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Needle models of Laplacian growth
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We consider a simple model to study the competition and screening between branches of anisotropic
structures growing in a Laplacian field. Growth conditions are found where the symmetry between the
different growing branches is spontaneously broken. In the case of two branches, we obtain an analytic
expression for the ratio of the lengths in the stationary regime as a function of the angle between the two
needles. We also find that a symmetric pattern with n branches is unstable for n )6 in the simplest
diffusion-limited-aggregation-like case. These results are generalized to the more general problem of
dielectric breakdown.

PACS number(s): 68.70.+w, 05.20.—y

I. INTRODUCTION

The different patterns produced by diffusion-limited
growth have been the subject of many investigations in
recent years [1—3]. Anisotropy in the growth rules has
been shown to play a very important role both for the ex-
istence of steady states of the classical deterministic equa-
tions of motion [1] (dendrites) and in the large-scale
shapes of stochastic fractal aggregates [2,3]. In particu-
lar, diffusion-limited-aggregation (DLA) clusters [4] slow-

ly evolve into an n-arm star shape when grown in the
presence of a low-order n fold aniso-tropy [5,6]. This has
suggested the approximation of the shape of such clusters
by n needles [7—9]. As shown by several authors [7—10],
this gives a rather accurate analytic approximation to the
real diffusion field. In this paper, we propose to trans-
form the static needle description into a dynamic one and
consider a model where n needles of different lengths
grow along fixed directions. The growth velocity of a
needle is chosen to be proportional to the flux on its tip.
This simple model allows us to study analytically the
competition and screening between branches and the re-
sulting effect on the shape of the growing cluster. For ex-
ample, it is shown in Fig. 1 that a threefold anisotropy

FIG 1. An aggregate of 10 particles grown with the antenna
method [9,10] (threefold anisotropy) and a simple needle model
of the aggregate large-scale structure.

gives rise to a threefold symmetric structure. Does this
remain true for an anisotropy of higher order? Namely,
does an anisotropy with n-fold symmetry give rise to an
n-fold symmetric structure?

The simplest case is the one where there are only two
competing needles. For a different choice of dynamics, a
similar problem has already been considered by other au-
thors [11,12] who have shown that the symmetry between
the two needles can be spontaneously broken when the
angle between them is small enough. For our model, we
reach the same conclusion and give, in addition, an ana-
lytic expression for the ratio of needle lengths in the
spontaneously broken phase.

We then extend this computation to the case of n nee-
dles. We recover the result that the symmetry between
the different branches is spontaneously broken if the an-
isotropy is more than sixfold symmetric [13]. These re-
sults are then generalized to the case when the velocity of
a needle is proportional to an arbitrary power ri [14] of
the flux at its tip and the critical number of needles for
spontaneous symmetry breaking is determined.

II. THE MODEL

We consider n needles growing from a common center
along fixed directions in the plane (see Fig. 2). The field P
which controls the growth of the needles is supposed to
satisfy Laplace's equation

V /=0.
(P is tneant to represent pressure in viscous fingering, re-
duced temperature, or impurity concentration in dendri-
tic growth and the probability field of the random walker
in DLA [1,2]). The field P is chosen to be zero on the
needles and grows logarithmically with r at large distance
r from the center. These boundary conditions and Eq. (1)
determine P completely for a given geometry of needles.
By definition of the model, the velocity of a needle is
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field P. This is conveniently done [11,12,15,16] by finding
a conformal transformation which maps the exterior of
the unit disk (z plane) onto the exterior of the star-shaped
object (Fig. 3) formed by the n needles (co plane). Such a
transformation read

io. j
e

co =f (z) = Az g 1—
z

ga =2. (4)

54=0

FIG. 2. A simple dynamic model for the growth of the main
branches of an anisotropic aggregate. The potential is equal to
zero on the needles and satisfies Laplace's equation. The
growth of a needle is proportional to the field at its tip, as ex-
plained in the text.

chosen to be proportional to the gradient of P at its tip.
Since the gradient of P is infinite at the geometrical tip of
a needle, this definition requires some elaboration.

