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Theory of directed polymers
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We develop a theory of polymers in a nematic solvent by exploiting an analogy with two-dimensional
quantum bosons at zero temperature. We argue that the theory should also describe nematic polymers
in an isotropic solvent. The dense phase is analyzed in a Bogoliubov-like approximation, which assumes
a broken symmetry in the phase of the boson order parameter. We find a stiffening of the longitudinal
fluctuations of the nematic field, calculate the density-density correlation function, and extend the
analysis to the case of ferro- and electrorheological fluids. The boson formalism is used to derive a sim-

ple hydrodynamic theory which is indistinguishable from the corresponding theory of nematic polymers
in an isotropic solvent at long wavelengths. We also use hydrodynamics to discuss the physical meaning
of the boson order parameter. A renormalization-group treatment in the dilute limit shows that loga-
rithmic corrections to polymer wandering, predicted by de Gennes, are unaffected by interpolymer in-

teractions. A continuously variable Flory exponent appears for polymers embedded in a tmo-

dimensional nematic solvent. We include free polymer ends and hairpin configurations in the theory and
show that hairpins are described by an Ising-like symmetry-breaking term in the boson field theory.

PACS number(s): 36.20.Ey, 05.40.+j

I. INTRODUCTION

A. Overview

The statistical mechanics of directed, interacting lines
has received renewed attention recently. This problem is,
for example, directly relevant to the behavior of high-T,
superconductors in a magnetic field [1,2]. In these sys-
tems, above a critical external field H ] the magnetic
field penetrates the material in the form of lines, each car-
rying one quantum of magnetic flux. The flux lines can
be viewed as polymers" aligned with the direction of the
external field up to thermal fluctuations. Due to their
mutual repulsion, these lines can form various states such
as a triangular solid [3] or isotropic and hexatic entangled
fluids [1,4]. Glassy states are also possible, induced either
by local disorder [5,6] or simply by very long disentangle-
ment relaxation times [1,7]. Detailed calculations for flux
liquids are possible by exploiting a mapping onto the sta-
tistical mechanics of boson world lines in two spatial and
one timelike dimension [1].

Many other physical systems consist of extended one-
dimensional objects aligned in one direction [8,9,10]. Stiff'
biological macromolecules such as DNA [11], helical
synthetic polypeptides such as poly(y-benzyl glutamate)
(PBG) [12,13], discotic liquid crystals composed of stacks
of disk-shaped molecules [14,15], and micelles of amphi-
philic molecules [16] can all form crystalline columnar
phases with in-plane order, as well as nematic phases
with fluidlike in-plane order. Although stiffer chains
align more easily, some nematic polymer liquid crystals
can also be formed with chains of relatively low rigidity,
by alternating a nematogenic unit with a flexible hydro-
carbon spacer [17—19]. The transition from isotropic
melt to nematic is achieved experimentally by lowering
the temperature [20] or more frequently by increasing the

concentration. Steric repulsion is sufficient to produce
alignment at high enough concentration, although many
other interactions can be present depending on the ma-
terial: Van der Waals attraction, electrostatic forces
[21,22], hydration forces, etc. Ferrofluids [23] and elec-
trorheological fluids [24] are also composed of chains of
particles, in this case aligned by external magnetic or
electric fields.

In a recent paper [25], Ao, Wen, and Meyer have
presented x-ray scattering data on PBG that is in many
ways strikingly similar to predictions [1] for neutron
diffraction by flux lines. These authors stress an analogy
between polymer configurations and a fictitious "dynam-
ics" of two-dimensional particles moving along the direc-
tion of alignment and show that the distinctive "bow-tie"
scattering contours change character in the limit of small
momentum transfers.

There are, however, significant differences between
these directed polymerlike objects and flux lines. Al-
though oriented nematic polymers in a solvent wander
along a preferred axis, just as thermally excited flux lines
do, the average polymer direction represents a spontane-
ous, rather than externally imposed, broken symmetry.
Even if the monomer chains are aligned by an external
electric or magnetic field, the lines are typically of vari-
able length and need not span the system, unlike flux
lines. Nematic polymers can, moreover, make relatively
low-energy hairpin turns, because of the symmetry of the
director field under n~ —n. Such "backtracking" can
usually be ignored for flux lines [1,2].

In a recent paper [26] two of us adapted methods
developed for flux lines to these systems, taking the above
differences into account. We showed that the boson field
theory of Ref. [1]becomes applicable to directed polymer
melts upon adding a source term, in analogy with the des
Cloiseaux method for isotropic polymer solutions. The
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TABLE I. Characteristics of the different physical systems
considered in this paper.

System
Mechanism for Free ends Hairpins

alignment important? important?

Nematic
polymers
Polymers in a
nematic solvent
Ferro- and

electro rheological
fluids
Flux lines in
high-temperature
supe rconductors

Spontaneously
broken symmetry
Induced by
solvent
External
fields

External
field

Yes

Yes

Yes

No

Yes

Yes

No

No

spontaneously broken symmetry of nematic polymers re-
quires, in addition, coupling the boson order parameter
to a massless fluctuating background director field.

In this work, we describe these calculations in detail
and discuss as well their validity in the dilute limit. Cal-
culations for dilute directed polymers are a straightfor-
ward extension of results for flux lines [1] in the case of
electrorheological and ferrofluids. The dilute limit is
more interesting, however, when the average polymer
direction represents a spontaneously broken symmetry.
Nematic polymers in an isotropic solvent will, of course,
eventually crumple into an isotropic phase upon dilution
[27]. An analysis of the transition to an isotropic poly-
mer melt would take us beyond the scope of this paper.
We shall, however, consider a dilute collection of poly-
mers aligned by a solvent which is itself a short-chain
nematic fiuid. As pointed out by de Gennes [8], the
Goldstone modes associated with the nematic solvent al-
ready lead to logarithmic anomalies in the wandering of
one isolated polymer. Additional logarithms appear
when interactions are included, and a full
renormalization-group analysis is required to sort out the
details. Yet another complication appears when we allow
for hairpins in the polymers as they meander through the
nematic solvent. The polymers are now crumpled on
scales large compared to the hairpin spacing. We find in
this case that an Ising-like symmetry-breaking term ap-
pears in the boson field theory.

Table I contains a summary of the different types of
directed polymeric systems considered in this paper.
Note that Aux lines in high-temperature superconductors
are the simplest case, because (1) they contain no free
ends and (2) hairpins are highly disfavored by the exter-
nal magnetic field. Although hairpins are disfavored by
the magnetic and electric fields necessary to produce
aligned chains in ferro- and electrorheological fluids, free
ends are, of course, unavoidable. The behavior of nemat-
ic polymers and polymers in a nematic solvent is compli-
cated both by the existence of free ends and hairpins, and
because the alignment can be produced by a "soft" bro-
ken symmetry instead of an external field.

We consider here only Gaussian fluctuations about the
state that describes directed polymer melts in the dense
hydrodynamic limit. While this paper was in prepara-
tion, we learned of interesting work by Toner [28] who

introduces nonlinearities directly into the hydrodynamic
theory of nematic polymers. Toner concludes that these
nonlinear terms eventually trigger a breakdown of hydro-
dynamics (i.e., a singular dependence of hydrodynamic
parameters on a wave vector) at sufficiently long wave-

lengths. It would be interesting to see if such a break-
down also occurred in the more microscopic boson
theory developed here.

B. Model

N

+ —,'g g f dz —5n(r~(z), z}
dz1=1

N

+ —,
' g f dz V(~r;(z) —r (z)~) .

2

(1.2)

Here ~ is the polymer bending rigidity, while g controls
the coupling between the local polymer direction and the
nematic matrix. This coupling is the only one allowed by
rotational invariance, to lowest order in dr~/dz and 5n.
The potential V(r ) represents short range, excluded
volume effects and can be approximated by V(r)
= VO5 (r). The probability of a particular field

configuration is proportional to exp( FIks T), with—
I' =F„+I',and averages are calculated by integrating

over both 5n(r }and polymer configurations [r (z) ].
The simplest physical interpretation of the free energy

I' is of polymers aligned by a nematic solvent with Frank
constants [K, ]. We believe, however, that F also de-

scribes dense nematic polymers in an isotropic solvent.
As illustrated in Fig. 1, n(r) then represents a coarse-
grained nematic field obtained by averaging over the po-
lymer tangents in a hydrodynamic averaging volume.
Deviations of the orientation of any individual polymer

We shall concentrate on nematic polymers, regarded as
directed polymers interacting with a background nematic
field. By imposing a magnetic field 0, or taking the limit
of very large Frank constants, we can, if desired, recover
results for directed polymer melts with an externally im-

posed direction. We start with a nematic free energy

F„=—,
' fd ri f dx[Ki(V& 5n) +K2(V'&X5n)

+K&(i},5n) +H(5n) ],
where the I K; ] are the usual Frank constants for splay,
twist, and bend, and 5n(r)=(5n„(r~,z), 5n~(r~, z)) is a
vector representing a small deviation of director field n(r)
from its average orientation along the z axis,
n(r) =(5n, 1 ). We neglect for now polymer free ends and

hairpin turns and describe the position of the ith polymer
as it tra verses the nematic medium by a function
R (z) =(r (z),z ). The X polymer lines interact with each
other and the nematic field via a free energy adapted
from Ref. [8]
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n (r,z)

FIG. 1. Hydrodynamic averaging volume surrounding a
small region of a nematic polymer containing many polymer
strands. The average over the polymer tangents in this volume

defines a coarse-grained director field n(r, z) which then tends to
align the individual polymers that pass through the region.

from this average direction are described by the coupling
g. This interpretation of F is especially appropriate for
polymers made of nematic molecules connected by Qexi-
ble hydrocarbon spacers [8,19] as in Fig. 2. In this case
5n(r} describes fluctuations in the orientations of indivi-
dual nematogens, while rj(z) describes how the nemato-
gens are threaded together by the hydrocarbon spacers.
The bare Frank constants in (1.1) are then approximately
those of the nematic phase of the unpolymerized nemato-
gens. In this picture, we have [8] a =K3/po, where po is
the areal density of polymers cutting a constant-z cross
section. Note that the potential V(r) represents a scalar
interpolymer interaction within a constant-z plane. The
coupling g, when the nematic modes are integrated out,
leads to both a scalar interaction, due to the longitudinal
modes of the nematic phase, and a vectorial interaction,
due to the transverse nematic modes (see Sec. VI). In go-
ing from the bare polymer system to this coarse-grained
system, we could first match the strength of the vectorial
interactions with g and then adjust V so as to get the
correct strength of the scalar interaction.

