the system’s cross section. It is interesting to note that using the macroscopic charge conservation
law, one can immediately write Eq. (2.9) in a form of a conservation law, namely,

dz

ot

where in the first term we can identify the kinetic energy
flux, whereas in the second, the last expression is the total
kinetic energy associated with the motion of the elec-
trons.

From the initial expression for the Poynting theorem
we can write

d d
%2 [Py(z,t)—P_(z,8)]+ EY [Wo(z,t) T W_(z,1)]

=el[E, (z,t)N(8[z —z(1)] Vz,iejx" Y+c.c.],
(2.13)

where E , (z,t) is the z component of the electric field at
the electron’s location (r =r,), i.e.,

CZ

E (z,1)=—
+(z,0) o

w* ’ —jb (20
L —k .
c

A (r=r,zte

(2.14)

It is tacitly assumed here that the beam thickness is small
on the scale of the wavelength and the electric field is uni-
form across its cross section. The notation ¢ ) indicates
averaging over the entire ensemble of NV electrons present
in the interaction region. The phase between the wave
and the particle is denoted by x; and it is given by

X () =wt —kz,(¢) . (2.15)

Next we write the power flowing in the system in terms
of the amplitude of the electric field at the electrons’ loca-
tion. Denoting the cross-section surface by s, we can
write the total average power flowing forward in terms of

_

d d
ar 9z

9 P (z,t)=P_(z,t)+mc? 3 8[z —z,()]V, ()] y;(1)—1] ]

O e,z P+la_ @021+ Bs2la, 2,0 —la_(z, 7 ]=ala, (z,7{8[z—Z() 1B ") +c.c.] .

+9 {W+(z,t)+ W_(z,00+me?S 8z =201y (—1]]=0, (2.12)

[

the amplitude of the electric field (E , ) affecting the elec-
trons as

s
2Z &

P, (z,t)= |E, (z,0)]%; (2.16)
in a similar way, we may write the total electromagnetic
energy stored in the forward wave
W+(z,t)=%eoeeﬂ|5+(z,z)lz : (2.17)
Similar expressions can be written for the backward
wave; both the effective impedance Z 4 and the effective
“dielectric” coefficient €. remain the same. These two
quantities depend on the cold characteristics of the struc-
ture and on the location of the beam in the guide; Egs.
(2.16) and (2.17) should be regarded as their definitions.

C. Simplified equations

With these definitions in mind we may now reformu-
late the equations which describe the dynamics of the
wave and the electrons in the interaction region. Denot-
ing by @, =eE d /mc? the normalized amplitude of the z
component of the electric field in the vicinity of the elec-
trons, Z=z /d, T=tc /d where d is the total length of the
system, we may write the one-particle energy conserva-
tion [Eq. (2.3)] as

%‘yi(‘r)= —Bias (z=7(r,ne M +ee], 18
whereas the global energy conservation yields
(2.19)
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The coupling coefficient « is defined as

el(po/€)'? 1 4% 1

(2.20)

(B), is the average (normalized) velocity of the electrons
at the input. The normalized energy velocity By is given
by

(#0/60)1/2

(2.21)
Zeﬂ'eeﬂ'

Be=
and it is independent of the beam location. The relation
between the amplitude of the forward wave [a, (Z,7)]
and that of the backward wave [a_(Z,7)], in the pres-
ence of the beam, is determined by the reflection
coefficients and the initial amplitude of the forward prop-
agating wave in the absence of the electron beam, which
we shall denote by a,. At any instant 7, the change in the
forward-wave amplitude is reflected from the output end
towards the input according to

[a (1, 7)—aglpoue % . (2.22)

The backward wave is not directly affected by the beam
and therefore propagates towards the input with the
wave energy velocity, and after a delay, 1/, it under-
goes an additional reflection. The contribution of the
reflection at the input is given by

a+(0,'r)—ao=R[a+(1,'r—1/BE)—ao] 5 (2.23)

where R =p; p..e 2% is the total reflection [18] and
phase shift the wave undergoes during its round trip.
This is the condition imposed by the reflections on the
amplitude of the interacting wave.

