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Heat waves driven by thermal radiation in tamped flows
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The heating of matter driven by thermal radiation is studied by means of a simple model, under condi-

tions where the material cannot freely expand. Supersonic and ablative regimes are identified when the

radiation field is not in local thermodynamic equilibrium with the matter and, in a later phase, when

equilibrium is reached. The scaling laws characterizing the magnitudes of the heated material are found

for the different regimes. Application to an ion-beam-fusion target is examined and the effect of an ac-

tive tamper that pushes the ablated material is analyzed.

PACS number{s): 52.50.Gj, 47.70.Mc, 44.40.+a

I. INTRODUCTION

Heat waves driven by thermal radiation are an impor-
tant issue in ion-beam-driven inertial-confinement fusion.
They develop in the interaction of the ion beam with a
relatively thick spherical-shell target when the thermal
radiation generated in the ion-beam-heated region im-

pinges on the cold parts, which are optically thick to the
radiation, carrying energy to regions not accessible to the
ions [1—12]. The heat wave may be initially supersonic
or ablative depending on the time evolution of the in-
cident radiation flux [3]. In the first case, the supersonic
heat wave (SHW) develops into an ablative heat wave
(AHW) as the radiation-heated material expands and
drives a shock wave which, after a certain time, catches
up with the heat front and overtakes it [11,13]. In addi-
tion, when the medium starts to be heated by the radia-
tion, its temperature is relatively low and it is in nonlocal
thermodynamic equilibrium (NLTE) with the radiation
field (although local thermodynamic equilibrium may be
assumed for the material). In this case, the characteristic
length over which the radiation flux is absorbed is given
by the photon mean free path [13]. In a later phase, the
heated material becomes hot enough to emit photons it-
self and the medium reaches local thermodynamic equi-
librium (LTE) with the radiation. By this time, the pho-
ton mean free path becomes shorter than the characteris-
tic absorption distance of the radiation flux, which is now
determined by the characteristic scale of the temperature
gradient. In this regime, the heat-conduction approxima-
tion is valid [13]. Thus four possible regimes may be
identified during the heating process: a supersonic heat
wave and an ablative heat wave during the NLTE phase
(SHW-NLTE and AHW-NLTE), and a supersonic and
an ablative heat wave during the LTE phase (SHW-LTE
and AHW-LTE). Several of these modes inay happen
when the radiation heats a cold medium depending on
the radiation flux S, its time evolution, and the density po
and the properties of the material. Moreover, since in the
ablation regime the motion of matter is an essential

feature, the characteristics of such regimes will also be
dependent on the boundary conditions affecting the flow

behind the heat front. For example, if the radiation
penetrates the material through its interface with the vac-
uum [Fig. 1(a)], the heated material can freely expand,
and it will fill the vacuum with a velocity of the order of
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FIG. 1. Ablation driven by thermal radiation emitted by hot
matter. (a) The emitter is far from the cold medium and the ab-
lated flow is free to expand into the vacuum. (b) The emitter is
in contact with the cold medium and it tamps the expansion of
the ablated flow (c) The emitter is in contact with the cold
medium and it expands, pushing the ablated mass towards the
left.
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FIG. 2. Schematic diagram of the beam-foil geometry for a
tampered target for ion-beam fusion.

the sound speed c, . This is the case when the hot medi-
um emitting the radiation is relatively far from the cold
material. Such a situation has been extensively examined
in the recent literature in relation to the indirect driving
of a fusion capsule [6,11, 14—21]. On the other hand, if
the material medium emitting the radiation is in contact
with the cold medium, it may tamp the expansion of the
radiation-heated matter or, furthermore, the emitter can
itself expand, pushing the ablated matter [Figs. 1(b) and
1(c)]. In this case the presence of the emitter imposes
boundary conditions on the ablated How that affect the
properties of the heating process.

