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We have extended the previous analysis of the quantum inverse problem for the Alfven wave propoga-
tion by incorporating boundary conditions other than the periodic ones. Our approach is that of Sklya-
nin [Func. Ana. Appl. 21, 164 (1986)], which allows one to introduce different boundary conditions at
the two ends. A generalized Bethe ansatz is used to deduce the eigenvalues of the Hamiltonian. An im-

mediate outcome of our analysis is the effect of finite-size corrections, which is essential to study scale in-

variance and conformal properties of the model.

PACS number(s): 52.35.8j, 03.65.—w

INTRODUCTION

In a recent communication we formulated the quantum
inverse problem for the equations describing the propaga-
tion of nonlinear Alfven waves in plasma [1). Starting
from the Lax operator L, the form of the quantum R ma-
trix was deduced, which subsequently was used with the
algebraic Bethe ansatz to construct the excited states of
the model. The equation governing the propagation of an
Alfven wave was a variant of the nonlinear Schrodinger
equation. It can be written as [2]

%'], = l' 4 )
—2C%']4'p%']

As usual, the standard boundary condition chosen was a
periodic one and the volume where the quantization was
performed was a box of infinite volume. On the other
hand, recently it has been observed that scaling invari-
ance and conformal properties of a quantum integrable
model could only be deduced if the space of quantization
is of finite volume [3]. In an elegant communication
Sklyanin [4] observed that it is possible to quantize an in-
tegrable classical model with boundary conditions other
than the periodic one. Effectively, he showed that it is
possible to impose different boundary conditions on the
two ends. These boundary conditions can be introduced
via two functions I( + and K . An immediate outcome
of this formulation is that the system is now quantized in
a finite volume and one can compute all the finite-size
corrections together. Previously, such corrections were
to be calculated for each model separately as demonstrat-
ed by deVega and others [5].

Here we extend our previous formulation to include
boundary conditions other than the periodic one and also
show how finite-size corrections can be calculated for this
particular model. In the following we show how the ma-
trices E+ and E can be constructed with the R matrix
deduced previously. Then in the following section we set
up the modified algebraic Beth-ansatz equations follow-
ing Sklyanin [6]. Lastly, the Hamiltonian is diagonalized
and eigenstates are constructed, which leads to an in-

tegral equation for the eigenvalues of the states, showing
explicitly the effect of the finite-size correction. There,
integral equations are explicitly solved by the Fourier-
transform technique, which finally yields an expression
for the 1/L correction to the excitation energy and hence
the scaling dimension.

FORMULATION

—,'(C%,%~+A, )

xq,&c
+xq, &c

—
—,'(A, +C+t+~) (3)

It was proved in Ref. [1]that the quantum R matrix asso-
ciated with Eq. (3) is given as

9 0 0 0
0 b c 0
0 c b 0
0 0 0 a

(4)

where a, b, and c are functions of the spectral parameter
written as

sinh(u, —uz+rI)
sinh(u, —u~ )

b=1,
c= sinhg

sinh(u, —u~ )

It may be remarked that these are actually the functions

The nonlinear wave equations describing the propaga-
tion of Alfven waves in a plasma are written as

0 „=i%,„.—2C%,%,%,.
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The system is completely integrable classically and the
space part of the Lax pair is written as

%„=L%,
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occurring in the R matrix deduced in Ref. [1]; they are
Il l QP

connected by the simple substitutions, A, =e ', p=e ',
and 1+C/2 —e". This later form of the R matrix will be
more convenient for the present computation.

In the Sklyanin approach, which is actually based on
the factorized scattering matrix formalism with the
reflection coefficient of Cherednik [7], the primary re-
quirement is to search for the two functions K+ and K
which will lead to the different boundary conditions at
the two ends of the space axis. In the following we give
some salient features of the Sklyanin approach, which we
then apply in sections, and the modified algebraic Bethe
ansatz (MABA) is then used to construct the excited
states along with the integral equation for the eigenval-
ues. Our computation explicitly displays the effect of
finite-size correction that is essential for understanding
the scale invariance and conformal properties.