Since the backward wave propagates unaffected by the
beam, its amplitude satisfies

8 _ 5 9 = V2=
3, BESE la_(z,7)|*=0. (2.24)

Substituting the last relation in the expression for the glo-
bal energy conservation [Eq. (2.19)] and assuming that
a_(z,7) is not identically zero, we can simplify Eq. (2.19)
to read

a d
__+_ —_—
Pr oz

—j)(,-(r)>
or )

a,(z,7)=a{8[z—Z;(7)]B;e

(2.25)

Equations (2.18), (2.23), and (2.25) are the set of equa-
tions that describe the interaction between electrons and
the radiation field in a slow-wave structure. Examining
these equations it is clearly revealed by Eq. (2.23) that the
reflections relate the amplitude of the radiation field at a
given time at the input with the amplitude at the output
at an earlier time, causing, therefore, time variations.
For a solution of this set of equations, one ought to know
the initial conditions, i.e., the location and the velocity of
the electrons at 7=0 as well as the radiation field.
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II1. IDEALIZED MODEL

A. Amplifier

Within the framework of the idealized amplifier, we
may neglect reflections and no variations in time of the
amplitude occur. Both the electrons’ energy and the field
amplitude are varying in space. At a point Z along the
amplifier, the energy of the electrons is varying according
to

d

E_Z—Yi(f)z —1la (Z)eXT+c.c.].

The phase is conveniently redefined to read

Q
g K

where Q=wd /c, K =kd, and [Zd£/B;(£) is the normal-
ized time it takes the ith particle to reach the point Z
starting from Z=0. In order to establish the equation for
the amplitude of the electromagnetic field we average
Eq. (2.25) over a period of time 7, which corresponds to
the average time it takes an electron to cross the
amplifier, i.e.,

o= foldg<ﬁ> .

Assuming that none of the electrons is reflected back to
the input in the interaction process, i.e., B; is not zero for
any i and any Z, we may write

(3.1)

X(@)=x:(0)+ [dg : (3.2)

(3.3)

da . _ «a —ix;(2)
dEa+(Z) TﬁE <e ) b

(3.4)

in which we have tacitly assumed that in the period of
time 7, no variation in the amplitude occurs. Equations
(3.1), (3.2), and (3.4) are the equations that describe the
dynamics of the fields and the particles in an idealized
amplifier. Since the reflections are assumed to be zero
Eq. (2.23) is trivial since a , (0,7)=a, and R =0.

Within the framework of this formulation, the well-
known gain expression as established by Pierce can be
determined as follows. We calculate the third derivative
of a (Z) using these two equations. Neglecting rapidly
oscillating terms we find

4 —J afl <—1 > a,(z)
dz? 27,8 (‘J/,‘Bi)3 *
_akK < Q —jx,»>
= ——K . (3.5
7Bk B; ¢

Assuming that {1/(y;B;)*) varies slowly on the scale of
the interaction length, the normalized growth rate is

found to be
7= | ot < L > - (3.6)
2 2708 (y:B; ) ' )

Accordingly, the total gain is g =20log,o(Le?).
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B. Oscillator

For an ideal oscillator it is assumed that no variations
in space occur and therefore the amplitude of the electric
field affecting the electrons does not depend on the loca-
tion of any individual electron. As a result we replace
a,(Z;(7),7) in the single-particle energy conservation
[Eq. (2.18)] with its value at the input, a , (0, 7), hence

%7’,-(T)= —Bi(7)i[a (O,‘r)ejx‘(f)-kc.c. ].