Our assumption that polymers interacting with a

FIG. 2. Conventional short-chain nematogens (ellipsoids)
connected by hydrocarbon spacers to make a nematic polymer.

"nematic-background" field are equivalent to dense
nematic polymers in an isotropic solvent is supported by
the hydrodynamic approach to correlation functions dis-
cussed in Sec. V, which gives identical results for these
two systems in the limit of long wavelengths.

The second basic assumption underlying our model
calculations is that we can neglect the term proportional
to ~ in (1.2). To justify this, note first that the initial two
terms of (1.2) define a length [8] A,:—&x/g, which for
isotropic solvents we identify with the "deflection length"
discussed by Odijk [10]. The deflection length is the dis-
tance a polymer wanders along z before it feels the
confining effect of its neighbors. In order that the poly-
mers order nematically, this length must be less than the
polymer persistence length I& =z/k& T. On scales larger
than A., the coupling to the background nematic field
dominates the bending rigidity, and we are justified in
neglecting the first term in (1.2}. If the deflection length
is known, we can express the coupling g in terms of ex-
perimental parameters as

E3g=
ppA,

The equivalence between nematic polymers and poly-
mers in a nematic solvent does not extend to the crum-
pling transition to a more isotropic phase, which should
occur in the dilute limit for nematic polymers. The
nematic solvent acts like an ordering magnetic field in the
latter case, so that the polymer exhibits nematic order at
arbitrary dilution. We should also mention that
refinements in the model defined by (1.1) and (1.2) are re-
quired to handle polymer free ends and hairpins. These
are most easily treated after rewriting the theory in a
second-quantized "boson" formalism, as discussed in Sec.
III.

C. Outline

In Sec. II we first review the wandering of a single po-
lymer in a nematic solvent, assuming initially that hairpin
turns can be neglected. In an external field, the polymer
just executes a Gaussian random walk in the xy plane as
it meanders down the z axis. When the field is turned off,
the Goldstone modes of the nematic matrix induce loga-
rithmically divergent "superdiffusive" behavior, as first
pointed out by de Gennes [8]. We then generalize the
model to include hairpins, using an effective-field-theory
method introduced by Cardy [29]. The hairpins cause
the polymer to crumple and execute an anisotropic
three-dimensional Gaussian random walk. We also dis-
cuss polymers wandering in a two-dimensional nematic
solvent. Below the Kosterlitz-Thouless transition of the
solvent, we find that the polymer exhibits a continuously
variable Flory exponent, which is simply related to the
decay of order in the orientations of the solvent molec-

ule s.
In Sec. III we show how to solve the model when many

interacting aligned polymers are present via a mapping
onto the quantum mechanics of two-dimensional bosons.
The constraints imposed on the theory by rotational in-
variance are discussed in Appendix A. Adding a source
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to the boson field theory allows us to obtain analogous re-
sults for polymers of finite length. In Sec. IV we calcu-
late the polymer density correlation functions and discuss
the renormalized wave-vector-dependent elastic con-
stants.

In Sec. V we generalize the hydrodynamic approach of
de Gennes [30] and of Selinger and Bruinsma [31] to al-
low for polymer heads and tails and show that the results
agree with the long-wavelength limit of our more micro-
scopic calculations. In Appendix B we show explicitly
how to derive the hydrodynamic theory directly from the
boson formalism. We also use the hydrodynamic theory
to discuss the physical meaning of the "boson" order pa-
rameter used in Sec. III and to calculate the elastic ener-
gy of a chain end.

The behavior in the dilute limit is discussed in Sec. VI.
We construct renormalization-group recursion relations
and show how polymer wandering is affected by both
nematic Goldstone modes and interpolymer interactions.
In Sec. VII we then introduce hairpins and show that an
Ising-like phase transition then describes the dilute limit.

II. A SINGLE CHAIN IN A NEMATIC MATRIX

A. Three dimensions: the de Gennes approximation

With the problem of the nematic polymer in mind, de
Gennes introduced the following free energy for a single
chain without hairpins in a nematic solvent in the one
Frank constant approximation (K =K, =K& =K3 ) [8]:

2 2

d r dl
F, = 'lr f d—z + —,'g f dz —5n(r(z), z)

1 dz2 dz
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FIG. 3. Isolated polymer in a short-chain nematic solvent.
The Goldstone modes of the nematic matrix produce anomalous
wandering of the polymer transverse to the z axis.

—f dz —5n(F(z), z) ~—f dz —5n(O, z)g dr g dr
2 dz

'
2 dz

(2.3)

where 5n(O, z) is the value of the distortion of the nematic
field on the line r=0. One expects this approximation to
be better for large K. A perturbation expansion in E
of the original problem (2.1) shows that for d ~ 3, diver-
gent integrals appear, and one must use the renormaliza-
tion group to obtain correct results. We defer a systemat-
ic treatment of this problem to Sec. VI and discuss here
only the de Gennes approximation, which can be expect-
ed to be qualitatively correct in d =3.

The fastest way to compute the effective free energy of
the polymer is to note that (2.1) modified by (2.3) can be
simplified by the change of variable (with unit Jacobian)
g(z) =dr/dz —5n(O, z). Upon neglecting the bending en-
ergy term, we find that Qrz) is the solution of

The form of the polymer —nematic-matrix coupling comes
from the small-tipping-angle expansion of

dr =5n(O, z)+ r)(z),
dz

(2.4)

lg dR(z)
dz

2 where f(z) is a Gaussian white noise of variance k~ Tjg.
The wandering of the chain is then given by integrating
{2.4) over z, squaring and averaging over 5n(O, z),

which is the only leading-order coupling consistent with
rotational invariance and the discrete n~ —n symmetry.
We use dR/dz=(dr/dz, 1)/')/1+ ldr/dzl, and n

=(5n, 1)/'I/1+ l5nl to find that

'2

2k~ T
(lr(L) —r(0)l )= L

+ f f dzdz'(5n(O, z).5n(O, z'))F
0 0

dR
~ n =1-

dz

dl
dz

(2.2)
(2.5)

which leads to the coupling displayed in (2.1).
For a fixed configuration of the polymer, the nematic

matrix is distorted and some elastic energy results (see
Fig. 3). We wish to compute the effective free energy of
the chain resulting from integrating out the nematic field
in (2.1). Although all terms in (2.1) are quadratic, this
problem is, in fact, quite nonlinear due to the appearance
of r(z) in the argument of 5n{r(z),z) of the coupling
term. A natural approximation, implicit in de Gennes s
discussion [8], is to set Qrz)=0 and to discuss only the
eA'ect of the fluctuations of the tipping angle dr/dz. This
amounts to replacing the g coupling in (2.1) by

k~T l l 1
(5n(O, z).5n(0, 0)) =

77 ] 2 Z
(2.6)

The long-range correlations in the medium then imply
via (2.5) "hyperdiffusion" of the chain in the transverse
direction

Due to the Goldstone mode associated to the rotational
invariance of the nematic free energy F„,the director
correlation function decreases like 1/lz —z'l at large sep-
arations. Upon substituting the full Frank energy (1.1)

for the one-Frank-constant term in (2.1) we find (upon
setting H =0),
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2k~ T
L~oo g

ks T(K, +K2)+ L ln(L/a),
2~K, I( 2

(2.7)

where a is a microscopic cutoff. The effective diffusion
constant [defined by & ~+rL) —QrO)~ ) =4D(L)L] is finite
for finite L, but diverges logarithmically as L ~ 00,

ks T ks T(K(+K2)
D (L):— + ln(L/a) .

2g 8+I( )E2
(2.8)

For E, =K2 =E, this is the result obtained by de Gennes

by explicitly carrying out the integration over the nemat-
ic field [8]. The renormalization-group treatment of Sec.
VI (which includes interpolymer interactions) leads to the
same result with, however, a factor-of-2 difference in the
coeScient of the logarithm.

The nematic solvent is not quite able to produce a finite
renormalized diffusion constant for infinitely long poly-
mers. The polymer is still aligned with the z axis on

large length scales, however, since +& ~grL) —r(0)~ )
«L. It is easy to show that the bending energy, which
has been neglected in these calculations, is irrelevant for
a single chain without hairpins.

It is interesting to note that, despite its annealed char-
acter, this problem is very similar to the problem of ran-
dom walks in quenched random disorder for which long-
range correlations are known to modify diffusion [32].