R (A, iz)K' (A, , )R (A, ,2 —il }K (A2)

=K (Ai)R(Ai2 —il)K' (A, , )R(k,i)

(12)

R( —
A, ,i}K+' (A, , )R( —A, ,i—il)K+'(A2}

=K+'(A2)R (
—

A, ,2
—il)K+'(A, , )R ( —A~),

where we have used A, , and A,z as the two distinct values
of the spectral parameter and A, ,2=A, ,

—k2, X,2=X, +A,2,
and the symbol t; stands for the transposition in the space
u;. Introducing the matrix U(A, ) as

U(A, )=T(A, )K (A, )o2T ( —
A, )o2

A(A, ) B(A, )

C(k) D(A, )

SKLYANIN APPROACH

Let us consider the integrable equation (1) on a finite
segment of the space axis. Let T denote the matrix asso-
ciated with Eq. (2}satisfying the relation

BT(A,,x,x )
=L(A, x )T(A., ,x,x ),

with the condition that T(A, ,x,x )=1 where 3. stands
for the unit matrix. It is also pertinent that L satisfies

{L"'(g),L'~'(p)] =[r,L"'(k)+L' '(p)]

X5(xi —x2}

t(A ) =Tr[K+ (A ) U(A )], (15)

which can be used as the generator of the Hamiltonians.
In all the above equations we have always used the nota-
tion that for any matrix C(A, ),

C'(A, )=C(A, ) e1 and C'(A, )=1eC(A. ) .

Sklyanin proved that U(A, ) also satisfies

R (A )2) U'(A, , )R (A i2
—il ) U (A 2)

= U (kz)R (Xi2 —
tr) U'(A )iR (A i)2. (14)

Then the generator of the commuting conserved densities
is given as

where

L'"(A, ) =L(A, ,x i ) 81,
L' '(p)=1L(p, x2),

(8)

So for the specific model under consideration we start
from the R matrix given in Eq. (4} and seek solutions of
Eqs. (12}.

CONSTRUCTION OF K+ AND K

where {a,b j denotes the Poisson bracket between the ele-
ments of the matrices a and b. The matrix function r
depends only on A,

—p and satisfies the classical Yang-
Baxter equation. Here we consider the integrable model
on a finite portion of the real axis [x+,x ]. Let us now
consider three more matrices r+ =[r+(A, +p)], K+, and
K that satisfy the relations

[r K'"K"']=K'"r K"' K"'r K'"—

We now solve Eq. (12}for K+ and K when the R ma-
trix is given by Eq. (4). For this purpose we have seen
that it is convenient to write out these matrices in terms
of basis matrices e," with zero everywhere except at the
(tj)th position. The general R matrix can be written as

R(u) =a(u)g ex' extt+b (u) g e~~ eqq
Jt: p~q

pAq

=Kg}][and K =][gK.
The R matrix given in Eq. (4) satisfies

+C(u) g e e
p~q

(16)

R(A. —p}L"'(A,lL' '(p) —L' '(p)L"'(p)R(A, —p), (10)

hence the generator of mutually commuting conserved
quantities in the case of periodic boundary conditions is

T(A, ) —TrT(A, ) —A(A, )+D(A, ) .

