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General construction of force-free current filaments
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A complete construction of cables with vanishing Lorentz self-force is given (solution of the cylindri-

cally symmetric force-free problem for nonconstant a). A key component of the result is that boundary
conditions are intrinsic and cannot be imposed, which implies that many previous solutions of the prob-
lem are in fact spurious. Two force-free current ropes are constructed as an illustration. These results

have applications in magnetic fusion; space physics, solar physics, and astrophysics; force-reduced super-

conducting magnet windings; and superconducting cables for power transmission.

PACS number(s): 52.25.Fi, 41.20.8t

i. INTRODUCTION

The topic of magnetically force-free current filaments
is of central importance in both astrophysics and labora-
tory plasma physics. Currents in plasmas are often ob-
served to evolve into distinct force-free filaments. It has
been suggested by Bostick and co-workers [1—3] that lab-
oratory plasma currents are naturally filamented. This is
further supported by the work of Lerner [4,5] on astro-
physical plasmas. A general plasma description in terms
of current filaments would be very different in application
from the classical magnetohydrodynamic theory. Re-
cently, steps towards such a theoretical description have
been taken by Peratt [6] and the present author [7—9].
The definition and properties of force-free current fila-
ments together constitute one of the main components of
a fiber-theory description of plasmas.

The cylindrically symmetric force-free problem is
equally relevant for superconducting cables [10—12].
Helically wound cables with vanishing Lorentz self-force
would appear to be ideal for transmitting high currents
without the forces that usually lead to quenching or tear-
ing of the conductor [13—15]. Currents in both plasmas
and superconductors can attain their highest value only
when the current How is optimized in this way.

This paper presents a scheme for constructing force-
free states with cylindrical symmetry. The method sheds
light on a subtle point that can lead to serious errors. It
has been standard practice in the past to define force-free
states as solutions of the equation BX (V X8)=0 without
worrying about their physical realization. Nevertheless,
the conventional approach not only unnecessarily com-
plicates the mathematical problem, but also introduces
the possibility of an interpretative error. We recast the
force-free problem in a simple global form, using the fact
that the magnetic field depends explicitly on the spatial
extent of the generating current distribution [14,16]. In
this case, equilibrium is most easily established in terms
of the currents and not via the magnetic fields.

A general formulation of axisymrnetric plasma equilib-
rium in a cylinder has been given previously in Ref. [16].
Those results apply equally to helically wound supercon-

ducting cables. The approach of Ref. [16] is used here to
derive the following result: a helically wound force-free
cable is uniquely defined by its axial current distribution

j,(r). This leads to a general prescription for construct-
ing force-free configurations with cylindrical symmetry.
Note that this paper solves the general problem
poj=a(r)B with nonconstant proportionality factor a.
Two examples are provided as an illustration of the
method.

II. GENERAL CONSTRUCTION
OF FORCE-FREE CURRENTS IN A CYLINDER

It is shown in Ref. [16]how the kinetic pressure profile
of an axisymmetric equilibrium plasma is computed
directly from the components of the current-density-
distribution vector. The force-free case with Vp=0 is
the simplest example of magnetohydrostatic equilibrium
and a concise formulation and complete solution of the
problem is possible.

Assume a current-density distribution in a cylinder of
radius a with both translational and rotational symmetry,
and no radial part, j(r)=(0,je(r),j,(r)) in cylindrical po-
lar coordinates (r, 8,z). With this symmetry, the magnet-
ic self-field is computed via an Ampere integral as

B(r)=go 0, —f "sj,(s)ds, f 'js(s)ds
cyl

.j,(t)f (r) = f ' f sj, (s)ds dt,
t o

a 2

j(r) X B(r)=0 f(r) = —,
' f je(s)ds

(2a)

(2b)

We examine a situation with zero pressure throughout:
according to the convention p(a)=0 at the conductor
boundary, we take p =0 inside the current volume. The
equilibrium equation for p(r) =0 and no externally gen-
erated field (Bo=0) follows from radial force balance [see
Eq. (4) of Ref. [16]]. Defining the double integral f (r),
the equilibrium condition becomes, using the integral
identity in the Appendix,
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The problem posed here is the following: for a given j,
compute the unique je that will produce a force-free
current (in the absence of an externally generated field).
Inverting and differentiating Eq. (2b) shows that

f'(r)
&2f (r)

(3)

This js [Eq. (3)], together with the j, from which it is de-
rived, gives an axisymmetric force-free current distribu-
tion inside a cylinder. It is easy to check that the rnag-
netic self-field inside a cylinder [Eq. (1)] assumes the form

B(r)=po 0, —. , v'2f (r)
f'(r)
j,(r) '

cy1

r a. (4)

The proportionality factor for a general force-free cable
with poj=a(r)B is a function of the radius,
a(r) =j,(r)/&2f (r).