Along the kth needle, at a small distance r from its tip,
the gradient of P behaves like r

The aj are fixed parameters given by the angles a ~ be-
tween the successive needles. In order to fix the orienta-
tions of the two complex planes, we set A to be real and
L9, =O.

The remaining n parameters A, 82, . . . , O„are chosen
to obtain the n lengths of the needles in the physical co

plane. The advantage of having written such a conformal
transformation is that the field P around the needles can
now be easily computed since in the z plane.

P(z) =ln~z~ =Re(lnz) .

It is simply the harmonic field which vanishes on the
unit circle and grows like the logarithm at large dis-
tances. Therefore one obtains

Ek
~Vy(r+r„) ~— (2)

$(co)=Re[ln[f '(co)] J .

where rk denotes the position of the tip of the kth needle.
Now, we envisage the physical tip of the needle as a re-
gion of extension a, small compared to the length of the
needle, and independent of the length of the needle. The
total Aux falling on the physical tip of a needle is there-
fore finite (being equal to the integral of ~VQ~ over r, be-
tween r =0 and r =a) and proportional to Ek. So we

define our model precisely by imposing that the growth
rate of the kth needle is proportional to EI, .

dlk
=Ek =lim[V'r ~VQ(r +rk )~], (3)

dt r~
where lk denotes the length of the kth needle. In order to
study this model analytically one needs to compute the

Cont'ormai
Transformation

The field P being determined, one can write the equations
of motion for the needle lengths. The needle tips are lo-
cated in the z plane at points z; =exp(i y; ), i = 1, . . , n and.

their lengths I; are given by the moduli off (z) at z =z;

n y. —g.
l; =43 g sin

j 1
2

Since the tip positions maximize jf (z)
~

on the unit circle,
the y, are the n solutions of the equation

n y —g.
g a cot =0.

2

At the ith tip, f '(z; ) =0 and for z close to z;, one has

f"(z, )f (z) =f (z; )+ (z —z; )' .
2

Cons&der a point z close to z; such that

z =z;(1+pe' ) (10)

n-1

where p is small and real. The potential P at this point z
in the z plane is

P=ln~z~ =p cos0

z plane plane
and this value of P is also the potential at point ~=f (z)
in the co plane. From (9), one has

FIG. 3. Sketch of the conformal transformation which maps
the exterior of the unit disk in the z plane onto the physical

i8l i8
plane {m plane) cut along the n needles. e ', . . . , e " are the n

points of the unit circle which are mapped onto the star center
(origin of the co plane). I„.. ., l„are the n lengths of the needles

and a&n, . . . ,a„~ the angles between them.

pe'= (12)

When 0~ —~/2 or +w/2, since co has the same phase as

f (z, ) (because they are both on the same needle), one
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knows that z;f"(z; ) has the same phase as f (z, ).. There-
fore, using the fact that Iz; I

= 1, one can write (12) as

' 1/2

pe'= (13) xRe If (z; )I
(z;

1/2

(14)

and from (11)one gets This leads to

dl, ,
~ y; —0)~ If"(z, )I

'/ =. A g sin

a

sin

—1/2

(15)

Equation (15) defines implicitly the time dependence of
A (t), ez(t), . . . , 8„(t) through Eqs. (7) and (8). In the fol-
lowing two sections we study the dynamics of this model
in two particular cases.

f'2 ~+2 (19)

It is convenient to introduce the tangents of tp1/2 and
qz/2

III. TWO COMPETING NEEDLES

l,
l2

We begin by considering the simplest case of competi-
tion, the case of two needles of lengths l, (t), lz(t) growing
at an angle a~ with each other. If one needle is longer
than the other at time zero, then its velocity of growth
will be greater, being proportional to the gradient of the
diffusion field P. It is therefore clear that l, = 1z is an un-
stable situation and that the difference Ill —lzI grows
without bound as time passes. This is a well-known insta-
bility in Laplacian growth I 17,18]. Here, we want to con-
sider a slightly difFerent question. The symmetric visual
appearance of the three branches in Fig. 1 is clearly due
to the fact that their length ratio is close to one while
their length difFerence can be arbitrarily large. So in our
simple model we are going to compute the asymptotic
value of the length ratio l, /lz of the two needles in the
long-time limit. The time evolution of l& /lz is given by
Iusing Eq. (3)]