To generalize the situation when K+ and K give the
boundary condition at x+ and x, Sklyanin showed that
K+ and K are to be determined from the following
equations:

Furthermore, we assume K+ to have the diagonal form

2

K+(u)= g Kg(u)e.. . (17)

so that Eqs. (12) result in the following algebraic form:

K+ (u~)K+ (u i )
—K+ (u, )K+ (u2)

K+(uz)K+(ui) —K~+(u2)K+(u&)
b( —u, —u2 —il)C( —u, +uz)

(18)
C( —u, —u2 rj)b( —u, +u2)—
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In the above analysis we have tacitly assumed that E+ is
a diagonal matrix. This assumption stems from the fact
that in the original model of Cherednik where the factor-
ized 5 matrix with reAection was considered, these E+
functions were nothing other than the matrices T'
representing the reAection of either the first, second, etc.
particle from the boundary. It has nothing to do between
two different particles, therefore, it is quite natural that it
will have a diagonal structure in the product space.
Equation (18) is a simple algebraic equation which in the
present case, where a, b, c, etc. are given by Eq. (5), can
be solved immediately to yield

COMMUTATION RULES FOR THE SCATTERING DATA

The commutation rules for the scattering data, given
by Eq. (14), can now be written out in full, and we get

b(u, +uz —q)a(uz —u, )
A (u, )8(uz) = 8(uz) A(u, )

b(uz —u, )a(u, +uz —zl)

b(u, +uz zl—)C(uz —u, )
B(U, )A(uz)a(u, +uz z—l)b(uz —u, )

sinh(u —g/2+(+ )

with a similar expression for E

sinh( —u —
zl /2+ g+ )

(19)
along with

C(u, +uz —rt)
8(u, )D(uz )

a u, +uz —
zl

(20)

C(ui —uz)
D(ui )8(uz)= [C (u, +uz —zl) —a (ui+uz g)—8(u, )]D(uz)

a(u, —uz)+ [a (u, uz —rt) ——cz(u, +uz —zl)]8(uz)D(u, )
a (u, —uz —rl)b(u, +uz —zl)

C(u, —uz)C(u, +uz n)a—(u, —uz) a(uz —u, ) a(u, —uz)

a(u, +uz —zl)b(ui uz) —b(uz —u, ) b(u, uz)—
C(u i +uz —

z) )
+B(u, ) A(uz)

a(u, +uz —zl) b(u, —uz)

L

C(u, —uz)C(uz —u, ) a (u, —uz)

b(uz —u, ) b(u, —u, )
(21)

For our specific problem, the specific values of a, b, and c given in Eq. (5) are to be used. The complicated nature of the
commutation rules Eq. (21) required a different set of scattering data to be defined. This set of data makes the diago-
nalization of the Hamiltonian easier and is of great convenience in setting up the Algebraic Bethe-ansatz equation. Ac-
tually, the original scattering data follow from a four-term commutation rule and it is highly inconvenient to construct
the Bethe eigenstates with the help of these. The latter set of data follows a set of commutation rules [Eq. (24)] similar
in form to the usual ones and can be manipulated easily. This set of data ( A, B,C, D) is defined through the algebraic
adjunct of the matrix u. Mathematically, we write

D(u) —8(u)
U(u) = —C(u) A(u)

=2trzP iz'U(u)R, z(2U)

—C(2u) A (u)+b (2u)D (u) —a (2u)8 (u)
—a (2u)C(u) b(2u)A (u) —C(2u)D(u) (23)

If we now recalculate the commutation relation between D and 8, we get for our present problem

sinhq sinh(2v, + zl )sinh(2vz —g) sinhq sinh(2v i + zl )
D( &i)8( Vz)=8(vi)A(vz) —8(v, )D(v, )

sinh(v, +vz)sinh2vzsinh2v, ' sinh(v, —vz)sinh2v,

sinh(v, z+zl )sinh(v, z+ zl)
+B(vz)D(v, )

smhU„sjnhU„
(24)

With these commutation rules at hand we can now proceed to set up the modified algebraic Bethe ansatz to construct
the excited states. To proceed we observe that from Eq. (15)

t(u) =Tr[K+ (u) U(u)]

=sinh(u +zl/2+/+ ) A (u )+sinh(g+ —u —g/2)D(u)

sinh(2u + zl )sinh( g'+ +u —
zl /2 )