In a typical target for ion-beam fusion, the situation
shown in Figs. 1(b) and 1(c) may be present [1—3,5, 10].
The basic process of the implosion of such targets lies on
the fact that, during the interaction, the ion beam
penetrates deeply into the thick wall of the target. The
internal layer, the payload, is accelerated by the thermal
pressure generated in the external layers, the absorber,
where the beam energy is completely deposited (Fig. 2)
[3,22,23]. The internal part of the absorber, the convert-
er, is heated to a few hundred eV, resulting in an optical-
ly thick medium that emits part of the absorbed energy as
blackbody radiation. The external part of the absorber,
the tamper, is constructed of a high-z, high-density ma-
terial that tamps the expansion of the converter and
prevents the radiation loss. The radiation is absorbed and
reemitted by the tamper and the payload and the convert-
er becomes a closed cavity filled with equilibrium radia-
tion [3,4]. The thermal pressure in the converter tamps
the material ablated from the payload and, at later times,
the converter expands, pushing the payload, so that the
ablation process takes place under tamped conditions
such as in the situations described in Figs. 1(b) and 1(c).

Although radiation-driven ablation in tamped Bows is
clearly of interest to ion-beam fusion, not much research
work has been so far devoted to this subject. Indeed,
theoretical work was performed in connection with ex-
perimental studies in which heat waves were generated
using a thermal shock tube [24—26]. In addition, the
scaling laws for the ablation driven by thermal radiation

C=E, T (2)

where the positive constant a and the physical parameter
c, are characteristic of the material. As is well known, if
the pressure p is given by the relationship

p =(y —1)ps, (3)

where y is the enthalpy coeScient, thermodynamic con-
sistency requires a dependence on density in Eq. (2):s- T p ~ where P=(y —1)(a—1) [9,13]. However, in
most cases of interest p « 1 and here it is taken p=O.

With the previous equations and assuming a self-
regulating mechanism for the radiation optical depth
[11,27 —33], the properties on the tamped ablation driven
by thermal radiation are studied. The pressure and the
velocity of the ablation front are determined only by the
radiation Aux S and the matter density pa, regardless of
the heating physical mechanism. Besides, the tempera-
ture of the ablated material is, in general, higher than
that which results in free-How ablation. This effect is in-
creased when the expansion of the converter is con-
sidered (u„&0).

The supersonic regimes are reviewed in Sec. II, the
scaling laws are written, and the characteristic times re-
quired to achieve the equilibrium and to develop into an
AHW are calculated. The ablative regimes under condi-
tions of perfect taming (u „=0)are examined in Sec. III
and the characteristic equilibrium time is calculated. The
evolution of the heating process is analyzed in Sec. IV.
There exists of a critical value of the Aux for which the
transition from the SHW to the AHW occurs just at the
equilibrium time. The effect of the expansion of the con-
verter is analyzed in Sec. V, and the main conclusions are
summarized in Sec. VI.

with perfectly tamped flow (u„=O) were recently ob-
tained by means of simple analytical models for the case
of a totally ionized medium that was not in equilibrium
with the radiation [27].

In this paper the previous scaling laws are generalized
to LTE conditions. The proton mean free path I in a
multiply ionized heated medium is in general a compli-
cated function of both temperature and density. In par-
ticular, I as a function of the temperature T reaches a
minimum at relatively low temperatures [9,13]. This
minimum is in the region where the double ionization be-
gins. For example, for carbon it occurs at T= T =1—2
eV [9]. For higher temperatures (T) T ) the mean free
path increases with temperature [13], and it can be con-
sidered in the usual way by assuming I in the form of a
power law [1,8,9,11—18]:

1 =l c."/p

where c is the specific internal energy, p is the mass densi-
ty, and the positive constants n and m (n, m )0), and the
physical parameter la describe a given material. The
equation of state relating the specific internal energy c
with the temperature T is assumed to be [1,8 —18]:
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II. SUPERSQNIC HEAT WAVES

povo=pv ~

po+povo =p+pv

v
~g

/2 +p psp+ S /ppv p
= v /2 +y s

(4a)

(4b)

(4c)

Since in the supersonic regimes p =po, and besides c &&co,

In order to study the supersonic regime, the heating
process can be considered to take place without an appre-
ciable change in the density, so that the density of the
heated material is p=po. In addition to this, a high-
energy flux S(t ) is assumed to be absorbed by cold matter
of state "0" (Fig. 3), and thermalized so that a relaxed
new state behind the absorption region with high temper-
ature is obtained [25]. The fluid parameters behind and
ahead of the transition zone are assumed to be uniform
and the power input S(t ) is considered to be practically
constant during the transition time of a particle through
the transition zone. With these assumptions the heat
wave can be described by means of the conservation
equations for mass, momentum, and energy in one-
dimensional, integrated form. In the heat-front frame of
reference, they are

vt=l, . (6b)