B. Two dimensions

We now consider the configurations mrs) of a chain in a
two-dimensional nematic matrix. Although more
di5cult than its three-dimensional counterpart, an exper-
iment on a two-dimensional surface might be possible:
Imagine a long polymer chain with N monomers ad-
sorbed at an air-water interface which is also covered
with a tilted monolayer Langmuir-Blodgett film. The
projection of the tilted hydrocarbon chains on the plane
of the interface plays the role of a director n, without the
inversion symmetry n~ —n. We parameterize the direc-
tion by n=(cosP, sing). Thermal fluctuations destroy
the tilt order above T, via a Kosterlitz-Thouless [33] vor-
tex unbinding transition. Even below T„however, there
is no privileged direction in the tilt field since a broken
continuous symmetry is impossible in two dimensions for
systems with short-range interactions. Thus, one expects
the polymer to crumple for T & T„and one can ask for
the wandering exponent v governing the mean end-to-end
distance R -N, where N is the number of monomers.
Note that v=1 in the three-dimensional problem dis-
cussed above. The problem for d =2 is nontrivial be-
cause below T„the nematic field has long-range correla-
tions decaying with a continuously varying exponent:

The exponent ri(T) varies from ri=O at T =0 to ri= —,
' at

the transition [33]. There are a priori two Frank con-
stants K, and K3 in two dimensions, but it has been
shown [34] that at large length scales two-dimensional
nematic polymers become isotropic (K, =K3=K) and
are described at long wavelengths by the usual XY model
free energy K/2 fdx(VQ) F. or T (T, one has

ri=r)(T)=ksT/2nK. Above T, the correlations decay
exponentially in (2.9), and then one expects that the
wandering exponent of the polymer is the pure self-
avoiding-random-walk value v= —,

' (or v= —,
' for an ideal

chain).
A simple random-walk argument gives an interesting

prediction for the exponent v below T, . In the infinite-g
limit one expects that the polymer by totally aligned
with the local field,

ei p(z(s) )

ds
(2.10)

where we have used the complex notation for the position
z (s) =x, (s)+ixz(s), s being the arc length along the poly-
mer. Upon integrating over s we find

& lz(s) —z(0)l

du du I
&

ei (P(z(u)) —P(z(u'))) )z(0), (I5» (2.11)

Upon assuming that ~z(s) —z(0)~ scales as s, we find
that the self-consistent value of v is

2
2+ ri( T)

(2.13)

Rl

z (s) = x)(s) + ixp(s)

where the average is over both initial conditions z(0) for
the polymers and over the smoothly varying director an-
gle (()(z). We now neglect the reaction of the polymer on
the nematic field and replace the correlation on the
right-hand side of (2.11) by the correlation of the unper-
turbed nematic field (2.9). This procedure amounts to re-

placing the problem by that of determining the wander-
ing of the tangent curves of a pure nematic polymer (see
Fig. 4). We are led to an integral equation, namely,

&iz(s) —z(0)~'),(,)
——f'f dudu'

~z (u) —z (u') ~" z(o)

(2.12)

& n(x) n(x ) ) =
&

e'( '+e '~'" ')
—~x —xi (2.9)

FIG. 4. Polymer interacting with director fluctuations in a
two-dimensional nematic medium and described by its complex
coordinate z as a function of arclength s.
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Our results coincide with those of the Flory theory ap-
plied to random walks in quenched random environ-
ments, which has been argued to be exact for divergence-
less fiows [32,35].

According to Eq. (2.13) v is always close to v= 1, con-
tinuously decreasing with increasing temperature from
v(T=0)=1 to v(T=T, )=—', . Note that v always

exceeds 4, the value of a self-avoiding random walk in

two dimensions. Our neglect of self-avoidance for T & T,
is thus self-consistent because of the relatively small num-
ber of self-intersections that occur for v & —,'.

C. Field-theoretic treatment of hairpins

In this section we study a single polymer embedded in
a rigid nematic matrix and show that hairpins induce an
Ising-like crumpled state. A field theory due to Cardy
[29] is used to describe the polymer and introduce hair-
pins, providing a simplified example of the boson field
theory used in later sections. We show explicitly that
hairpins cause a single directed polymer to crumple into
a more isotropic configuration at long length scales, as
suggested in Ref. [8].

Consider the following model free energy for a single
polymer in a nematic matrix n:

G(r, O;z, O) =—f$&$&'P'(0, 0)g( rz )e (2.16)

where

So= dz r *,—D z
—p (2.17)

c~ /k~ T
chain is thus l =ae ",which can be very large. The
statistics of the hairpins is analogous to the statistics of
one-dimensional Ising domain walls (with Ising coupling
J-e&). This analogy implies that the length scale a is
just the Odijk deflection length. Note that a stretching
force applied to the endpoint of the chain is equivalent to
an Ising magnetic field, since fds hT, =h[z(L) —z(0)].
The Ising magnetization is the analog of the total size of
the polymer along z. The elastic modulus 6 for Hooke's
law along z is thus given by the Ising susceptibility

J/kB TG-(1/T)e as T~O.
The effect of director fluctuations will be discussed in

Sec. VII. Here, we continue to neglect them and imple-
ment the above ideas with an Ising-like field theory. As
noted by Cardy the propagator of a single directed poly-
mer of variable length along z with two transverse dimen-
sions can be written as the correlation function of a quad-
ratic action, which we write directly in the continuum
limit [29],

F= s
K dT
2 ds

'2
—L(T n)'

2
(2.14)

with D=k&T/2g. Here

G(r, O;z, O) =g lY (r, 0;z, 0)e
N

where T=d R(s)/ds is the three-dimensional tangent vec-
tor to the polymer and s is the arclength. The first term
is the bending energy, while the second represents the
lowest order coupling to the background nematic field
compatible with overall rotational symmetry. Higher-
order terms in T are possible but are inessential for the
following discussion. Note that ~T~ = l.

Suppose the fluctuations in n are suppressed by impos-
ing a large magnetic field, so that n =z. Then one has

F= s
K dT
2 ds

(2.15)

which is exactly a continuum one-dimensional Heisen-
berg model with a quadratic Ising-like anisotropy. As a
function of T„there are two minima for T, =k l. If g is
very large, one can expand perturbatively around each
minimum. Because this is a one-dimensional problem,
the symmetry is in fact restored by tunneling events be-
tween the two minima, which correspond to hairpins. T,
thus plays the role of an Ising variable, and hairpins are
analogous to an Ising domain wall along the one-
dimensional chain. The tunneling probability from one
minimum to the next is the energy of a hairpin occurring
over a distance R, with energy e& = mina (a./2R
+gR/2)-(ga)', and the radius of the hairpin is

Ri, -(z/g)'~, which coincides with de Gennes's more
elaborate calculation [8]. Note that the size of a hairpin
is also of the order of the Odijk defiection length A, [10].
The typical distance between two hairpins along the

1
G(qi, q, )= =Go(qi, q, ) .—iq, +Dqz —p

(2.18)

Now we discuss a single directed polymer with hair-
pins but without self-avoidance (see Fig. 5). One can in-

FIG. 5. A directed polymer propagating either up or down
the z axis, changing direction whenever a hairpin is present.
Each hairpin contributes a factor of w/2, and each line contrib-
utes a free propagator Go to the full propagator G.

and WN(r, O;z, O) is the total weight for directed walk of
N steps to begin at (0,0) and end at (r, z). The chemical
potential p must be adjusted to give the correct polymer
size. The use of a retarded propagator only and the
neglect of self-interactions if hairpins are excluded has
been justified by Cardy. The critical point of this quadra-
tic theory is P~O corresponding to infinite length
chains. The propagator in Fourier space is then
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8=So——f dz d r[f +(f*) ], (2.19)

troduce hairpins by simply adding to the action (2.17) the
term

and the proliferation of paths occurs earlier when p is
raised from —~. To find the asymptotic large distance
behavior, we set P = —w/2+5p and expand for small 5p,
qz, and q, . Then we have

which allows for "pair creation. " Let us consider the
new term as a perturbation and expand in w the above
correlation function (2.16}. One then generates diagrams
as in Fig. 5, with a factor w per hairpin and Go(qz, q, ) per
solid line. All closed loops are canceled by the normali-
zation factor Z, so the n~0 trick is unnecessary. The
term of order w "is the sum of all possible ways to go
from (0,0) to (r, z) with 2n hairpins —the odd terms van-
ish. The analogy of hairpins with kinks in an Ising-like

s~ /k~ T
system shows that we should take w ~e ",with

Et, -&gs. If one follows the connected line from (0,0)
the factor associated with the part which represents back-
ward propagation (e.g., after an odd number of hairpins)
is actually Go (q~, q, }. Thus the sum of all these diagrams
1s

G =Go(q~, q, ) 1+ —
GOGO

4

+ — (G G') +0 0

60
2

4 G0GO

Thus the propagator is now

iq, +Dq~ —p
W

q, +(Dq~ —P)—

(2.20)

(2.21)

The critical point has been shifted and is now at
p= —w/2. This corresponds physically to the fact that
allotting hairpins adds an extra entropy in the system,

(q, lw) +Dqf —5P
(2.22)

Note that the complete propagator is actually twice the
above result (more precisely it is G+ G ) because one has
now to allow for graphs where the first propagator in the
above series goes backwards. This is the propagator for
an (anisotropic) Gaussian random walk in d dimensions.
The polymer size now scales as &N both along z and
along r, but with an anisotropic radius of gyration tensor.
The directed nature of the walk has disappeared

III. FIELD THEORY FOR A LIQUID OF CHAINS
WITH A NEMATIC BACKGROUND

A. Mapping onto two-dimensional bosons

We start from the following partition function for the
X chains in a nematic Geld discussed in the Introduction

In this section we use the analogy with the statistical
mechanics of two-dimensional bosons to describe the
properties of chains. The details of this analogy are dis-
cussed in Refs. [1,36], so we will indicate here only the
differences with the case of the Aux lines. For a fixed
configuration of the nematic solvent, the analogy works
as before, except that now the bosons are also interacting
with an external "time" and space-dependent field. The
average over configurations of the nematic field has to be
carried out at the end. We initially discuss the theory for
chains that span the system. Internal free ends are then
introduced by adding a source to the boson coherent-
state field theory. The field theory with the free ends is
then used to calculate some important correlation func-
tions in Sec. IV.