A (u)+sinh(g+ —u q/2)D(u) . —
sinh2u

(25)
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g ( g )
~
0 ) e

—((L I, /2 ) I
0 )

D(g) ~0) i(I.A. )Io)
(26)

Next, we define ~0) to be the vacuum state with the prop-
erty that

where

(30)

iL));+/(A, ;)+8+(A,, )+ g [8(A,,))+8(A,;~)]=2m';,
j=1
(jwi)

hence excited states are created by repeated application
of B(A, , ) on ~0). Let us consider the one-particle state

and consider the effect of operating with r(v) on
B(A,()~0). This will be an eigenstate of r(U) if we zero the
unwanted terms arising out of the operation of commut-
ing A and b with B (A, ) ) [8]. Finally, it leads to

P(A, , ) = —lnsinh(2A, —g),
sinh(a —

A, )

si h( +A, , )

sinh(A, ,
—g)

8(A, ," ) = —ln

Now we can rewrite

N

g 8(A,, )

(31)

sinh(2A )
—ri )sinh(a+ A

&
)

1

sinh(2A, ) )sinh(a —
A, ) )

(27)

also in the following way:
For the two-particle state, we consider
r(U)B(A, , }B(Az)~0). The computation is more complicat-
ed, but quite straightforward, leading to the following
equations for the eigenvalues:

sinh(A, , +A., —ri)

) sinh(A, , +A, +g)
V8(A, , )= Y

(jxi) (j&i)

sinh(2A, )
—ri)sinh(a+ A, ) )

e
sinh(a —

A, ) )

sinh(A, )z
—

ri )sinh(A, ,2
—ri)

sinh(k, z+ ri)sinh(A, (2+g)
(2g)

0= g [8(A,;, )
—8(2A., )

—8(A, ; ) ],
j=N

hence we get

iLA2+P(A, , )+8+,(A, , }+ g 8(A,, )
j=—N

(32)

with a similar expression for A,2. In general, for the n-
particle state B(A,))B(A.2) B(A,„)~0)we get

sinh(2A, „—ri}sinh(a+A, „)n N(A, „z,A,„z)
sinh(a —

A,„),, D(g .,g,. )

where

or

—8(2A, ; )
—8(A, ; ) =2in n;

+ —[P(A,; )8+ (A, ; ) —8(2A, ; ) —8(A, ; ) ]+

N(A,„,X„J) =sinh(A,„.—ri)sinh(X„~ —ri),

D(A,„,A,„)=sinh(A, „,+g)sinh(A, „,+g), where

N

X g 8(A, ; )=—, (33)
j=—N

P(A, }=—ln sinh(2X; —71),

INTEGRAL EQUATION AND FINITE-SIZE EFFECT

sinh(a —
A, , )

8+(A, , ) =ln
sinh a+A, )

(34)

In the usual approach of the quantum inverse-
scattering method (QISM) one converts Eq. (29} into an
integral equation for the density of the eigenvalues A, , in
the interval (A, , A, +dA, ; ) by letting L ~~. However, in
the present situation since the value of L is not infinite we
are to proceed somewhat diff'erently. Several authors
have already discussed this question of finite-size correc-
tion in the older version of QISM to study the effect of
scale and conformal invariance. Taking the logarithim of
both sides of Eq. (29) gives

sinh(A, +g)
sinh(A, —g)

and where a=iq and g=iz. We now utilize Euler-
Maclaurin's sum formulas,

N ) b
f(x, )=—J f(x)dx+ —,'-[f(a)+f(b)]

= —N A a

+ [f'(b) —f'(a)]+O(h )+ . . (35)
12

For convenience, we also define a new variable
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N
+ g 8(AL —AJ) .