The self-regulating hypothesis has proved to be true in

many different situations, i.e., matter heated by a laser
[28,29], by electronic thermal conduction [30] by fast
electrons [31,32] and light-ion beams [33],and by thermal
radiation [11,15,19,20]. In any case, the particular mech-
anism of energy transport provides the adequate expres-
sion for the characteristic length l, . In the present prob-
lem l, changes as equilibrium is approached and the radi-
ation transport can then be described using the thermal-
conduction approximation.

Such a relation is found by assuming a self-regulating
mechanism for the opacity of the heated region, which
sets that, at any time t, the thickness of this region is
given by the characteristic length l, over which the radia-
tion is absorbed

f v(r')dt' = l, (r ) . (6a)
0

With the assumed form for the radiation flux S(t ), given
by Eq. (5), and considering Eqs. (1) and (4d), v(t) can be
written as v(t)-(t/r)s. Therefore, dropping the numeri-
cal factor dependent on g, Eq. (6a) yields

S—PUE, —povE (4d) A. SHW-NLTE

is valid, where, for simplicity, the numerical factor
dependent on y was dropped and only the essential scal-
ing was retained. If the medium ahead of the heat wave
is at rest in the laboratory frame of reference, then vo = v

is the characteristic heat-front velocity.
On the other hand, a power law is assumed for the time

variation of the radiation flux:

S=Sp(tlat)~, (5)

Vo

where So is a constant, and ~ is a characteristic time
which is longer than the time required for a particle of
fluid to go through the transition region.

For the purpose of getting the scaling laws relating v

and c. with S and po, a second equation, which must take
into account the physical process of heating, is necessary.

At the beginning of the process, the heating progresses
under conditions in which the matter is not in equilibri-
um with the radiation. Therefore the thickness of the
heated region is determined by the photon mean free path
1 given by Eq. (1). When using Eq. (1), it should be kept
in mind that in the NLTE regime the temperature T of
the media is lower than the radiation temperature, and it
must also be T & T, where, as it was previously men-

tioned, T is the temperature for which the mean free
path l is a minimum. Actually it is not a strong limita-
tion for the model because such a minimum occurs in the
low-temperature region and it can be expected that the
temperature T will be achieved in a time much shorter
than the characteristic time for which the NLTE regime
exits. Thus, from Eqs. (1), (4d), and (6b), the following
scaling relations are found:

=(St /I )
' '"+"p'0 Po

(( /r) + S i(+) —( + )i(+)
0 Po (8)

Pp

FIG. 3. Heat front induced by the absorption of a high flux S
by matter of state "0."

where S=S(t) is given by Eq. (5). These expressions
were recently reported in Ref. [11] and, of course, since
the hydrodynamic motion is not relevant in the super-
sonic regimes, they are the same for tamped or free-flow
heat waves.

The SHW-NLTE exists while the front velocity v is
higher than the sound speed c, = c.' . When v =c', it
develops into an AHW-NLTE. Actually, such a wave
can exist earlier than the SHW-NLTE depending on the
time evolution of the radiation flux [13]. Assuming it in
the form given by Eq. (5) the characteristic time trN for
the transition from the supersonic to the ablative regime
can be calculated from Eqs. (6)—(8):
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4/a ( +()/[4 —
[ ( +))—4]]

S[ a( n+)) 4]/[4 —q[a( +—))—4]]

4( m —1 ) /I 4—
q [a( n + 1 ) —4] IXPO (10)

B. SHW-LTE

If the equilibrium is achieved before the transition to
an AHW-NLTE, the heating process is governed by a
SHW-LTE. As it will be shown later, such a wave can
also be reached from an AHW-LTE provided that
suScient time is available.

Under LTE conditions, the thermal-conduction ap-
proximation is valid and the radiation Aux is proportional
to the temperature gradient [13]:

S=——"1oT VT .