Z [5n]= f g Sr, (z) exp
1

i=1

r

dr;f dz g — —5n(r(z), z )
k&T O,.

1
2 dz

2
1V

+ g V(r, (z) —r (z)) (3.1)

where we have omitted the bending term and restricted our attention to interactions between lines through an equal
"time" potential V(r, (z) —r (z) ). The quantity that we are ultimately interested in is the average

F„
Zz = f2) 5n(r, z)Z&[5n] exp (3.2)

where F„is given by (1.1).
Well-known transformations [37,38] using transfer matrices allow us to write Zz[5n] in the Hamiltonian form (first

quantization),

2 . . . 2 2 & . . . 2 &(z}
ZN[5n]= d r&. . . d rzd r', d rN r ', r Iv T exp — dz

8
(3.3)
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where ~ri r&) and ~ri' . . rN ) are states correspond-
ing to the entry and exit points of the polymers [1] and
the time ordering operator T is necessary a priori since &
is z dependent. & can be deduced from the Lagrangian

—(k~ T)
QV2
J

+ks T g —,
' [V,5n(r -,z)+5n(r, ,z)V, ]

J

X(r, , r;,z) =—g [r, —5n(r, ,z)] + g V(r, —r )
l l, J

(3.4) + —,
' g V(r, —r, ),

lWJ

(3.6)

according to the usual rules of Euclidean quantum
mechanics [37]

where we take a symmetrical ordering [37].
A coherent-state representation can now be developed

in analogy to the treatment of flux lines in Ref. [1], and
one obtains for the grand canonical partition function

%(p&, r k, z) =X +i g p r
J

(3.5)

Z ~ LpN/kTZ

N=O
where r has been eliminated using p~=ir)X/Br The.

quantization rule is then p. = —ikz TV . We define V so
that it operates only within the plane perpendicular to z.
The quantity r will always mean a vector perpendicular
to z. Following these rules, we obtain the Hamiltonian
for a fixed configuration of 5n:

* r, z r, z nr, z

X exp( —S[P', $,5n]), (3.7)

where P(r, z) is a complex boson field. The boson action
S reads

r

LS =f dz fd r P'(r, z) DVi pg(—r,z)+—,'[P'(r, z)V—&g(r,z) g(r, z)Vi—&'(r, z)] 5n(r, z)
0 z

+ —,
' f d r'U(r —r')ig(r, z)i i@(r',z)i + F„[5n]

k~T
(3.8)

Similar manipulations show that the density of Aux lines
1S

p(r, z) =
~ g(r, z)

~
(3.9)

where D =ks T /2g, p = @/kz T, and U
= V/kz T. In Sec.

IV we shall calculate correlations in the density
p(r, z) =g; i 5[r—r, (z) ] which may be calculated via the
identification (3.9). In the mean-field approximation, we
have pa=( g~ )=P/u. The field theory embodied in
(3.8) diff'ers from the action for flux lines [1] only in the
coupling of the boson current g'Vig —/Vie* to the
director field. As discussed in Appendix A, rotational in-
variance of the original Lagrangian model (3.1) (i.e.,
Lorentz invariance of the fictitious bosons) forces the
coefficient of (g"Vig /Vie') 5n to b—e exactly half that
of Q*B,Q in the second-quantized coherent-state repre-
sentation.

G(, )=oqxqz = —iq, +Dq~

or in real space

Go(r, z) —= ( g(r, z)P'(0, 0) )0

(3.11)

z of starting or terminating a polymer. Since an average
of one polymer will thread a cross-sectional area po

' per-
pendicular to z, the typical polymer length associated
with this Poisson-like process is i =Qpo/h.

A more formal proof of the equivalence of bosons with
a source to the statistical mechanics of directed polymers
of finite length can be constructed along the lines taken
for isotropic polymer melts [39,40]. We first expand the
partition function associated with (3.8) in h, U, and the
nonlinear coupling to the director field. The Fourier-
transformed propagator in the resulting Feynman dia-
grams (see Fig. 5) is

B. EfFects of finite chain length O( ) e
—r /4Dz1

4~Dz
(3.12)

To allow for polymers of finite length, which start and
stop in the interior of the sample, we add a source term
to (3.8)

S~S—h f dz f d r(/+1/i") . (3.10)

Upon replacing g and g* by their
mean-field average value Qpo, we see that the quantity
h Qpo is the probability per unit area and per unit "time"

where O(z) is the step function. The expectation value in
(3.12) is taken with respect to the Gaussian action

S =f dz fd r[itj*(d, DV )g] . — (3.13)

Equation (3.12) is identical to the propagator used in the
polymeric description of flux lines presented in Ref. [1].
We can think of P*(0,0) as creating a polymer at (0,0)
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and f(r, z) as destroying a polymer at (r,z). Although
this produces the usual diffusive-random-walk propagator
for z )0, Go(r, z) =0 when z (0, showing that propaga-
tion backwards in the timelike variable z is impossible.

The grand canonical partition function may now be ex-
pressed formally as

(a)

00 00 PL
Zs, = g g Z~~ (D, u, K, )e" h2~

m
N =Op =0

m

(3.14)

=0
where Z~z (D, u, K, )is . the partition function for N

monomers distributed among p polymers and L ~N is
the total length along z occupied by the N monomers.

2
m

Note that h plays the role of a polymer fugacity, while
e" controls the density of monomers. Figure 6 shows a
typical contribution to Z~z of order h . The solid lines

are the polymer propagator Go(qj, q, ) discussed above.
Dashed lines represent the interaction potential V(r},
while the dotted lines signify interactions induced by the
background nematic field. The retarded nature of the
propagators ensures that large numbers of "unphysical"
graphs disappear. The graph shown in Fig. 7(a}, for ex-
ample, with zero momenta on its external legs, is propor-
tional to

(3.15)

which vanishes because both poles in the q, integration
are on the same side of the real axis. The graph shown in
Fig. 7(b) does not contribute for similar reasons. The
graphs shown in Fig. 7(c) are constants that can be ab-
sorbed into a redefinition of the chemical potential.

By using the expansion (3.14), we can easily show that
the average polymer length is given by

&L. )= lnZ„= a

Bp
00 OO

P,Lg L X~z (D, u, K, )e h "
N =0 p=O

(3.16)
Z gr

while the average number of polymers is

&b)

(c)

&p)=h', InZ,
„

= 2 a
t}(h )

OO 00
~Lm 2g pZ~~ (D, u, K, )e h ~

N =0 p=o

Z gr

(3.17)

We can now calculate the typical polymer length

I =—«. )/(p) =
(h /2)( tj'j(r, z)+ l(*(r,z) )

directly from the mean-field approximation to the parti-
tion function (3.7). We assume for simplicity the contact
potential V(r)=ks?u5 (r). Upon making the substitu-
tion (3.10) in (3.7) and setting f(r, z) to a constant value
g=f'=go=Qpo, we have

FIG. 7. Ingredients of the graphical perturbation theory de-
scribed in the text. (a) and (b) Contributions to the renormal-
ized interpolymer interaction potential which vanish due to the
retarded nature of the polymer propagator. (c) The terms shown
are constants that can be absorbed into a shift in the chemical
potential.

lnZs, = —Q min( —@go+—,
' v go

—2h l(o),
0

(3.19)

FIG. 6. Contribution to order h' to the polymer-generating
function. Solid lines are the polymer propagators Go(qi, q, ).
Dashed lines represent the interaction potential V(r), while the
dotted lines represent interactions induced by the background
nematic field.

—2

Zs, =exp 0 +2h t/P/u
2U

(3.21)

where Q is the (three-dimensional) volume. There are
two limiting cases to consider. When p))0, we assume
an ordered state only slightly perturbed by the small
source field h. As we shall see, this means restricting our
attention to very long chains. The minimum of (3.19) is
then given to lowest order in h by

go=+P/v (1++v/P h/2), (3.20)

while the partition function is
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We then find from (3.16) and (3.17) that

(L )=p 0 (3.22)

and

(p) =goh0, (3.23)

so that a typical length is

1 =go/h, (3.24)

as also follows directly from the mean-field approxima-
tion. Note that this length diverges as h —+0 and agrees
with the estimate made at the beginning of this section.

If p~0, the polymers are dilute, and we are in the
disordered phase of the model. We assume that polymers
follow an imposed external direction, as in electrorheo-
logical Auids, so that we need not worry about the crum-
pling transition discussed in the Introduction. One can
then neglect U and find that the order parameter is

(3.25)

while the grand partition function is

p. =0

FIG. 8. Phase diagram as a function of the boson order pa-
rameter and the chemical potential p. The dashed line
represents a contour of constant polymer length. Typical
configurations are shown at the points A (dilute) and 8 (dense
and entangled). The solid curve represents the boson order pa-
rameter for h =0, and terminates at a critical point that de-
scribes the theory in the dilute limit.

h2Z, = exp 0
Irl

The total length of polymer is now

(3.26)

IV. RESULTS FOR CORRELATION FUNCTIONS

while the average number is

(3.27)

(3.28)

We now assume that the polymers are dense and entan-
gled, i.e., &Dl &)po '~ . Correlations for small h can
then be calculated as in Refs. [1,36], by expanding about
the mean-field order parameter $0=+pa
='t/p/u [1+0(h)].