We now derive conditions on the current components
in order for this problem to be well posed. From Eq. (2a),
the condition f(a) =0 shows that a limit must be taken to
define js(a) at the edge in Eq. (3), and exists only when
f'(a)=0. Using the definition of f [Eq. (2a)], f'(a)=0
implies that j, vanishes at the outer radius a (otherwise
the total axial current I is zero). This condition j,(a) =0
is a crucial part of the general solution and implies the
geometrical quantization of force-free currents [14].
Now call the limit of the azimuthal current at the plasma
edge E for convenience [Eq. (3) as r goes to a] and use
1'Hopital's rule to obtain

lim f"(r)
E= limje(r)= E

=f"(a)=K

Substituting j,(a) =0 into the second derivative off from
Eq. (2a) leads to the condition Ij,'(a) = 2naE, wh—ere I
is the total axial current. This is useful because it gives
the value of K =js(a) directly from the axial current, so
it is not necessary to evaluate the limit in Eq. (3) every
time. We also have j&(0)=0 on the axis, which follows
from eoinputing f'(0)=0 and f(0)%0 in Eq. (3). This
condition is required in general (see discussion in the Ap-
pendix of Ref. [16]). The end values of je are therefore

' 1/2

je(0)=0, je(a) = —I .,j,'(a)
27TQ

(6)

III. BOUNDARY CONDITIONS

Standard treatments of the force-free problem contain
a fundamental misunderstanding arising from the bound-

We now summarize the general prescription for con-
structing force-free states with cylindrical symmetry: (i)
choose any differentiable axial current-density profile
j,(r) such that j,(a)=0 (not necessarily the first zero of
j,}; (ii) compute f(r) from j,(r) in Eq. (2a); (iii)j e(r) fol-
lows from Eq. (3}and its end values from Eq. (6). The to-
tal vector j=(0,j~,j, ) defines a force-free current in a
cylinder of radius a with an internal magnetic field given
by Eq. (4). The novelty of the derivation resides in the
boundary conditions, which are discussed next.

ary conditions. Solutions of the differential equation
BX(VXB)=0 actually give the magnetic field of a
force-free current distribution that extends continuously
out to infinity in all directions [17]. (That corresponds to
what is usually called a "force-free magnetic field. ") By
cutting off the solution at some convenience boundary,
the current distribution is also confined to within that
boundary. By altering the generating current distribution
the inagnetic field is thereby altered [14,16,18] and the re-
sulting situation is in most cases no longer force free.
Only very specific boundary conditions can preserve the
force-free character of an initially infinite current distri-
bution.

This result is reflected in the well-known virial theorem
[19—21], which states that there can be no force-free state
in a finite volume. The precise link with the boundary
conditions has not been clear, however, and this has led
to an ambiguity as to what force-free configurations are
possible. In particular, we can indeed have a force-free
cable with finite radius, as long as its length is (theoreti-
cally) infinite.

Up until now, the identification of allowable boundary
conditions has not been recognized as an essential com-
ponent of the force-free problem. The solution given
above contains its own boundary conditions because it is
formulated in terms of the currents and not the magnetic
field. The restriction of allowed solutions by the condi-
tions j,(a) =0 and js(0)=0 is intrinsic to the cylindrical
geometry. These conditions are derived and not imposed,
and correspond to built-in boundary conditions.

The magnetic field inside a force-free cable [Eq. (4)]
satisfies definite (derived) boundary conditions. From Eq.
(1) it follows that for any current distribution, the value
of the axial field component at the edge r =a vanishes,
8,(a)=0. This is a strict condition. Many solutions of
the force-free problem with cylindrical symmetry pro-
posed in the literature do not satisfy 8,(a)=0; they are
consequently incorrect. Other solutions are incomplete
insofar as they do not include the solution boundaries,
which, as shown above, are an essential part of the solu-
tion.