The characteristic length to be used in the self-regulating
condition expressed by Eq. (6b) is given now by the scale
of the temperature gradient:

(12)

By combining Eq. (12) with Eqs. (2) and (4d), the follow-
ing expression for 1T is obtained:

«0/&r1 i s3/[3 —q( n )S(2n / q n

—(3m +2n —1)/[3 —q(2n —1)]Xpp

It is obvious that a SHW-NLTE will exist previously to
the AHW-NLTE only if q &3/(2n —1). Otherwise, the
AHW-NLTE is generated from the very beginning and at
the time tTN it develops into a SHW-NLTE [13]. On the
other hand, it may happen that, for q & 3/(2n —1), LTE
conditions are reached at the time tE~ & tT~ and so, the
SHW-NLTE develops into a SHW-LTE. The charac-
teristic time tE~ is calculated by considering that, when
the equilibrium is settled, S=o T (where o is the
Stefan-Boltzmann constant). Then, from Eqs. (2), (5), and
(6b) it is found that

)4/[4 —q[a(n+ })—4}]]
Eg 7 p 7

—[8+a( 3m +2n —1 ) ) /I 3a —2q [4+a( n —2) ] IXpp (16)

III. ABLATIVE REGIMES

The ablative regimes are characterized by the presence
of a shock wave running ahead of the ablation front. It
was previously shown that such a system can be analyzed
by means of a three-phase model as the one represented
in Fig. 4 [25,27,34]. The ablation front is moving to-
wards the left with velocity Uz and it is preceded by a
shock wave which is penetrating in the unperturbed
phase with velocity U, . The particle velocities in the
shock wave frame of reference are vp and V1 ahead and
behind, respectively. In the ablation front frame of refer-
ence they are v, and v, respectively. The velocities in the
laboratory frame are u„u„and u~ for the unperturbed,
shocked, and ablated phases, respectively. The following
relations can be written:

Us Qc VO Qs U1

Ug —Qs vg =Qg V

(17)

The shock wave generates the initial conditions for the
AHW. If the unperturbed region is at rest, u, =0 and, by
considering a strong shock, the Rankine-Hugoniot equa-
tions yield

p, =[2/(y, +1)]pouo,

p, /po=uo/v, =(y, +1)/(y, —1) . (20)

U = —vs 0 (21)

where p„p„and y, are the pressure, density, and
enthalpy coeScient of the shocked phase.

For the ablation front, the conservation equations of

to an AHW-LTE can be found from Eqs. (5), (14), and
(15):

4/a
)
3a/[ 3a —2q [4+a( n —2 ) ] ]

TE + 00 ~Cs

XS2[4+ ( —2)]/I3 —2q[4+ (
—2)]I

0

4/a)E[8+a(2n —3)]/2a —(m+ ) )T= o~ ~s Po (13)
&o Vg

Then, introducing Eq. (13) into Eq. (6b) and using Eq.
(4d), the scaling laws for the SHW-LTE result as follows:

( r 84/a/I )a/[4+a(n+ ) )]
~s 0~

&o

Pa

XS2a/[4+ a( n+ 1)] (m —1)a/[4+ a(n+ 1)]
Po

U
—

( I ~ /r e4/a)a/[4+a(n+ ( }]o~ ~s

XS[4+a(n —1)]/[4+a(n+ 1)]

[4+a(m+n)]/[4+a(n+1) jPo

(14)

(15)

uc

Us=

Ug

UA =

where S=S(t) is given by Eq. (5). Equation (14) is
equivalent [through Eq. (2)] to the scaling law derived in
Ref. [17]by dimensional analysis.

As in the previous case, the SHW-LTE will exist if
v & c' and the characteristic times tTE for the transition

FICz. 4. Three-phase ablation model. The ablative heat wave
is a weak expansion front with intense energy deposition and a
preceding shock wave.
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mass, momentum, and energy are

p~ ug =pv

p, +p, u, =p+pu

v, /2+y, E, +S/p, v, =v /2+ye,

(22)

(23)

(24)

where c, and c, are the specific internal energies of the
shocked and the ablated phases, respectively, and p, p,
and y are the pressure, density, and enthalpy coefficients
of the ablated phase, respectively, as defined in Sec. I.