2~L =—N
(36)

Z(AI )= + [p(AL )+8~(AI ) —8(2AL )
—8(AL )]

1

2~ 2mL

Obviously, we have

Z(AL =I,;)=iIL,
Z(AI =+(N+r))=(N+r)/L =Z~+r/L,

so we get, using Eqs. (33), (35), and (36),

(37)

Z(AL )= + [p(AL )+8+(AL ) —8(2AL ) —8(AL )]+ f 8(AL(z) —AL(Z))dz

+ [8(AL(Z)+AL(Z +r/L))+8(AL(Z) —AL(Z +rlL))]1

2L

AL(Z +r/L)
+ [8'(AL(Z)+AL(Z +rlL)) —8'(AL(Z) —AL(Z +rlL))] .

12L
(38)

Expanding A,L around kZ, using

AL (Z)=A, „(Z)+ + +g&(Z} g2(Z)
L2 (39)

(1—k /2m )g,p„= [P(A, )+8+(A, ) —8(2A, )
—8(A, }]

1

1+r
[8(A,+q)+8(A, —q)] .

4m.
(45)

So, diff'erentiating with respect to A,„, (40}

dZ(A, „)+ f 8'(A, „(Z)—A, „(Z) )dZ =
m 00

and expanding Z(AL ) about A, „yields

A, „(Z)+ f 8(k„(Z)—A, „(Z))dZ=Z(A,„).
m

For g2,

p„g2=—,'(p„g',)+ [-,'][M(A, ,q) —M(A, , —q)]

X p„g,(q}+(2r +1)g, (q)

r++ —,
'

+
p„(q)

(46)

where 1+M is the inverse of the integral operator
(1 E /2m ). —

and setting

(41)
CONFORMAL INVARIANCE AND FINITE-SIZE

CORRECTION TO ENERGY

dZ(A, )

we obtain

p„(A,}— f 8(y p)p„(p—)dan=A/n, ,
.

277
(42)

where q=A, „(Z} and everywhere we replace A,„.We
can rewrite Eq. (42) as

(1—k/2n )p„=A, /2n. (43)

+ f 8'(A, —p)p„g,d p

with k standing for the integral operator. The use of the
expansion (39) leads also to the following equations for
g, , g2, etc.:

g,p„= f [P(A.)+8+(A, )—8(2A, )—8(&)]
277

Bearing in mind the information obtained earlier, we
now proceed to analyze the scaling behavior of our mod-
el. It is well known that a physical system near a critical
point (or near m =0, in the sense of quantum field
theory) shows such scaling behavior. This property can
be exhibited by studying the behavior of the energy and
momentum associated with the excitation spectrum of
our system. Mathematically speaking,

E, =ED+(2m. /L )d; (energy),

p; =pa+(2n IL)s; (momentum),
(47)

L being the dimension of the system and d; =35+5 is the
scaling dimension and s; =6—5, the spin of the operator
associated with the field operator 4; corresponding to the
excitation.

In the following we proceed to compute the scaling di-
mension by calculating the energy of the excitation spec-
trum. The energy is given as

N+yE=—
—,
' g A2.
j= —(N+y)

or

[8(A,+q )+8(A.—q )]
4m.

(44)

(48)

With the aid of Euler-Maclaurin's sum formulas we
rewrite this as
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Z +r/L
E=—f AI (Z)dZ+ —,'[AL(Z +r/L)]

m

Z +r/L=—f yL (Z)dZ+ —,'AL (Z +r /L )

=—f [A,„+q,(Z)/L+ ] dZ+ ,' j [—A, (Z )+gq(Z )/L+ ] + [A,„+gq(Z )/L . ]+

which can be written as

2A,

,' f—A2p(A)dk+ ,,' f—p(A,)d(A, )dA+ f Ag, (A, )p(A)dl, +—f g2(A, )p(A, )dA,—q
—

q L L —
q

q)(Z ) 2„dA(Z ) 7TU

+—' q + A(Z )+ + l ™+ =Le„+f+ [[e(q)+2(r+1)x' ] ], (49)
L L dZ 2L p

where the notations are as follows:

e =-,' f A p(A)dA, ,

f= ,'q2+ f —A[e(A) r(A. )—]dA,, ,—
q

e(A, }= [P(A, )+8+(A, }—8(2A, ) —8(k)],1+
2'

and in Eq. (49) (A.„,p„)have been replaced by (A, ,p}.