(16)
dt l2

t, =tan, t2 ——tan
2 '

2
(20)

which satisfy, using Eqs. (18) and (19),

t t1 2 2 cx
(21)

l, =4A sin
2

0'2
l2=4A sin

0'2
cos

cos

2 a (22)

With the help of Eqs. (20) and (21), the length ratio can
be expressed as

1 +t1
t2 1+t2

The advantage of introducing t, and t2 is that the length
ratio A, and the field ratio E&/Ez are simple functions of
t& Itz. From Eq. (7) the needle lengths are

a 2 a

Since Laplace's equation has no length scale, E, /Ez
depends only on the length ratio A, = l, /lz

t, 2 a at, I—tz-
tz 2 a atzlt—&—

1 —a

(23)

E1
=E(A, ) . (17)

In the same way, one obtains for the fields, using Eqs. (3)
and (15)

a cot +(2—a)cot =0 .
2 2

(18)

Therefore the fixed points of (16) and their stability can
be obtained once the function F (A, ) is known. In the case
of two needles, Eq. (8), giving the positions of the needle
tips,

li
E =

1 4

l2
2 4

. 2 0'1
sin

2

2 0'2
sin

2

2 %'2
cos

2

cos
2

—1/2

—1/2 (24)

02 can be chosen smaller than m without loss of generali-
ty. It is useful to note that if y1 denotes the tip position
of one needle (in the z plane), then the other needle is lo-
cated at y2 such that E A, t2

The field ratio can then be expressed as
1/2

(25)
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I I dressed by Ball [13]who considered a fractal object with
a shape consisting of n fingers and suggested a relation
between the maximal number of fingers and the fractal
dimension of the growing object.

We consider a system of n needles of almost equal
lengths. A conformal mapping which transforms the unit
circle in the z plane into a set of n regularly spaced nee-
dles of equal lengths L in the tu plane is given by (4) with
0 =2'/n

2/n
zn —zc)=f(z)=L

2
(27)

I I l I I I 1 t I I I i I ( I

0. 1,

FIG. 4. The asymptotic length of two needles as a function of
the angle l( between their growing directions [Eq. (21)]. The
longest needle is represented explicitly and taken as the unit of
length. The shortest one has length A, . The position of the tip of
the shortest needle is plotted as a function of it).

Intuitively, it is clear that the fixed points of the dynam-
ics are such that the field ratio is equal to the length ratio
and this can be readily seen from Eq. (16). Using Eqs.
(23) and (25) one obtains therefore the equation satisfied
by the asymptotic length ratio A, = I, /l2.

'1 —a
&2 2 —a+ai,

(2—a)A. +a (26)

IV. COMPETITION BETWEEN n NEEDLES

In this section, we consider the case of n needles grow-
ing in directions spaced regularly at relative angles of
2~/n (i.e., a =2/n ). As explained before, this is meant
to be a simple model of more realistic growth rules with
n-fold anisotropy as depicted on Fig. 1 for n =3. Our
goal is to study the stability of a pattern of n needles of
equal lengths. A related problem has previously been ad-

A. = 1 is obviously always a solution of this equation. This
is the only solution for 1 —Q —', &a &1++—', . Two new

solutions k(a) and [r(,(a)] ' appear for a & 1 —Q—', or

a ) 1++—,', both conditions describing the same geome-

trical situation of two needles of unequal lengths growing
at an angle lt smaller than a critical angle

g, =180' (1—Q—', )=33.03'. An analysis of Eqs.
(16), (23), and (25) shows that when the new solutions ap-
pear, the solution A. = 1 becomes unstable and the bifurca-
tion at f=ttt, is a standard supercritical pitchfork bifur-
cation. Thus, for p&(t~, the symmetry between the two
needles is spontaneously broken. The length ratio as a
function of the angle between the two needles is plotted
in Fig. 4. For a different dynamics of needle growth, an
analogous spontaneous symmetry breaking has been nu-

merically observed in Ref. [11]and the corresponding bi-
furcation angle has been computed in Ref. [12].