Since the AHW is an expansion front, the density will
decrease across the ablation front. That is, p )&p,
(v » v, ). Besides, a large amount of energy is considered
to be deposited in the ablated region, so that
S/p, v, »v„e, . On the other hand, the pressure p is ex-
pected to remain relatively high during the process (the
AHW is a weak expansion front), and so p, ~p. With
these assumptions, Eqs. (22) —(24) are easily solved. At a
first step, Eqs. (22) and (23) are combined:

p [(y + 1 )/2y2( y 1 ) ]1/3pl/3S2/3/s p v2/s (32)

A. AHW-NLTE

As was previously mentioned, the AHW-NLTE can
exist from the beginning of the heating process, or it will
exist after a time of the order of tFN given by Eq. (9) if the
process starts with a SHW-NLTE. By using the photon
mean free path given by Eq. (1}in the self-regulating con-
dition [Eq. (6b)], and combining it with Eq (32.), it is ob-
tained that

sition in the ablated region. They are completely deter-
mined by the boundary conditions on the flow behind the
ablation front (u„=0). However, in order to determine
the density p of the ablated matter and the mass ablation
rate m =pv (per unit of area), the mechanism of energy
deposition must be specified through the self-regulating
condition given by Eq. (6b). From Eqs. (3) and (30) it can
be written

p =p+pv (1 p/p ) . (25) /r )1/(m+n )S(2n —1)/[3(m+n )]P= o

Because p «p, and p, =p were assumed, Eq. (25) implies
that pu «p, or u «c. This is just the condition which
characterizes a weak expansion front [25]. With the pre-
vious assumptions, Eq. (24) leads to the following form of
energy conservation equation:

(n+1)/[3(m+n )]
Po

}I/(m+n)S(2m+1)/[3(m+n)]
0

(m —1)/[3(m+ n )]
Po

(33)

(34)

ys=S/p, v, =S/pv . (26) (t /r) ( + )S( + —
[ ( +m=

From Eqs. (19) and (26) the ablation velocity v is found
(p =p, ):

v =[(y—1)(y+1)/2y](S/p()v() ) . (27)

Moreover, taking into account that u &&u, and u, =0,
another expression for v results from Eqs. (17) and (18):

v =u A
—u, =u A+ [2/(y, + 1)]vo . (28)

Eliminating v from Eqs. (27) and (28),

v()+[(y, +1)/2]u„v() = [(y, +1)(y—1)/2y](S/p()) .

This equation takes into account the state of the fluid
behind the ablation front and it cannot be obtained by di-
mensional analysis. For the particular case of free-flow
ablation, u „=s'/ »vo, u, and Eqs. (28) and (29) lead to
v =c' [Fig. 1(a)]. For tamped flow, however, uA =0 if
the tamping is perfect [Fig. 1(b)], and u „&0 if the tamp-
ing is active [Fig. 1(c)]. Here, uA =0 will be considered
and later, in Sec. V, the effect of active tamper resulting
from the expansion of the converter region in an ion-
beam-fusion target will be examined. By putting uA =0
in Eq. (29), the ablation pressure p and the ablation veloc-
ity u result:

—(m —1)/[3(m+ n )]XPO (35)

))2/(12+qA )(S4/a/ )3a(m+n)/(12+qA )
EA V 0

A /( 12+q A ) —4(m —1)/( 12+q A )
po 7

A =(8—3a)(m+n )
—4(2n —1) .

(36)

B. AH%-LTE

When equilibrium between the radiation and the heat-
ed matter is achieved, the characteristic length over
which the radiation flux S is absorbed is given by Eq.
(12}. From Eq. (30), S =(ps/p(')/ ) l, and using Eq. (2),
the characteristic scale of the temperature gradient is
written as

where, for simplicity, the numerical factors depending on
y, and y in Eqs. (30)—(32) were dropped and only the
essential scalings were retained.

According to Eq. (34), after a certain time the ablated
material will be so hot that the flux cr T =o(s/s, ) em-
itted by the heated region becomes larger than the in-
cident flux S. At this time, tEA, the equilibrium is settled
and the AHW-LTE is reached. Using Eqs. (2), (5), and
(34) the time tF A for which cr T =S is found:

p[(y 1 )2(y+ 1)/2y]1/3pl/3S2/3

v =[2(y —1)iy(y+1)]' '(S/p())' ' .