A. Gaussian form for the action

A typical polymer size is thus
Let us write the complex field g(r, z) in terins of the

density p(r, z) and the phase 8(r, z) as

f(r, z)=p(r, z)' exp[i8(r, z)] . (4.1)

(3.29) The measure takes the simple form, up to unimportant
constant factors

which increases as the transition is approached from neg-
ative p.

Experiments are usually done varying the polymer con-
centration with a fixed distribution of polymers sizes, and
hence, fixed I. This produces the trajectory shown in Fig.
8 on the phase diagram plotted as a function of —p and

Typical polymer configurations at two points on this
phase diagram are indicated. Note that the model corre-
sponds to a distribution of chain lengths instead of a
monodisperse sample. This is also a feature of the des
Cloiseaux model of isotropic polymer melts, for which it
is possible to draw a very similar phase diagram [39,40].
A broad distribution of chain lengths is probably a good
approximation for electro rheological Auids and
ferroAuids, in which the chains are constantly breaking
and reforming. The difference between polydisperse and
monodisperse samples is not, in any event, expected to be
important when the average chain length is large [40].

2)g'(r, z)2)g(r, z)=2)p(r, z)2)8(r, z) . (4.2)

To simplify the discussion, let us again consider a contact
potential V(r) = V05 (r) and set U = Vo/kii T. The action
then takes the form in the new variables

S=f dz d r ipse, 8+ (()'jp) +Dp(Vi8)
D
4p

+ipV'~8. 6n —pp+ —,
' u p

—2h p' cosO

F„[5n]+
k, r (4.3)

Upon setting p(r, z)=po+5p(r, z), where pa=go is given

by (3.20), and expanding to quadratic order the fiuctua-
tions 6p and 0, the action becomes, up to total derivatives
and constants,
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S= Jdzd r i5pB, 8+ (V15p) +Dpo(Vi8)
D

4

Upon expanding the fields in Fourier modes

8(r,z)=(Q) 'i g e ' ' 8(qj, q, ), (4.5)

+ipoVi8 5n. + ,'U(—5p) +hpoi 8
with similar expansions for 5p and 5n, one obtains the ac-
tion—3/2(5 )2 (4.4)

S=
—,
' g X+(qi, q, )6 '(q|,q, )X(qj,q, ), (4.6)

Note that the term involving 5n can be rewritten as
ip—08(V1 5n), so that only the longitudinal part of 5n

couples to the polymer degrees of freedom.
where X=(8,5p, 5n„,5n ) and [taking H =0 in (1.1) for
simplicity],

2Dppq y +2A pp

ppq

ppqy

D
q +v+hp

2pp

ppq

(K,q„+K2q +K3q, }

k~T

Ei —K2

k T qxqy

ppqy

Ei —E2

B

(K,q +K2q„+K3q„)

(4.7)

It is now straightforward to calculate any desired correlation function, by inverting this 4X4 matrix.

The structure function

S(qi, q, )=(i5p(qi, q, )i )

may be written

B. Discussion of correlations

(4.8)

poq| +2K(q)(1 '+Dqi )

K(q)[q, +e (qi)]+ —,'poq fr (qi)/(1 '+Dql )
(4.9)

where

Kiqy E3qzK(q)=
B

We have set poi /h =1, and

(4.10)

K2 and K3 are unrenormalized, while

e(qi)
K i (qi, q, ) =Ki + ,'pokq T—

q, +e (qi) (1 '+Dqi)

(4.13)

e (qi)=(l '+Dqi)(l '+Dqi+2pou) . (4.11)

To obtain results for arbitrary in-plane pair potentials
V(r), let U ~ 0'(qi)/k~ T, where P'(qi) is the
Fourier transform of V(r). Unlike its fiux-line counter-
part, the Bogoliubov spectrum (4.11) has a gap as qi ~0,
due to the finite polymer lengths. Upon evaluating
(5n, (q)5nj( —q)), we determine the renormalized Frank
constant via the identification

+K/6
S(a|,q, ) =k~ T' 8'+X'+6 'XBp-' ' (4.14)

Upon taking the limit K(q}~oo, which suppresses all
fiuctuations in the director field, (4.9) can be applied to
polymer melts with an externally imposed average direc-
tion. In the limit of small wave vectors, the structure
function takes the simple form,

(5;(q)5, ( —q)) = 1

K2q&+K3q,

+ '
P,'R 2 +~Rq 2 J (4.12)

where 8 = paV0+ 0(1 '
) is a two-dimensional bulk

modulus, X=p~ is a tilt modulus, and 6 is related to the
average length via G =Ik~ T/2pp. When I~ 00 the
structure function contours are straight lines passing
through the origin, with no scattering along the line
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q~=0 [6,7]. Scattering reappears at qj =0 for finite l,
however. Fits of (4.14) to scattering data should allow a
simple direct determination of the average chain length I
and the important parameters B and K.

The small-wave-vector limit of (4.9) when the Frank
constants are finite has a different form

poq~+(K, q~+K3q, )IG
~(~. q. ) =ks'r

8qi+(8IGpo+q )(K&qj +K3qz )

(4.15)

Ki =Ki+ —,k~Tlpo, (4.16)

in agreement with a prediction of Meyer [9], but in
disagreement with a suggestion by de Gennes [8].

V. HYDRODYNAMIC TREATMENT
OF CORREI.ATIONS

When G =IksT/2po~ao, (4.15) reduces to the predic-
tion [31] of a hydrodynamic theory due to de Gennes
[30]. Finite-length effects distort the contours near the
origin, however, and are likely to be quite important in
fitting real scattering data. Fits to (4.15) should lead to
direct experimental determination of the Frank constant,
the bulk modulus B, and the mean polymer length. Upon
taking the limit q~O in (4.13) we find the dependence on
the renormalized splay elastic constant K, on the poly-
mer length,

A. Ferro- and electrorheological fluids

We first assume for simplicity that the chains of mag-
netic or electric dipole particles span the system along the
z axis. The effects of finite chain length will be discussed
later. The basis hydrodynamic fields are now an areal
particle density

(5.1)

and a tangent field in the plane perpendicular to z,

(5.2)

We coarse grain these microscopic fields to obtain
smoothed density and tangent field p(r, z) and t(r, z).

We now expand the free energy of the liquid to quadra-
tic order in the density deviation 5p(r, z) =p(r, z) —

po and
in t(r, z)

F= f d r dz[8(5p) +K~t
~ ] .

2Po
(5.3)

The parameter B is a bulk modulus for areal compres-
sions and dilations perpendicular to the z axis, while K is
the modulus for tilting lines away from the direction of
the applied field. Because we are dealing with /ines, and
not simply oriented anisotropic particles, (5.3) must be
supplemented with an equation of continuity,

8,5p+ V~ t=0, (5.4)

The hydrodynamic description of isotropic liquids of
atoms or small molecules has been understood for many
years [41]. The long-wavelength density fiuctuations are
Gaussian, and static correlation functions are described
by Ornstein-Zernike theory [42]. We generalize here an
analogous theory of liquids of oriented lines in three di-
mensions. The basic concepts were first discussed by de
Gennes and Meyer in the context of polymer nematic
liquid crystals over a decade ago [8,9]. These ideas were
recently used to determine the form of the liquid-crystal
structure function near the origin of reciprocal space by
Selinger and Bruinsma [31]. The hydrodynamic theory
can in fact be derived directly from the boson representa-
tion, as shown in Appendix B. We show here how a finite
density of chain lengths can be incorporated in a natural
way for ferro- and electrorheological fluids, as well as for
nematic polymers. The results agree in all cases with the
long-wavelength limit of those in Sec. IV. We also use
the hydrodynamic theory to show that there are essen-
tially no differences at long wavelengths between poly-
mers in a nernatic solvent and dense nematic polymers in
an isotropic solvent. Some of our conclusions were re-
viewed recently in Ref. [43].

Hydrodynamics will, in addition, allow us to discuss
the physical meaning of the boson order parameter intro-
duced in Sec. III. To this end, we calculate the energy of
an isolated free end in a ferro- or electrorheological fluid.
Such a calculation has already been carried out for
nematic polymers by Selinger and Bruinsma [44].

which reflects the fact that vortex lines cannot stop or
start inside the medium. Correlation functions can be
calculated by assuming that the probability of a particu-
lar line configuration is proportional to exp( I' /k' T), —
and imposing the constraint (5.4) on the statistical
mechanics.

We now modify (5.3) to allow for chains that stop and
start inside the medium. If the chains are long and en-
tangled, we can treat the chain heads and tails as in-
dependent ideal gases, following similar ideas for nematic
polymers by Meyer [9]. The free energy (5.3) is now re-
placed by an expansion of the form

-2

F=—,
' fd r dz 8 ~ +K —+G(g, fip+P' t)2

Po po

(5.5)

which differs from (5.3) only in a term proportional to the
square of the constraint displayed in (5.4). Although oth-
er terms proportional to gradients of 5p and t can appear,
we have kept only those couplings that dominate in the
limit of long chains. We can now treat 5p and t as in-
dependent fields and then take the limit G ~ ~ to impose
the constraint. The coupling 6 is finite, however, when
the chains are of finite length. To determine the value of
G in this case, note that the chain heads and tails act as
sources and sinks on the right-hand side of the conserva-
tion law (5.4). It follows that [9]
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d, 5p+Vj. t=pH pr (5 6) ing vanishes along the q, axis, as in the case of flux lines

when finite densities of chain heads plr(r, z) and chain

tails pr(r, z) are present. If the heads and tails are treated
as two noninteracting ideal gases, a term of the form

5F= ,' G I—dr dz (plr P—T ) (5.7)

should appear in the free energy. The coeScient is just
the concentration susceptibility for an ideal binary mix-
ture, which is well known to be [45]

k~T6=
&PH&+&PT&

' (5.g)

where & PH & and & pr & are the average concentrations of
heads and tails, respectively. Now, each chain contrib-
utes both a head and a tail, & pH &

=
& pr &

=p,„„„,and the
three-dimensional density of chains is p,s„„=pa/I,where
l is a typical chain length. It follows that

B. Nematic yolymers

The hydrodynamic treatment of infinitely long nematic
polymers is due originally to de Gennes [30] and was ap-
plied to correlation functions by Selinger and Bruinsma
[31]. We first assume an isotropic solvent. The hydro-
dynamic variables are now the areal polymer density (5.1)
and a fluctuating nematic deviation field 5n(r, z) attached
to the polymers. We again allow for a dilute concentra-
tion of chain ends by writing the hydrodynamic free ener-

gy as
2

F= ,' f d r—dz & +G(B,Sp+poV~ 5n) +F„[5n],
Po

(5.10)

Ikq T6=
2Po

(5.9)
where F„is given by (1.1), with H =0 and G must again
be given (5.9) in the dilute limit. When G —+ 00, we recov-
er the constraint,

which diverges as i~00. It is easy to check that the
structure function, which results from this hydrodynamic
treatment, agrees with the result (4.14) of the more mi-
croscopic boson calculations of Sec. III in the long-
wavelength limit.