All the points zk =exp(2i2rk/n) map onto co=0, corre-
sponding to the n returns to the origin when one follows
the shape of the cluster. The points
z=exp(2i2rk/n+i1r/n) correspond to the tips of the
needles.

Now we want to consider a set of n needles where the
lengths of the needles are slightly perturbed, keeping the
angles fixed. This can be done by considering the follow-
ing small change in the conformal mapping (27):

zn —za)=f (z)=L
2

Ez 6'+Z ~ +
+

2

' 2/n

(28)

where p is an integer 1 &p & n —1 and e is small (e' is the
conjugate of e).

One reason for choosing this perturbation is that we
want to keep the fact that as z moves along the unit cir-
cle, cu vanishes n times. This happens to leading order in
e since the zeros of co are given to leading order in e by

2i rrpk/n e 2i apk/n )—
z =exp i

tl
(29)

( &e i rr( 2 k + 1 )p /n1
k

—i (2k rr)p+/n()+ 0( 2) (30)

The fields Ek can also be computed from (28) using the
fact (15) that Ek ~

lf"(z)
l

' evaluated at the kth max-
imum of

lf (z) l. The expression of
lf"(z)

l
simplifies

somewhat because, at the maximum of
l f (z) l, f '(z) van-

ishes and one gets to first order in e:

E„ I„-'" 1+—' 'P " ' —1
2/4

X ( ee i rr( 2k + 1 )p /n i e —i rr( 2k + 1)p/n
)+E e (31)

The other reason for (28) is that by choosing
1~@~ n —1, one can generate any sma11 perturbation of
the lengths of the needles. Indeed, the length lk of the
kth needle is given by the kth maximum of the modulus
of (28) when z moves on the unit circle. One then obtains
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which becomes using (30)

~ 1+ 2p(p —n)+n
(

i&2k+1)
2n

+&we
—ie(2k + 1)p/n

) (32)

So we see that for a given mode characterized by p, the
perturbation of the lengths lk is proportional to the per-
turbation of the fields Ek.

Since for Laplacian growth, dlk!dt O-Ek, for the ratio
of the lengths to approach 1 in the long-time limit one re-
quires that

l, =(1+a) /" and l2=(1 —a) /", (39)

whereas the two values of the fields E ~)f"(z, )~ .' at
the tips are

E ~(1+a))/2 —/n and E cc(1—a)1/2 —)/n
1 2

Therefore the dynamics for the ratio A, = I, /l2 is

(40)

()((n —2)/4 g)
dt

(41)

which gives n needles with alternate lengths (a is real and

~
a

~
& 1). The two values of the lengths I, and l2 are then

lk glk ~l/n as taboo .
k'

which shows that any A, is a fixed point when n =6.

The derivative of (33) with respect to time can be written
in two different ways: From (30), one gets

d lk

dt g1k.
k'

ig 2k + 1)p/nEe

+&me
—142k + 1 )p/n

) (34)

whereas from the dynamics (30) and (32) one can write

dlk

dt
glk,
k'

dlk.
IkX d,

glk
k'

E
nL

lk gE
k'

(nL)

1

nL
2p(p n)+n +

—1

2

X ( &ei vr(2k + 1)p/n

+&we
—iv@2k+1)p/n) (35)

By comparing (34) and (35), we see that the evolution of
the perturbation is given by

de n 2p(p n) —1
(36)dt L 2n n

Thus for mode p to be damped, one needs that

2p (p —n)+n 1

2
(37)

z~ —z +ia (38)

The analysis is then straightforward. For n ~5, all the
modes 1 ~p ~ 4 are damped, whereas for n ~ 7, there are
always unstable modes (when p is equal to the integer
part of n /2, the corresponding mode is always unstable).
So we conclude that for Laplacian growth, a system of n
needles is stable for n (6 and is unstable for n )6.