(30)

(31)

1/2/S4/a )
[()+a(2n —3) ]l2a —(2m + 3)l2

T 0PO s & P (37)

As can be seen, these expressions are obtained regardless
of the particulars of the physical process of energy depo-

Then, as above, the scaling laws for p, c,, and m are ob-
tained from Eqs. (6b), (32), and (37}:
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(I (r/ts4/ )
/[4+ ( + )]P= oo

XS[8+2a( n —2)]/3[4+ a(m + n ) ]

j4+a(n+1)]/3[4+a(m+n)]

4/a/I )a/[4+a(m+n)]po

XS2a( m +2)/3[4+ a(m + n ) ]

X a( m 1 ) /3[4+ a( m + n ) ]
Po

(r /t&4/a)a/[4+a(m+n)]Pl —
p O

XS [ 12+a(m +3n —4) ]/3[4+a( m + n ) ]

—a( m —1 ) /3 [4+a( m +n ) ]
Po

(38)

(39)

(4o)

10

10

W- LTE

t ES

The AHW-LTE can be reached either from a SHW-LTE
after a time of the order of tTE, or from an AHW-NLTE
after a time of the order of tz~ . As will be seen in the
next section, it depends, for a given material, on the in-
tensity Sof the radiation.

10 10
5/ S,

10

IV. TIME EVOLUTION
OF THE HEATING PROCESS

8[3—q(2n —1 ) ]/3( 8 —3a)+q(3m +2n —1 )/3Xpp 7

( &4/a/ )
a( 2n —1)/( 8 —3a)rc o &s

8(2n —1 )/3(8 —3a) —( 3m + 2n —1 )/3~po

(41)

Introducing S, and r, in Eqs. (9), (10), (16), and (36), a
simpler expression for the transition times is found:

t = (S/S )(2n —1)/[3 —q(2n —1)]
Tiy rc c

tES rc c(S/S )[a(n+1)—4]/{4—q[a(n+1) —4]]

)2[4+a(n —2)]/{3a—2q[4+a(n —2)]]tT

t = (S/S )
—A/(12+qA)

EA rc c

(43)

(45)

(46)

These equations show that the space (S, t ) is divided into
four regions which correspond to the four possible re-
gimes of heat waves presented in the previous sections.
For the purpose of illustrating the possible time evolution
of the heating process, the particular case in which the
heated material is aluminum is considered here as a refer-
ence case. The corresponding diagram in the space (S,t )

is shown in Fig. 5. The values for the relevant parame-
ters were taken from Ref. [12], where they were obtained
from fits to equation of state and opacity tables of the
sESAME library and from Ref. [35]. They are as follows:

During the heating of a tamped cold medium driven by
radiation, several of the four regimes previously treated
will be traversed, provided that sufhcient time is avail-
able. Besides, from Eqs. (9), (10), (16), and (36), which
give the times required to reach either the equilibrium or
the transition from a SHW to AHW, it is noted that there
exists a critical value S, of the radiation flux for which

t~N = tEz = tTz =tz„=r, . At that point, the transition
from a SHW to an AHW, or vice versa, occurs simultane-
ously with the achievement of equilibrium,

—(r/I )q(p4/a/~)a[3 —q(2n —1)]/(8 —3a)
c r 0

FIG. 5. Dimensionless times t» /r, and tTE /r, for the
transition from a SHW to an AH% for NLTE and LTE condi-
tions, respectively, and dimensionless times tE& lr, and tz„ /r,
for the equilibrium in the supersonic and in the ablative re-
gimes, respectively. For comparison, the dimensionless time
tE„ /r, for the equilibrium in the ablative regime for free-flow
ablation is shown.

lo =8 X 10 cmg' /(erg/g) /' . Besides, q =0 was as-
sumed, so that in the initial phase of the heating a SHW-
NLTE is generated. If, however, q & 3/(2n —1) then the
slope of the straight line labeled as t Tz becomes negative
and the process starts with an AHW-NLTE. For the
case shown in Fig. 5 S, =500po TW and r, =0.64po
ns (po is in g/cm ). If S &S„ the SHW-LTE does not
occur and the AHW-LTE is achieved after a phase where
the AHW-NLTE takes place. If S)S„the intermediate
phase is a SHW-LTE and the AHW-NLTE never hap-
pens. It is noted that this situation is not much different
for free-flow heat waves. In fact, since the supersonic re-
gimes are not affected by the boundary condition on the
downstream flow, the transition times tT&, tz&, and tTE
are the same for both situations with free and tamped
flows. The only difference is in the transition time tz„
from the AHW-NLTE to AHW-LTE. For comparison,
the corresponding equilibrium time tE~ for free flow is
shown in Fig. 5 with a dotted line. It can be seen that
tE~ & tE„. This is a general result and it is due to the fact
that, in the tamped situation, a higher temperature is
reached in the heated region. This is because, as a conse-
quence of the tamping effect, less energy is drained as ki-
netic energy.