Figure 9 shows the scattering contours expected for
dense aligned ferro- or electrorheological fluids. The
maxima along the q j axis occur approximately at the po-
sition of the first reciprocal-lattice vector in the nearby
crystalline phase and are not accounted for by the hydro-
dynamic theory. As discussed in Ref. [1],the half width
at half maximum along q, for fixed qz controls the decay
of density fluctuations along the z axis. Hydrodynamics
(in agreement with the boson theory) determines the
linear form via (4.14) of the contours near the origin.
The rounding of these contours (indicated by the dashed
lines) due to the finite polymer length is one of the princi-
pal predictions of Ref [26] and this paper. When I ~00,
the contours remain linear as q~, q, ~0, and the scatter-

8 5p+POV, 5n=0 . (5.11)

For finite 6, one again finds agreement with correlations
calculated from (5.10) and the hydrodynamic limit (4.15)
of the result (4.9) obtained from the microscopic boson
theory.

Figure 10 shows the hydrodynamic predictions for
scattering off the polymers in the limit of small momen-
turn transfer. The structure for larger qj -po ' should
be similar to that shown near the peaks in Fig. 9 [25].
For infinitely long polymers, the scattering vanishes
along the q, axis, and the contours take the form

q, ~qj [31]. The boson and hydrodynamic theory pre-
diction (4.15) lead to the rounding indicated by the
dashed lines in Fig. 10, an effect which is likely to be
quite important in fitting real experimental data.

As discussed in Ref. [43], hydrodynamics also makes
interesting predictions about freeze-fracture experiments
on directed polymer melts. It can be shown, in particu-
lar, that density fluctuations measured in a fracture plane
perpendicular to z provide a precise signature that one is
dealing with a liquid of lines rather than a liquid of

), &z

FIG. 9. Contours of constant scattering intensity for long-
chain ferro- and electrorheological fluids. The contours are
linear near the origin and surround a maximum on the qz axis
located approximately at the position of the first Bragg peak of
the nearby hexagonal crystalline phase. The linear contours
near the origin are rounded by finite chain-length effects.

FIG. 10. Contours of constant scattering intensity near the
origin for nematic polymers. The characteristic square-root
contours are rounded off as indicated by the dashed lines unless
the polymers are very long.
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F'= ,'fd—rdz B
Po

+g t:p,nn~'

points. Under favorable circumstances, it is even possible
to determine a typical polymer length from such mea-
surements.

We can also treat polymers in a nematic solvent using
hydrodynamics, and check that there are no significant
differences with conventional nematic polymers in the
long-wavelength limit. The (unpolymerized) nematic sol-
vent will now be described by the free energy (1.1), and
we introduce coarse-grained polymer variables as in (5.1)
and (5.2). The hydrodynamic free energy (as derived ex-
plicitly in Appendix B) is then

2

(5. 1 3)

given by

F'„= Jd'—r dz
1 6p

'
+G(8,5p+ V') t ) +F„'[t ]

Po

(5.14)

where the coupling proportional to g rejects the analo-
gous coupling in (2.1). We now integrate out the solvent
degrees of freedom, which leads to an effective free ener-

gy

+G(8,5p+ Wit ') +F„[5n], (5.12)

X iqi+SC q' q'q Z, qi+X3q
(2n. ) 2m

'
K,qi+K3q, +gpo q) K2qi+K3q, +gpo

(5.15)

At long wavelengths, the coefficients of the longitudinal
and transverse projectors in (5.15) simplify, and F„'for
polymers in a nematic solvent reduces to the F„appropri-
ate for conventional nematic polymers. The two systems
are indeed equivalent from the point of view of long-
wavelength polymer correlation functions.

C. Defect energies and the boson order parameter

G(r, r ';z, z') = (g(r, z)1('(r ', z') ), (5.16)

where 1(|(r,z) and p'(r', z') are, respectively, creation
operators for polymer heads and tails. We assume that
the polymers are long and entangled, so that h =0 in
(3.10). Phase coherence means long-range order in

G(r, r ';z, z'), for fixed z and z',

lim G(r, r ',z, z') =const & 0 . (5.17)

To understand what this long-range order means, consid-
er first the behavior of (5.16) in a hexagonal crystal of
directed polymers, with the strands again aligned with
the z axis. The composite operator in (5.16) creates an
extra line at (r ', z') (i.e., a column of interstitials in the
solid), and destroys an existing line at (r, z), creating a
column of vacancies. As shown in Fig. 11, the lowest en-
ergy configuration is then a line of vacancies (for z' & z) or
interstitials (for z'(z) connecting the two points with an
energy ~s proportional to the length s of this "string. "
The string tension o will depend on the angle L9 this line

Hydrodynamics also allows us to better understand the
boson order parameter used in Secs. III and IV. For an
analogous discussion for Aux lines in high-T, supercon-
ductors, see Ref. [2]. Note that the representation (4.1)
only makes sense if there is phase coherence in the
equivalent "boson" system. Consider the correlation
function
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(a)

FIG. 11. Lowest-energy solid phase contribution to the
correlation function G(r, r ',z,z'), which inserts a Aux head and
tail into a crystalline polymer array. Dashed lines represent a
row of polymers slightly behind the plane of the page. (a) A va-

cancy is created at time z, which then propagates and is des-
troyed at time z'. Interstitial propagation from z' to z is shown
(b). The energy of the "string" defect connecting the head to
the tail increases linearly with the separation in both cases and
leads to the exponential decay of G(r, r ';z, z').
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makes with the z axis. It follows that the correlation
function (5.16) decays exponentially to zero (i.e., like
exp[ —0 (e)s/ku T]) for large separations in this crystal-
line phase. In a directed polymer melt, on the other
hand, the concept of vacancy and interstitial lines has no
meaning, and the string tension 0. will vanish for large s,
implying long-range order in G(r, r ', z,z') as ~r

—r '~ ~ oo.
Long-range order in the boson order parameter 1(t(r,z)

means that

—E /kBT
(g(r, z))=(P'(r, z)) ~e ' &0. (5.18)

Here, E* is the energy of an isolated polymer head or
tail. The hydrodynamic theory provides a transparent
demonstration that unlike hexagonal crystals, this energy
is finite. This energy has already been calculated by Sel-
inger and Bruinsma for nematic polymers [44], so we
concentrate here on the hydrodynamics for ferro- and
electrorheological fluids. The constraint (5.4) applies
everywhere away from an isolated head or tail and is con-
veniently implemented by expressing 5p and t in terms of
a two-component displacement field u(r, z},

the origin, the integrated strain energy in (5.18} is indeed
finite, i.e.,

(5.25)

where we have included a microscopic short-range con-
tribution in the defect energy E

The analysis for nematic polymers [44] is more compli-
cated but also leads to the conclusion that the energy of
an isolated head or tail is finite, consistent with a nonzero
value of the boson order parameter. The strains in (5.23)
and (5.24) resemble those expected for a magnetic mono-
pole in an anisotropic medium. Indeed, (5.4) is just the
condition of "no magnetic monopoles, " V b=O, if we
identify 5p with b, and t with bi, while (5.3} is just the
magnetic field energy of a medium with an anisotropic
permeability. The energy of isolated magnetic monopoles
is indeed expected to be finite in three dimensions, except
when the field lines form an Abrikosov flux lattice [2].

5p= —poV'j. u,
BU

t=po
az

(5.19a)

(5.19b)

VI. RENORMALIZATION-GROUP ANALYSIS
OF THE DILUTE LIMIT

(5.20)

following a similar method by Taratura and Meyer [46]
for nematic polymers. The free energy becomes

F= ,' f dz d —r[B(V u) +K(B,u) ] .