The reflection coefficients from both ends are unity; in ad-
dition the boundary conditions imply kd =wn. As a re-
sult R =1 and the reflection condition [Eq. (2.23)] reads

a (0,7)=a (1,7—1/Bg) . (3.8)

(3.7

In order to determine the dynamics of the amplitude in
an oscillator we average Eq. (2.25) over the interaction re-
gion:

%a+(0,r)+35[a+(1,1')—a+(0,'r)]

=a(B(re X7y . (3.9

We now substitute the reflections’ condition from Eq.
(3.8):

f;a+(o,f)+BE[a+(o,T+1/BE)~a+(o,r)]

=a(B(re X7y . (310

Expanding in a Taylor series with respect to 1/B8; we
finally get

—jx;(t
Lo 0n=2(g e ).

Equations (3.7) and (3.11) are the equations of an ideal-
ized oscillator. If we compare the equations which de-
scribe the dynamics of the amplitude of the radiation field
in the case of the oscillator [Eq.(3.11)] with the corre-
sponding one in an amplifier [Eq.(3.4)] we observe that
there is a factor 1 difference. This is due to the fact that
in the oscillator, in the same volume, there are two waves
to which the energy of the electrons is transferred. As in
the case of the amplifier we now calculate the normalized
growth rate. For this purpose we take the second deriva-
tive of Eq. (3.11); neglecting terms which oscillate at
twice the frequency, to find the following expression for
a.(0,7):

(3.1D

) |a+(0,7)

d3+.ax<f,:>

FERER

=_%(B,-(Q*KB,-)26—H">- (3.12)

Assuming that {(B;/y}) does not vary significantly in
time, the normalized growth rate is

‘/3 _ai(ﬁ;) 173

— — 3.13
2 4 y? ( )

=
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At this stage we do not wish to make any further com-
ments on the idealized devices and we continue by deter-
mining the equations which describe the time-dependent
interaction process in an amplifier.

IV. REFLECTIONS IN AN AMPLIFIER

There are two processes which may cause significant
time variations in an amplifier: saturation and
reflections. Saturation occurs when the initial amplitude
of the radiation field is large or the interaction length is
very long. An amplifier is generally designed to operate
below the saturation level. However, if in the design pro-
cess we disregard reflections then until the first reflection
reaches the input the system will probably operate as
designed. But as the first reflection adds to the initial am-
plitude the interaction may saturate. Variation in time
caused by saturation without reflections involved is
beyond the scope of this study.

At present we shall investigate the variation in time
caused by reflections in an amplifier. The process is as
follows: before the electron beam is injected in the struc-
ture the amplitude of the forward propagating wave is
uniform in space and constant in time. Let us denote it
by a,. Ignoring the effects accompanied with the pulse
front we may expect this amplitude to be amplified ac-
cording to the equations determined previously. The
change in this amplitude is propagating with the energy
velocity Vg =cPBg so it will take approximately d /V for
the amplified field to approach the output end and twice
that time for the variation to arrive back to the input (we
may define the bouncing period as 7, =2d /V). The ra-
tio between the output and input amplitude of the for-
ward propagating wave during the first bouncing period

b,= 0

0

T g(a+b) e
0 o | g, o

a
L | 1
(g az bo)% -al ek

T e, (ag#b)e™
a g }——o—[——+
L v+ 1 |
|

_ -jkd
[gvﬂ(a&i- bv aU] e

T+

bwz1 R[gw l(ao+ bv) - aO]

FIG. 1. Diagrammatic view of the reflection process.
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is denoted by g, and it is referred to as the first one-pass
gain. The reflections’ contribution at the input will be
denoted by b, where v is the index that numerates the
bouncing process; therefore it can be considered as a
discrete (normalized) time variable. During the first
period the reflections have no contribution, therefore
by=0. The amplitude at z=1 is g,(ay+bgle /.
Without the beam present the amplitude at this point is
age ~/*4. Therefore only the difference is reflected. After
an additional reflection from the input end we may write
the contribution of the first reflection to the amplitude at
the input as

b1=R[gl(a0+b0)—ao] . (4-1)
Before this reflection arrives (¢ <7, ) the amplitude at the
input is constant—its value being a,. Until the next
reflection arrives the amplitude at the input has two con-
tributions which are constant in time. One from the gen-
erator and the other from the reflection, i.e., ay+b,.
After the vth reflection the amplitude at the input is
a,+b, and at the output end g, ,(ag+b,)e % the
one-pass gain is therefore defined as the ratio between the
output and input amplitude of the forward propagating
wave during the same bouncing period. As a result, the
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contribution of the reflections to the input amplitude
after v+ 1 steps is

b, 1=R[g,+1(agt+b,)—a,] .