V(A, )= [8(A,+q)+8(A, —q)],1+
2'

(50a}

(50b}

(50c)

(50d)

which gives the density of the excitation when L is
infinite.

We now recall Eq. (50c), which when Fourier
transformed leads to

8(y)+ 8+(y) —8(2y) —8(y)
y)=

2n [ I+I7(y}]
(53)

with the following expressions occurring in the numera-
tor:

8(y) = [2ni—.cosh(my /2)sinhZ —(4n /y ) sinh(yZ) ],1

iy

v, = (2q+2 f AM(Aq )d A, ),
27Tp q —

q

2

1+
[8(A,+q )+8(A, —q )]2'

(50e)

(50f}

EXPLICIT SOLUTIONS

In Eq. (49) we have displayed the correction to the excita-
tion energy due to the finite dimensionality of the quanti-
zation volume. In the following we solve Eqs. (42}, (50},
and (49) to obtain explicit expressions for them.

2n sinh(n —2q)y/2
y sinh(my /2)

8+y=

P(y) =——i n cosh(ye /4)sinhZ
1

iy

sinh(yZ/2) +sinh[( m +Z ) /2]y—4m y cos(ny /2) —1

(54a)

(54b)

(54c)

Let us denote the Fourier transform of a function F(a)
as F(y ),

F(y)= fdae ' ~F(a),

hence from Eq. (42) we obtain

p„(y)= 1
(51)

2ny [1+@(y)]

where K(y) is the Fourier transform of the function
8'(A, )=coth(A, +iZ) —coth(A, —iZ). It is not difficult to
show that

and finally x can be obtained from Eq. (50f}, again by a
Fourier transform. For this purpose note that Eq. (50f)
actually can be written as

(1—k/2m)x'~2= [8(A,+q)+8(&—q)]1/2
2m.

(54d}

However, the Fourier transform of 8(A, +q }+8(A. —q ) is
given as

cosh(qy) [2mi cosh(my l2)sinhZ —(4m /y )sinh(yZ) ],2

ly

so that we get immediately

E(y) =f [coth(A+'iZ) coth(, AiZ—)]e '
d,
—y

=2ni cosh(my /2)sinhZ —(4m. /y )sinh(yZ) . (52)
where

cosh(qy )N(y )

2m iy[l+E(y)]

So, we obtain

p„(y)=2my [1+2vri cosh(ny l2)

X sinhZ —(4m/y )sinh(yZ) ]

N(y) =2ni cosh(ny l2)sinhZ —(4m /y )sinhyZ (55)

so finally we have obtained an explicit expression of all
the functions occurring in the expression for the correc-
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tion of O(1/L) to the excitation energy. It may be noted
that though some of the inverse Fourier transforms may
be computed analytically, yet their expressions are quite
complicated and it is wiser to treat them numerically.
Expression (49) gives the value of the scaling dimension
b, +5 explicitly, when combined with Eq. (47).

DISCUSSION

In our above computation we have shown how it is
possible to develop the quantum inverse problem for non-
linear Alfven waves in a finite region with boundary con-
ditions other than the periodic one, and subsequently
how the finite-size correction to the excitation energy can
be explicitly evaluated. Incidentally, it can be mentioned

that many of the previous attempts to calculate this
correction relied mainly on the energy spectrum calculat-
ed on the basis of quantum inverse method formulated in
the L~ ~ limit. That method used the standard com-
mutation rules of the scattering data rather than the
modified rules due to Sklyanin. On the other hand, it
seems more appropriate to keep L finite from the very be-
ginning, which is possible only in Sklyanin s approach,
and which was adopted in this formulation.
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