The analysis in the previous sections applies when the
chains are dense and entangled. To treat the dilute limit,
we perturb about the limit in which (P)=0. To this
end, we again consider the (coherent-state) functional-
integral representation of the partition function

BVi(V u)+KB,u=Bpo '8(z)Vi5 (r), (5.21)

The extremal equations associated with (5.20) for an
isolated polymer head at the origin are

Zs, =f2)$$$'S 5n exp( —S[g,f', 5n]) (6.1)

—(B /po)qi

q, (Bqi+Kq, )
(5.22)

which leads to an explicit expression for the tilt field

rt=p,e,u=
4~ (Kr +Bz )

(5.23}

The density perturbation associated with the free end is

—a'"sc
4w

&p= —po(Vi. u) =
(Kr +Bz )

~

Since both these strains fall off'like 1/(distance) far from

(5.24)

where po is the average in-plane polymer density and
8(z) is the step function 8(z) = 1, z & 0 and 8(z) =0,
z (0. See Ref. [47] for a discussion of the source term for
the closely related problem of a dislocation in a two-
dimensional smectic liquid crystal. Here, the source
represents the absence of a line along the positive z axis.
In a crystal, this line would be a string of vacancies, and
its energy would be infinite, due to the disruption of the
crystalline order parameter in the vicinity of the line. In
a liquid, however, the vacancy free energy vanishes, and
we need only consider the long-range strain field associat-
ed with (5.21}. Upon solving (5.21) in Fourier space, we
find

and break the action into three parts,

S[g,g",5n]= f d r fdz[g'(8, DVi p)P+—u~P~ ]—

+—f d r f dz 5n (P'Vip &Vig')—
+F„[5n]/kiiT . (6.2)

G(r, z) = ( y(r, z)y*(0,0) ) (6.3)

This form of the action is just (3.8), specialized to the case
u(r) =u5 (r) and with a new parameter I, to help organ-
ize perturbation theory in the coupling between the poly-
mer and nematic degrees of freedom. As in Ref. [1], we
impose a cutoff A on the perpendicular wave vectors qz,
of the order of the inverse range of the interaction. For
now we neglect the possibility of free ends and do not in-
troduce a source term. It is convenient to consider
(d +1)-dimensional directed polymers with d directions
perpendicular to the average direction. We take the limit
d =2 at the end of the calculation.

We can now attempt to expand quantities of physical
interest in the nonlinear couplings v and k. Consider, for
example, the propagator
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or, in Fourier space

G (q&, q, ) = ( I g(q„q,)I') . (6.4)

1
G(q&, q, )=

z—iq, +Dq& P—+X(q&,q, )

(6.5)

This can be written as
where, to lowest, nontrivial order in v and A, , the self-
energy graphs shown in Fig. 12 lead to

X(q&, q, ) =—1
dk, d "k&

(2q& —
k& )'(2q& —

k& )'

2n (2n ) 4 i (q—,—k, )+D(q& k& )
——p

kLk~~/kL 5'~ —
kLk~L/kL

E,k L+E3k I( Pk L+K3k,
1—2v —ik, +Dk~L —P

(6.6)

The first term comes from the nematic-matrix —polymer interaction, while the second term arises from the polymer-
polymer interaction. This self-interaction of a single polymer is not present in the original microscopic model (1.2) and
arises here because of the nonuniversal cutoff dependence (in q, ) of the Feynman path integrals and their representation
as a coherent-state functional integral [1]. We interpret the integral over q, in such a way that its imaginary part van-

ishes. The real part is well defined and simply gives a constant renormalization of the chemical potential. After in-

tegrating over k, and evaluating (6.6) in the zero-frequency, long-wavelength regime we find

+V dfd k&
(2n )

1 k& +(4/d)q&
X(q~, O) = —

d d k&(2~)' ' 2+v, Z, ~k, ~(QSC, /rC, ~k, ~+Dk,' p)—
1 4(1 —1/d)q

&

d kL4 (277)d 2/ggg3 ~kg ~(/I(,'g//3 ~kg ~+Dky~—p}
(6.7)

Although the correction to p in (6.5) is well behaved, the
renormalization of D represented by the coefficient of q L

diverges for d ~2, when p=0. This infrared divergence
suggests that renormalization-group techniques by em-
ployed to study the system for d ~2. Our approach fol-
lows [48], which is a variation of the dynamic
renormalization-group method of Ref. [49]. First we in-

tegrate out a momentum shell in kL from Ae ' to A, but
integrate freely over k, . We then rescale our variables so
that the ultraviolet cutoff is held fixed. After rescaling f
and 5n accordingly, we are left with the same theory but
with different coupling constants. When this procedure
is iterated, A, and v are driven toward a fixed point that
describes the universal long-wavelength behavior in the
dilute limit.

A. Momentum-shell integration

We must first integrate out the transverse momentum
in the range A.e '(qL(A. This can be done straightfor-
wardly by expanding the functional integral (6.1} in v and
k. The expansion can be represented diagrammatically as
in Fig. 12. Care must be taken to account for all possible
contractions of the operators in the expansion. The sym-
metry factors can be found in the usual way for Wick ex-
pansions. It is important to note that diagrams renormal-
ize the remaining low-momentum modes and are not sim-

ply expectation values. The diagrammatic rules may be
summarized as follows.

(i) For each line, assign a momentum k; while conserv-

(iv) If a vertex joins four polymer lines, include a fac-
tor of 2v.

(v) If a vertex joins two polymer lines and one nematic
line, include a factor of A, /2 and the sum of the incoming
and outgoing polymer momentum.

(vi) Divide by the symmetry factor. The symmetry
factor is the product of the number of ways of permuting
the vertices and the number of ways of permuting the
lines while keeping the contractions the same.

(vii) Integrate over all momenta q„but only integrate
the transverse momenta from Ae ' to A.

Upon carrying out this procedure, we arrive at the fol-
lowing relations for the intermediate values of the cou-
pling constants:

IC((d —I }+K~D'=D 1+
D K]E~

( 1
—(d —2)&

X
2d 2

(6.8a)

ing energy and momentum at the vertices.
(ii) For each polymer line include a factor of

1/( ik, +Dk—
&

—p). The sign of k, is determined by the
direction of the line.

(iii) For each nematic line include a factor of

k~k&~/k~~ 5'—k&k&~/k&

E]kL +E3kz +PkL +K3kz
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(6.8b)

v' X'v A,
4

+
4D 4K]D 16K &D

A A" (1—e ' ")
X

2

K,'=K,-, i =1,2, 3,
(6.8c)

(6.8d)

UV'=I ——+
D SK)D

AdDA"

d
(6.8e)

~ ~

where Ad=2/[I (d/2)(4~)"~ ]. In evaluating the in-

tegrals we have ignored term of two types. If a term
diverges as I~~ in a smaller dimension than the most
divergent term, it is irrelevant by power counting. Fur-
ther, there are terms that appear to diverge in a higher
dimension, but they are all higher order in the external
momenta. When we rescale we must rescale these mo-
menta. Doing so will render these terms irrelevant in the
renormalized and rescaled theory. The intermediate

values of D, p, and the Frank constants re6ect all the
contributions to them at one-loop order, while the ex-
pressions for k and v represent only the most relevant
contribution to their values.

These intermediate coupling constants have not yet
been rescaled. We rescale lengths by L'=Le ' and times

y( I')dl'
by T =Te 0 . We now set ql ——qlei and

q,'=q, e jor, where the function y(l) is to be deter-
mined. The dimension of g(r, t) is just (L )

' . Note
that even when we rescale, g(r, t) will rescale trivially be-
cause it has no time dimensions. g(r, t) has no anomalous
dimension in our renormalization scheme, to leading or-
der in @=2—d.

When doing the first-momentum-shell integration, the
coupling constants were independent of length scale.
However, they then acquire a momentum dependence be-
cause we have absorbed the large momentum effects into
them. The correct renormalized theory is a coupled set
of integral equations where the coupling constants are
taken to be scale dependent. An alternative, but
equivalent approach is to integrate over a small momen-
tum range where the coupling constants are approximate-
ly fixed and then repeat the entire calculation iteratively.
This leads to the usual differential renormalization-group
equations.

B. Recursion relations

(b)

)4 )3

We now choose an infinitesimal momentum shell e
and take the limit 5—+0. This leads to differential
renormalization-group equations that can be integrated
to produce the coupling s appropriate for a cutoff

q~ & Ae '. We use units such that A = 1 in the following.
The differential recursion relations are

)L )h dD(I) g2 K)(d —1)+Kq Ad

(c)

~ ~r
~ ~

d A, (l)
dl

=A, (
—I+@),

du (I) U A,
2

+y — A„+ A
K)4D

(6.9a)

(6.9b)

(e)

As

K, 32D
(6.9c)

FIG. 12. Lowest-order contributions to the perturbation ex-
pansion used in calculating corrections to the zeroth-order pa-
rameters in the theory. Graphs that are identically 0 due to the
retarded nature of the polymer propagator are not included. In
this case, the internal lines are only integrated over a small spa-
tial momentum shell e '&q~ (1, but are integrated over all
timelike momenta q, . (a) and (b) The contributions to the self-
energy of the polymer propagator. The contributions (b) are
just constants that we must absorb into a redefinition of the
chemical potential P. (c) Graphs that renormalize the four-
point coupling U. (d) The corrections to the vertex between the
nematic director 5n and the polymers. (e) Two graphs that con-
tribute to the four-point coupling but do not vanish identically.
However, their contribution is irrelevant by power counting.

dE, (l) =E (d —2+y) 7

dE2(l)
dl

dK3(l)
dl

=E (d —y),

=E2(d —2+y),

(6.9d)

(6.9e)

(6.9f)

dP(l) U + A,

dl D 8K&D
(6.9g)

It is convenient to chose y(l) so that the renormalized,
rescaled D remains fixed at its initial value. By examin-
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ing (6.9) we can see that there are three dimensionless
coupling constants which come into this theory:

A, , =A[E, (d —1)+E ]' (E,E2D)

A, ~
= A.(E,D )

and

v =v/D .

The quantity k& controls the coupling between the
tangent field of the polymers and the nematic matrix.
The coupling A.2 represents the interactions between den-
sity fluctuations in the polymers and the nematic. Note
that none of the dimensionless couplings depend on the
bend Frank constant K3. For noninteracting polymers

q, -qi. Thus we expect that the term —,'E3q, ~5n~ -qi
and will be suppressed at very long wavelengths. This is
why the bend elastic constant does not couple to the
theory at this order, though presumably it will at higher
order.