This process is summarized in Fig. 1. At the limit of a
very long pulse, with linear gain such that g,=g for any
v, we have for b,=a,R (g —1)/(1—Rg). This implies
the amplitude at the input reads
1-R
1—Rg ’
exactly as predicted by a linear (steady-state) theory.
Furthermore in Ref. [11] it was shown that the denomi-
nator is responsible for the result we mentioned in the In-
troduction, namely, that the gain times bandwidth prod-
uct is constant in an amplifier.

Let us now consider a simple system within the frame-
work of the present analysis. For this purpose we choose

a dielectric-loaded waveguide with the wave number k
given by

4.2)

aytb,=a, (4.3)

2 2 122
(7] P , 4.4)

€e— — ——

k=
c? R}

where R is the radius and p, =2.4048. . . is the first zero

2.65

2.60 T T T T T T
z=0.0d z=02d
260 | S o0 _|
s° 0 ) . o
° .f -.. .z. ‘O 3 K 3 O'.
o o oot wiiat *Cee s34V
Y o255 | 0%e®%® [ ‘ M ] 255 |- of® -
.o~o L) :0.‘. . ‘% e o
ee © Mol S b 8 &
) [ ® 250 |- ® -
.‘.
2.50 L ] 1 2.45 1 1 |
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x
2.70 ; T T 280 T T
z=04d Y 270 | ﬁ z=06d .
ﬁq‘
2.60 < .&C — 260 L Y f B
< J
¥ - » L Y
? % 25 |- % ’ 4
250 | -
(J
?“* 240 | s ! -
240 . 1 1 2.30 | | w 1
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FIG. 2. Phase-space distribution at various locations along an ideal amplifier.
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of the zero-order Bessel function. The other two parame-
ters of our theory, a and [, are easily evaluated in this
case and for a beam moving on the axis are given by

o el (uy/€)'"? 1 d* 1
me®  {el(@/c)RyM,(p,)/p,}? 7R2 (B’
4.5)
and
Bp=— 4.6)
EBph

where the normalized phase velocity is defined as
BphEco/( kc) and we can readily see that if the dielectric
coefficient € is not frequency dependent then the energy
velocity equals the group velocity.

We consider next the operation of an ideal amplifier for
w/2m=8.8 GHz, Ry=1.1 cm, d =20 cm, €=2.6, I =1
KA, (¥ )inpu=2-55, and an input power of 80 kW. Fig-
ure 2 shows the phase-space distribution at different
points along the amplifier. Starting from a uniform dis-
tribution at Z=0 we observe that at Z=0.2 the electrons
which were in phase with the wave have been decelerated
whereas these in antiphase were accelerated. A similar
picture occurs at Z=0.4, however, here we observe that
in addition to the further increase in the energy spread,
there starts a shift in the location of the bottom point of
the distribution. The amplification process starts at this
point—see Fig. 3. As the electrons advance along the
amplifier both processes continue (Z=0.6,0.8) until the
decelerated electrons arrive at the point where they are in
antiphase with the wave and they start being accelerated.
Here saturation occurs—as indicated by the phase distri-
bution at Z=1.0 and also by examining more closely the
gain curve in Fig. 3. This simulation predicts a 32-dB
gain in good agreement with the Pierce gain (34 dB) in
spite the fact that the energy spread is not small (see Fig.
3) as assumed by the latter theory (for further discussion
see Ref. [14]).