It is instructive to apply the above method to the
Bessel-function model, which is the standard textbook ex-
ample in cylindrical coordinates [21,22]. Starting from
j,(r)=cJ&(kr) and proceeding as outlined in the preced-
ing section, we obtain js(r)=cJi(kr), as expected (see
Ref. [14]). The essential condition j,(a)=0 implies that
the radius of the current must coincide with a zero of Jo,
which in turn guarantees that B,(a)=0. This is the
geometrical quantization condition derived in Refs.
[14,18] and missing from conventional treatments.

Note also the following point. The remarkable ease in
obtaining the general solution [Eq. (4)] ought to be con-
trasted with having to solve a nonlinear second-order
partial differential equation in the conventional treat-
ments (see Refs. [12,13,23] and Sec. 3.5.4 of Ref. [22]).
This facility is a direct consequence of the integral forrnu-
lation of pinch equilibrium given in Ref. [16]. The intrin-
sic boundary conditions, as well as the ease of derivation,
distinguish the present solution from previous treatments
of the problem.
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IV. SOME EXAMPLES

As an application of the above method, we list two
polynomial solutions for force-free currents with cylindri-
cal symmetry in a cylinder of radius a. In general, one
may take any appropriate j, profile, such as, for example,
those given in Sec. 5 of Ref. [16], and immediately write
down a model for a force-free cable.

(a) Axial current distribution of the form j,=c( 1 —g),
g=r/a &1. This is the simplest example of an axial
current-density distribution that goes to zero at the edge.
The appropriate azimuthal current distribution for a
force-free state is computed from Eqs. (2a) and (3) and
the internal magnetic field is computed from Eq. (4). It is
easy to cancel the polynomial factors that are responsible
for the 0/0 behavior in the expressions for both the az-
imuthal current and magnetic-field components. We then
have

( )= 0,
1 ((3 2g) 1—

&2 +2+4(—3g cyl

poca
B(g) (0 g(3 2g) &2(1 g)+2+4( 3g ) y)

The current-distribution profiles for this particular
force-free cable are unusual because the graph of j, is a
straight line. The magnetic-field profiles, however, are
qualitatively similar to the Bessel-function profiles up to
the first zero of Jo (see below).

(b) Axial current distribution of the form j,=c(1—
g ),

g = r la & 1. Starting from an inverse-parabolic axial
current distribution, the azimuthal current distribution
giving a force-free state is computed from Eq. (3), and its
internal magnetic field from Eq. (4)

0 0 —0
1 g2

2 +5—2g
'

cyl

B(g)= 0, ((2—g'), —(1—g')V'5 —2g'
4

, cyl

The magnetic-field profiles are displayed in Fig. 1 with
the Bessel-function profiles included for comparison.
Note that both examples (a) and (b) have magnetic fields
that resemble each other, as well as the Bessel-function
model (see Fig. 1). A key component of the general result
is that force-free cables will be qualitatively similar.

The above polynomial examples have only one geome-
trical force-free state. The existence of higher geometri-
cal states (allowable current radii), as in the Bessel-
function model, is a consequence of the oscillatory prop-
erties of the solution in that case. Because of their
widespread use in the literature, special "layered" solu-
tions may give the misleading impression that force-free
states necessarily possess an infinite number of reversals.

FIG. 1. Magnetic-field profiles for a force-free current distri-
bution with j, ~ a —r, compared to the Bessel functions Jo and
Ji.

That is not true in general. As demonstrated in Refs.
[16,18], field reversal at the edge is due to an antiparallel
externally generated axial field, and is not directly related
to the self-field.

V. CONCLUSION

APPENDIX: AN INTEGRAL IDENTITY

Let A(r) denote the indefinite integral of the azimuthal
current-density distribution [16], so that je(r) =A'(r).
Then

f j e(t) f j e(s)ds dt = f A'(t) f A'(s)ds dt
r t E

=
—,
' [A(a) —A( r) ]

a '2

f je(s)ds
r

(A 1)

Force-free currents with cylindrical symmetry were
constructed following a method for describing pinch
equilibrium introduced previously. The result corrects a
misunderstanding that invalidates many of the published
solutions to the force-free problem. It was shown that a
force-free cable is uniquely defined by its axial current
distribution j,. Explicit expressions for the current-
density distribution, the magnetic field, and the propor-
tionality factor a(r) were provided. Two polynomial ex-
amples were derived as an illustration of the method.
These results revise and extend the standard treatments
of this topic and show that improved insight is possible
by approaching the problem from the current instead of
the magnetic Geld.
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