An expression for the critical ]lux S, (with q =0) was

previously found in relation with ion-beam energy con-
version into blackbody radiation, and it was interpreted
that below this critical value the heating is dominated by
the hydrodynamic motion of the converter, resulting in a
relatively low conversion efficiency, 2), [9,12]. The
present results which apply to the radiation-heated region
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(not to the converter) showed a similar behavior of the
flow for S &S, where the ablative regimes dominate the

heating process.
The diagram shown in Fig. 5 indicates the possible evo-

lutions of the heating process depending on the value of
the radiation flux S. Actually, in a typical target for ion-
beam fusion, it does not proceed to a constant S even if
the incident flux Sz is kept constant (Fig. 1). This is be-

cause an increasing reemitted flux o.T will be circulating
between the converter and the heated region. This reem-
it ted flux is small in the NLTE phase and so

S~ =S+O.T =S, but it becomes important as the equi-
librium is approached. In an open geometry, the reemit-
ted flux is lost and then, for inertial-confinement fusion,
the working region should be limited to the NLTE phase
[11]. Such a limitation may be very restrictive because
the available time may be very short, as it is in the case
shown in Fig. 5: r, =0.34 ns (p0=2. 7 g/cm ). This time
can be enlarged by using a low-density foam, but it may
limit the working radiation flux to a very low value.
However, in a ion-beam-fusion target, the converter is ac-
tually a closed cavity where the radiation remains
confined between the external tamper and the payload
[1—5].

Therefore the AHW-LTE phase is the most interesting
regime in which an adequately uniform pressure on the
payload can be obtained. Nonetheless, the initial AHW-
NLTE phase can play a role by compensating, up to a
certain extent, the shortening of the ion range that takes
place in the converter as it is heated by the ion beam
[1—4].

The circulating energy o T for a given incident flux Sz
can be calculated in the AHW-LTE phase from Eqs. (2)
and (39), and from the energy balance:

u~ =(W;/po)'" (49)

where W,- is the part of the beam energy lux deposited in

the converter, and it is around a half of the total beam
energy flux [1—4,23]. A fraction rl, of W,. is converted
into thermal radiation:

vo =u „=(W;/po)'/

v =(S/po)' (S/W~)

(51)

(52)

The relative velocity u =u„—U„between the ablation
front and the payload-converter interface is reduced by a
factor (S/W; )

/ with respect to the perfect tamping case
(u„=O). As a consequence the temperature is increased
in the heated region:

4/a/~ )a/[4+a{m+ n}]S2a{m+2}/3[3+a{m+n}]o0'

(50)

During the NLTE phase Sz —-S and u„~(S/po)'
Thus the perfect tamping approximation is a reasonably
good assumption. But, if N »1 and it becomes W; »S,
then u~ ))(S/po)'/ and the converter behaves as an ac-
tive tamper. It is possible that, when such a situation
takes place, the shock may have enough time to run
through the whole payload. Then, a rarefaction wave is
reflected in the internal surface of the payload and a new
shock is launched when it arrives to the ablation front.
This second shock will encounter material with a velocity
u, AO. In this case, however, u, will be a few times vo

and it only introduces small changes in the numerical fac-
tor of the quadratic term of Eq. (30). Therefore the re-
sults are not essentially different if u, =0 is taken even
when u „))(S/p{})',and then Eqs. (28) and (30) yield

S„=oT~ =S(1+N),
T4/S (r /t )4/[4+ { + }]

0

(47) X a(m 1)/3[4+a(m+n)l
Po

X(W/S)" +"""+' +"']
1 (53)

4/a)a{m+n }/3[4+a{m+n }]
S

XS / [4+a(m+n)]

X 4(m 1)/3[4+a(m+n)]
Po (48)

The factor N has been previously defined in Refs. [16]
and [17] and it is called quality factor for radiation
confinement. For the reference case of an aluminum pay-
load, and for a typical temperature Tz =200 eV in the
converter, it results in N=3 at t =10 ns. That is, only
25%%uo of the incident flux Sz is used to drive the AHW-
LTE and the rest is reernitted into the converter and
remains available to drive the implosion of the payload.
At this time, however, it is not possible to neglect the ex-
pansion of the converter and the previous result must be
modified.