For n =6, the situation is marginal. One can then
show that any shape with alternate lengths
l 1 l3 l5 kl2 A,14 =A l6 remains invariant under the
dynamics. This can be seen by considering for even n the
following conformal mapping:

2/n

V. A DIELECTRIC BREAKDOWN
LIKE GENERALIZATION OF NEEDLE DYNAMICS

Thus the fixed points of the dynamics are such that the
field ratio to the power g is equal to the length ratio. Us-
ing Eqs. (23) and (25) to relate them, one obtains the
equation satisfied by the asymptotic length ratio i(, =I, /l2
which generalizes Eq. (26):

g2/g 2 —(y+og +

(2—a )A,
'+2/" +a

1 —a

(44)

A, =1 is always a solution of this equation. Two other
solutions appear for a & 1 —1/2/( r) + 2) or
a & I+v'2/(rl+2). As before this indicates the dynami-
cal breaking of the symmetry between the two needles
when the angle between their growth directions is less
than a critical angle g, =m.[1—V'2/(11+2)]. The length
ratio as a function of the angle between the two needles is
plotted on Fig. 5 for different values of q.

The case of n needles growing in directions spaced reg-
ularly by an angle of 2m. /n can be studied as in Sec. IV.
The formulas (30) and (32) are still valid and since the
growth is rule is now dlk/dt ~ Ek, the stability condition
(37) becomes

2p (p n)+ n I—+—)0.
2

(45)

As before the most unstable mode is always p =n/2 for

Witten and Sander's DLA model can be generalized
[19] to simulate dielectric breakdown phenomena. In the
dielectric breakdown model [14], the growth of the pat-
tern is controlled by a Laplacian field (() Eq. (1) as in DLA
but the growth velocity is proportional to some power g
of the field gradient. The dynamics of the needle growth
can be generalized in a similar way by replacing Eq. (3)
by

dlk
=(EkP . (42)dt

It is a simple matter to extend the results of Secs. II and
III and obtain their g dependence. In the case of two
needles, Eq. (16) is replaced by

l1 E$ E, "
I1

(43)
dt l2 12 E2 l2
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FIG. 5. Same as Fig. 4 for g =0.5, g =2, and g =4.

4n
and g& z

for odd n
n —2n —1

(46)

So n =3 is unstable for g) 6, n =4 for g & 2, n =5 for

g ) 10/7, etc.

VI. CONCLUSION

In this paper we have studied simple models of grow-
ing needles with a fixed geometry. We have shown, by
the use of conformal transformations, that the competi-
tion between the needles can lead to instabilities. In the
case of two needles growing at a fixed angle in a Lapla-
cian field, there exists a critical angle below which the
two needles grow with a fixed ratio A,Pl of their lengths.
We have obtained an analytical expression for A, and gen-
eralized our calculation to the case of a dielectric break-
down model (where the velocity of the tips is an arbitrary
power rl of the fields at the tips). For a symmetric pat-
tern of n needles, we have shown that for n & 6, the sym-
metry between the needles is unstable for a Laplacian

even n and p=(n —1)/2 or (n+1)/2 for odd n Th. is
leads to the stability condition

4
for even n

7l 2

field [13]and we have computed the critical value of n as
a function of the parameter g which characterizes the
dielectric breakdown model.

It would be interesting to investigate the relevance of
our results in the problem of growing DLA clusters. One
knows that, when special directions are favored (due to
lattice effects [2,3,5,6] or to some anisotropy in the stick-
ing probabilities), the structure at the large scale of DLA
clusters is a set of branches growing in the preferred
directions. These effects can be strengthened by using
reduction-of-noise techniques [20,21]. It is reasonable to
hope that our predictions could be tested quantitatively
in such systems. This, however, might be rather difficult
because some additional instabilities could occur due to
side branching efFects on the main branches.

For off-lattice DLA, recent simulations [22,23] suggest
that the angle between branches of difFerent order is
dynamically selected and close to 36'. It would be in-
teresting to see if this angle is related to an instability
similar to those described here.
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