Our next step is to examine the variation in time of the
gain due to the reflection process. Without loss of gen-
erality we choose both the reflection coefficients to be
equal, p;,=p..=p. The electron pulse is 100 ns long. In
Fig. 4 we can see how the one-pass gain (squares) and the
total gain (circles) are varying in time; v indicates the in-
dex of the reflection, i.e., v=1 is reflection number one,
etc. The total gain is the ratio between the accumulated
amplitude, of the forward propagating wave, at the out-
put and the initial amplitude (before the electron beam
was injected) at the input of the interaction region. For
small reflection coefficient, p=0.1, we observe that both
gains are relatively stable. The fact that the total gain is
smaller than the one-pass gain is not of particular
significance at this point since this depends on the phase
accumulated by the wave in its round trip as can be seen
from the denominator in Eq. (4.3). However, as the
reflections are increased the input amplitude increases,
saturation is reached and therefore the one-pass gain is
systematically smaller than the total gain. There exists
an intermediary point, p=0.5, where the system acts
very unstably whereas at another p=0.7 the system ap-
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FIG. 3. The variation in space of the gain and efficiency
(upper) corresponding to the same phase distribution presented
in Fig. 2. The average energy of the electrons and their spread
(lower) is also illustrated.

pears to be very stable in spite of the fact that the
reflection is higher. This is a direct result of the phase
dependence of the reflected amplitude. Ultimately at
high reflection (p=0.9) the system reveals an immediate
increase of the amplitude in time associated with practi-
cally zero one-pass gain, indicating that the system is
operating as an oscillator. Notice that whatever the
reflection coefficient was, before the first reflection ar-
rives, the one-pass gain and the total gain are equal.

In order to show the general influence of the reflection
coefficient on the total gain and the one-pass gain we
have averaged out these two quantities over the entire
number of reflections for different values of the reflection
coefficient. The result is illustrated in Fig. 5. We observe
here that the average one-pass gain monotonically de-
creases as the reflection coefficient increases. The aver-
age total gain is stable for small p corresponding to a
linear regime of operation; it slightly decreases for in-
termediary reflections—corresponding to saturation—
and it increases again when the reflection is so high that
the system practically operates as an oscillator. Notice
that in this case the one-pass gain is practically zero.

An additional insight of the physical process can be
achieved by examining the spectrum of the signal as illus-
trated in Figs. 6 and 7. The power in each frequency
component of the signal is normalized to the power in the
central frequency (8.8 GHz). When the reflection is low
(p<0.15) the power in all the other frequencies is 30 dB
below the level of the main signal. For p=0.2 the eigen-
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FIG. 4. The one-pass gain (squares) and the total gain (circles) for various reflection coefficients. Notice how for p=0.9 the one-
pass gain drops to zero and the total gain grows in time indicating the system oscillates.

frequencies of the “oscillator” are less than 15 dB below
the central frequency. The power in the sidebands is in-
creasing monotonically with the reflection coefficient p,
and at p=0.4 they dominate. These plots which corre-
spond to a theoretical calculation can be compared, in
Fig. 8, with fast-Fourier-transform (FFT) pictures of an
amplified signal as reproduced from experimental data
[8,9,13,15]. The bandwidth of the cold pulse is of order
of 1 MHz. It is difficult to make a quantitative compar-
ison since we do not know the reflection coefficient at
both ends but the similarity in the general behavior of the
experimental and theoretical results is apparent.

V. SPACE VARIATION IN AN OSCILLATOR

Part of the energy in an oscillator is extracted by mak-
ing the reflection coefficient of the mirror(s) smaller than
unity. As a result, the amount of electromagnetic energy
J

%lag 1,724 Bl las (1,72 —lag(1—R)+Ra, (1,7—1/Bp) 2 1=ala, (1,7){B(r)e X"y +c.c.].

available for interaction with the electrons decreases.
Since this power is extracted at the ends, it is revealed as
an effective variation of the field amplitude. In order to
illustrate the effect of the spatial variation on the opera-
tion of an oscillator we start by integrating the equation
which describes the dynamic of the amplitude [Egs. (2.19)
and (2.24)] over the entire length of the oscillator:

%|a+(1,7)|2+BE[Ia+(1,7)|2-|a+(0,r)|2]

=ala (1,D{Bi(re M tcec]. 6.1
Here we have assumed that the amplitude is slowly vary-
ing in space so that we replaced its average value with the
value at the output. Next we substitute the reflections’
condition from Eq. (2.23)—rather than Eq. (3.8) in the
case of the ideal oscillator. The result is

(5.2)
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" o o ‘ nonideal oscillator. The second term in the left-hand side
0.0 l l - f o of Eq. (5.3) represents the ‘“‘radiation” loss due to the
0.0 0.2 04 06 0.8 1.0 finite transmission from both ends of the oscillator.

el

FIG. 5. The average one-pass gain and the average total gain
for various reflection coefficients; the average is over all the
reflections during the pulse. As the reflection coefficient in-
creases, the one-pass gain decreases monotonically to zero. In
parallel the total gain remains almost unchanged for small p.
For intermediary values it decreases somewhat, indicating that
saturation occurs. For higher p the system oscillates so that the
total gain increases again.
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The only source of energy in the oscillator is in the
beam. When the mirrors are ideal, all the kinetic energy
converted in radiation power is confined into the volume
of the oscillator. If part of this energy is allowed to flow
out, then self-sustained oscillation is possible only if the
current injected is above a threshold value which depends
on the reflection coefficients. In order to determine the
threshold current we first have to notice that the radia-
tion loss is associated with an exponential decay with a
coefficient [see Eq. (5.3)] Bx(1—|R[*)/(1+|R[?). For
self-sustained oscillation this decay has to be smaller than
the exponential increase due to the interaction—as deter-
mined in Eq. (3.13), i.e.,

0.0
p=0.10 —

-20.0 k ]

-300 —1
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FIG. 6. The spectrum of the output signal for various reflection coefficients (0.05 <p <0.2), normalized to the output signal com-

ponent at the input frequency.
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ponent at the input frequency.
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Therefore the condition for self-sustained oscillation can
be formulated as

2
I>T mc*/e 4
= /e 2 KAB, /13 )(ﬁ)
s | 2 1—|r2 |’
Xea \/_BE1+IRIZ (5.5)

The energy extracted from both ends is one mechanism
responsible for spatial variations but it is not the only
one. The electrons entering the oscillator are unbunched.
The buildup of the bunches is not “immediate” in space
but will take some portion of the interaction length.
After this transient region there will be no variations in
space, provided that the system does not reach
saturation—which will not be considered here. In order
to illustrate this effect, we examine the same system as in
the case of the amplifier; in this case, however, the input
power P, is zero, the pulse length is 50 ns instead of 100
ns in the amplifier, and the “mirrors” at both ends of
have a reflection coefficient p=0.9. The entire pulse was
assumed to consist of 35 000 macroparticles, 512 of those
being at any time in the oscillator. In Fig. 9 we illustrate
the phase space of these electrons which are in the in-