Now, the quality factor N for the radiation confinement
is found to be

)4/[4+ a{m + n }]( / 4/a )a{m +n }/[4+a{m + n }]
0

XS&/3[4+a(m+n)] —4(m —1)/3[4+a(m+n)]
Po

X(W /S)4{2 +}m}/3[4+ { +am}]n (54)

N —( r /$ )( {7/e4/a )a{m + n }/4S 3 /12
o 0 ~s R

—( —)/ ~
—( )/

Po C (55)

By comparing this equation with Eq. (48) it is seen that N
is considerably increased. Introducing Eqs. (47) and (50)
into Eq. (54), an implicit expression for N can be ob-
tained. However, for the limit N »1, it is approximated
by setting S=Sz /N:

V. EFFECT OF THE CONVERTER EXPANSION

In a real target for ion-beam fusion the converter ex-
pands as it is heated by the ion beam, and it pushes the
payload. According to the results of previous models, the
characteristic velocity of expansion u „ is [22,23,36]

In the regime considered, in which the converter expan-
sion is important, the conversion efficiency is not very
high. In general, the fraction of the beam energy deposit-
ed in the converter is converted into kinetic and internal
energies of the converter, and kinetic energy of the pay-
load [9,12]. Thus, as an estimate, it is assumed that
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0.3—0.5. For the previous example, X ~ 25 —50, that
is, one order of magnitude higher than in the case with

u~ =0. This means that only a very small part of the en-

ergy is drained by the AHW-LTE and most of the energy
converted into radiation is being continuously absorbed
and reemitted by the heated region of the payload, redis-
tributing itself and smoothing out the pressure which
drives the payload implosion. It is clear that when this
stage is reached the heat front penetrates very slowly in

the payload and the mass ablation does not play any role
in the implosion.

VI. CONCLUSIONS

The simple model presented in the previous sections
gives a qualitative picture of the main process taking
place when a cold medium is heated by the thermal radia-
tion generated in a hot material which is in contact with

it and does not allow its free expansion. The obtained
scaling laws may be useful in the design of ion-beam-
fusion targets. In such targets an AHW-NLTE is pro-
duced at the beginning if q) 3/(2n —1). Otherwise,
there exists a previous stage with a SHW-NLTE. In any
case, the supersonic phase is, in general, very short, as it
can be seen from Fig. 5 for S &&S,. During the NLTE
stage practically all the absorbed energy is used to drive

the heat wave (Sz -S). As time proceeds and S in-

creases, the mass ablation rate and the ablation pressure
increase, and the heated region becomes hotter as the
equilibrium approaches. At a time of the order of tE~
the equilibrium is settled and the reemitted flux becomes
important. At a later time, the expansion of the convert-
er starts to be appreciable and it contributes to an in-
crease in the reemitted flux. As a consequence, the flux
which drives the AHW is reduced and the heat-front ve-

locity inside the payload is small in comparison with the
bulk velocity of the payload. By this time, the mass abla-
tion is not very relevant, and most of the radiation energy
is continuously absorbed and reemitted from the payload.
Thus the energy is redistributed in the converter, contrib-
uting to the uniformity of the thermal pressure on the
payload.

Mass ablation can play a role before the expansion of
the converter becomes appreciable by compensating the
shortening of the ion range and providing convective sta-
bilization of Rayleigh-Taylor instabilities [3,37].

Finally, it is noted that, due to the general form as-
sumed for the photon mean free path in Eq. (1), the
present model applies to an arbitrary mechanism of ener-

gy deposition provided that the characteristic absorption
length can be expressed as a power law of the density and
the temperature. In particular, it could be applied to sit-
uations where the driving radiation is monochromatic x
rays [11].
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