teraction region. In the first 20% of the pulse duration
there is not sufficient electromagnetic energy built up in
the oscillator to affect significantly the electron distribu-
tion (though if one compares, there is a small increase in
the momentum spread). After 40% of the pulse has
passed we clearly see the spatial transient. At this point
in time the constant-amplitude regime is achieved after
about 20% of the length of the oscillator. The normal-
ized momentum spread which at the beginning is less
than 0.06 is now larger than 0.35. Later in time the
bunches continue to grow—the momentum spread is fur-
ther increased approaching 3 at the end of the electrons’
pulse. Although this spread is increasing, the spatial
transient is confined to the first 40% of the interaction
length and beyond this point the system acts as an ideal
oscillator. This is revealed in the upper frame of Fig. 10
where the gain reveals a clear exponential increase in
time. The gain in this case is defined as the total elec-
tromagnetic energy produced divided by the average ki-
netic energy of the beam. Prior to this exponential re-
gime there is a transient which is similar to the transient
revealed by Fig. 3, the difference in the behavior being
due to the fact that in this case the initial field is zero. It
is interesting to notice that this gain is larger as the
reflection coefficient, p is smaller. This is at the expense
of the bandwidth which is decreasing with p. Like the
gain, the momentum spread is larger for smaller p—see
the lower frame in Fig. 10.
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Before we conclude this section we wish to emphasize
the difference between the two transients which occur in
an oscillator. It is well known that the interaction in a
traveling-wave tube within the fluid and linear approxi-
mations can be described as a superposition of three
“eigenmodes” with decaying, constant, and growing am-
plitudes. If an initial field is present, then these steady-
state solutions reveal that before the total field will start
to grow exponentially there will be a transient period
during which all three modes are equally participating
and the amplitude of the field is practically unchanged.
This effect is called lethargy, and is clearly revealed by
Fig. 3 for an amplifier and may be found in Ref. [19] for
an oscillator. However, the transient presented in Fig. 9
is different. It is not a result of the three eigenmodes
mentioned above since in an “ideal” oscillator these
modes have a constant amplitude in space. As we men-
tioned above this is a result of the finite length it takes the
radiation field to bunch the “fresh” electrons.

A nonuniform bunching of the electrons in the interac-
tion region implies that the amplitude of the forward
propagating electromagnetic wave is expected to vary in
space. The variation of the two distributions in space
affects the efficiency of the interaction. The latter is ex-
pected to reach maximum when the two spatial distribu-
tions, of the radiation and of the electrons, are at max-
imum overlap. In very-short-pulse (picoseconds) free-
electron lasers [20], the two distributions tend to
separate, which is destructive to the interaction process.

3.00

2.00

1.00

FIG. 9. The phase-space distribution in an oscillator at various times during the pulse duration. 7 in this case is the time normal-

ized to the total length of the electrons’ pulse.
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0.00 1 ] 1 (2.18), (2.23), and (2.25), which is beyond the scope of this
study.
1000 VI. CONCLUSIONS
% -20.00 L We have shown that the convenient picture of a
~ traveling-wave tube operating either as an amplifier or as
'5 -30.00 an oscillator is too simplistic. In fact we have shown that
o0 ' i these two regimes are the extreme cases and any system
operates somewhere in between, corresponding to the
-40.00 reflection coefficients at both ends, the phase accumulat-
. ed in one round-trip, and the gain. The interaction of a
-50.00 L1 1 ! I - beam of electrons with an electromagnetic wave in a
0.00 0.20 0.40 0.60 0.80 1.00 traveling-wave tube has been formulated so that it in-
T cludes the effect of reflections.
In absence of reflections and saturation, in an
1.20 T T T f amplifier, it is justified to assume that the electromagnetic
wave amplitude remains constant in time. However, even
1.0 - very low reflection coefficients may affect the perfor-
mance of an amplifier if the gain is very high. When
0.80 |- reflections have been included in the analysis, the ampli-
> tude was shown to vary in time. The resulting spectrum
< 060 G e .
was analyzed and the result reveals reasonable similarity
0.40 | with experimental data.
) In an oscillator we have identified two major processes
020 which cause spatial variations. The first is well known,
’ namely, the process by which radiation power is extract-
0.00 ed from the oscillator (a similar effect occurs with the

0.00 0.20 0.40 0.60 0.80 1.00
T

FIG. 10. The gain (upper) and the energy spread (lower) at
various times during the pulse duration. 7 in this case is the
time normalized to the total length of the electrons’ pulse.

For long-pulse (tens of nanoseconds) devices, which the
present study addresses, this effect is probably less severe.
A quantitative description of this effect requires a self-
consistent solution of the governing equations, Egs.

Ohmic losses; this effect is ignored here). The second
process revealed here is related to the fact that it takes
some length until the new electrons, entering the oscilla-
tor, become bunched. As a result only in a part of the in-
teraction region has the beam reached spatial “steady
state”” and therefore the effective length of the interaction
is shorter than the geometrical length.
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