The result that the geometric mean of the splay and
twist Frank constants comes into A,

&
is not unexpected.

In Ref. [8] it is shown that the effective rigidity of a poly-
mer in a nematic matrix is the harmonic mean of its orig-
inal rigidity and the induced rigidity from the matrix.
We can understand the meaning of this harmonic mean
by considering the following static example of a single
polymer. If the polymer deviates away from the z direc-
tion, the nematic matrix can relieve the stress in the same
time slice by a twist, a splay, or by a combination of the
two. In d dimensions, there are d —1 twist directions
and only 1 splay direction. In the static limit, where

q, =0, the matrix bends back to its preferred direction
over the transverse plane, whether the relief is through a
twist or a bend. This allows us to estimate the nematic
energy cost in disturbing the polymer,

C. Fixed points and fiows

Our theory is described by the full space of all the cou-
pling constants. We can describe the flow of the theory
towards a stable theory by analyzing its fixed-point struc-
ture in this space. The behavior of the Frank constants is
trivial, amounting to a mere rescaling. We assume, more-
over, that the chemical potential has been adjusted to the
critical point that describes the critical point of the
theory [1].

We will analyze the flow in terms of the variables de-
scribed above, namely U, A.2, and A, , near d =2. From
(6.9) we find

dv v —2 —2 1=U E +(A2 Ai)
dl 4~ 8n

X4
2

64~
(6.12a)

dA ]

dl ' 2
(6.12b)

dl 2 16m
(6.12c)

2
du ~1 u=u E
dl 8' 4~

(6.13)

so that it suffices to consider flows in the space of u (1)
and l, (l). The subspace A, , =O is the theory considered
by Nelson and Seung [1] for flux lines, while the subspace
u =0 is the noninteracting theory considered by de
Gennes [8]. By examining the flow to the fixed point, we
can decide which theory dominates in the long-
wavelength limit.

Since the dimension of interest is d =2, we discuss the
flows for e=O. In this case we can solve (6.12b) for Xi(l),

Note that A, 2 is slaved to A, , in the sense that their ratio is
independent of l. If we let u =U —( I/4)A, z, the recursion
relation for u (1) depends only on A, ,

2

5F ~a Ei+(d —1) E2, (6.10)

where 0 ~ a ~ 1 measures the fraction of the distortion re-
lieved by a splay mode, and (1—a)/(d —1) is the frac-
tion of the distortion carried by each of the equivalent
twist modes. Minimizing the energy with respect to o;,
we find that

A, ,(0)
A, ,(1)=

A, , (0)
1+

8m.

and then solve for u,

u (1)=

(6.14)

E)K2
5F ~a

It. , (d —1)+%2
(6.11)

showing that the coupling to tangent fluctuations is given
by A, ).

Finally, A, 2 is the coupling between the polymer and the
splay degrees of freedom of the nematic matrix. As we
have seen, this coupling comes about through density
fluctuations of the polymers. The effect of the nematic
matrix is to create an attraction between polymers, not
unlike the van der Waals attraction between neutral bo-
dies.

1+ 1 1+ ln 1+ 18' P(0) 8n.
4m

~ l lnl
(6.15)

if A, i(0)WO. If A, ,(0)=0, u (1) is given asymptotically by
4m. /1, in agreement with the results in Ref. [1]. The flows

are illustrated in Fig. 13.
If uo )0, the flows go to the origin in the (Xi,u) plane.2

For nonzero A, i(0), they come into the origin tangent to
the A.

&
axis. This means that the logarithms that de

Gennes discussed for a single polymer dominate the loga-
rithms associated with interpolymer interactions. If, on



45 THEORY OF DIRECTED POLYMERS 8745

ably there are higher-order terms in both the hydro-
dynamic and boson language, corresponding to many-
polymer interactions.

Finally, we can calculate the logarithmic corrections to
the wandering of a single polymer in the dilute limit,

f d r r (g(r L)g*(0, 0) &

(InL) —~«)I'&=, . (6.16
d~r r L *00

In order to do this, we observe that
I

(g(rz)g'(0, 0)&~ o=e'(g(e 'r, e o z)

Xy'(00) &, . (6.17)

FIG. 13. Fixed-point flow in three dimensions (d =2). We
show u, the effective hard-core repulsion and A, i. The flows
come into the origin tangent to the A, i axis. If uo &0, then the
flow In uo runs off to large negative values, and the system will

go through a gas-liquid phase transition.

the other hand, uo (0, the Bows will still run to A, I=0,
but u will run off to —Do. Since u is the coefficient of p
in the hydrodynamic theory, this How will push the sys-
tem through a gas-liquid phase transition, since presum-

We have chosen y(l) so that D will remain fixed at every
scale, i.e., y(l)=2 —

A, ,(l)/8n. . This choice is arbitrary2

and, of course, does not affect the expressions for physical
quantities.

We now choose l* such that z'=e "o z=a
—

l y(1')dl'
z —ao,

where ao is the persistence length of a single, directed po-
lyrner. As z~oo, l* becomes large enough so that we
have Aowed very close to the stable fixed point in Fig. 13.
Since A. I, kz, and U are small near this fixed point, we can
simply use the zeroth-order term in perturbation theory
to calculate the two-point function. We have

(~r(z) —r(0)~ &~=o=e" (~r'(z') —r'(0)l'&

, f d r'(r') (f(r', z)P'(0, 0) & I2I*

fd r'(g(r', z')P'(0, 0)& I

=2dDe ' z'=2dDze ' (6.18)

Substituting A, ,(l}/8~ for 2 —y(1), we can integrate (6.14)2

when d =2 and find

& 1Hz) —60)l'&I=0=4Dz 1+ 1'A, ,(0}
8~

(6.19)

Our choice of 1' amounts to choosing 1*=—,'ln(z/a ).Qo

Substituting this into (6.19) and writing A, , in terms of the
original couplings (with A, = 1, as it was originally)

(~r(z) —gr0}~ &=4Dz+ z ln (6.20)2 KI+K2
4~(E,E')

again resulting in a logarithmic correction to wandering.
Comparison with de Gennes's result (2.7) shows that the
1ogarithmic correction to wandering is only half as large
as would be predicted by the simple argument in Sec. II ~

The correlation (g(r'z)g'(0, 0) & is the probability dis-
tribution for the wandering of a single polymer only in
the dilute limit. This correlation function represents in-
serting a polymer at (0,0) and removing a polymer at
(r, z}, but there is no constraint that it be the same poly-

(la. ) —m)l'& =4D.+
4m(K, K2)

1
(6.21)

poA

This resu1t will hold when z/ao) 1/poA . In this very

mer. However, if the system is suSciently dilute, the
likelihood of polymers swapping their heads and tails is
small. In the above derivation, we halted our
renorrnalization-group iteration when z —ao ~ However,
we can also stop iterating when the polymer density p0
becomes of the order of A . Since A ' is of the order of
monomer thickness, we can then apply the hydrodynamic
theory of Sec. V.

For fixed z, we can always make the system dilute
enough so that as we follow the renormalization-grou UP

trajecto'y z(l) —ao before p(l) —A, where z(1)
—f r(l')dl'=ze 0 z and p(1)=e'po. In this regime the

wandering is given by (6.20}. However, as the density in-
creases, we come to a point where p(l) —A before
z(l)-ao. Now we must choose 1' so that p(l')A = l.
In this case (6.20) will cross over to
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long polymer regime, the interpolymer interactions des-
troy the logarithmic correction to wandering. Each time
the polymers wander into each other, the random walk is
reset, and thus the logarithm does not build up along
their length.

VII. EFFECTS OF HAIRPINS

In the preceding sections we consider polymers
without hairpin configurations. As in Sec. IIC, we can
account for hairpins by adding a term to the action (6.2),
namely

(a)

S~S——f dz d r [P2+ ( P' ) ] .
2

(7.1)

The coupling tU ~ exp( —ez /k~ T), where the hairpin en-

ergy ez is related to the coupling constants in (1.2) by

ez =0(&gi~)—see Sec. II C. Upon repeating the
analysis of Sec. III B, we see that these terms create and
destroy pairs of polymer lines and so add hairpins to the
theory.

Upon carrying out perturbation theory in v and w, we
find that unphysical diagrams appear in our theory. By
allowing hairpins, we now also include loops of interact-
ing polymers as in Fig. 14(a). However, following de
Gennes [50], we can eliminate closed loops of polymers
by replicating 11(r,z) M times, and then taking the limit
M~O. This could also have been done in our earlier
analysis, although it is unnecessary, due to the retarded
nature of the propagators. In the theory without hairpins
but with free ends, one might think that the free ends
generate an effective hairpin term as in Fig. 14(b). How-
ever, the effective hairpin strength is 0(h ) and makes

I-I-
(b)

FIG. 14. In these graphs, we represent a hairpin insertion by
a solid square and the insertion of a free end by a solid circle.
(a) Diagrams that involve closed loops of polymers interacting
with physical polymers. These graphs do not factor into a phys-
ical part and an unphysical part. (b) Graphs appearing in a
theory with free ends that appear to involve closed loops of po-
lymers, but instead are interacting with two or more short poly-
mers. These graphs are indeed physical.

good physical sense. With free ends present, a long poly-
mer may interact with two short polymers, simulating the
effect of an intervening closed-loop polymer. We must be
certain that taking M~O preserves these graphs. Con-
sider the action of M polymer fields coupled to a source
(without explicit hairpins),

M M F„5nS= X f dz d'" 0:(d. D'lfPW' +.—X4."4—p0A'p+ ».(4:~20 —4 lA':) l2—(4*+0.)—+

(7.2)

By changing the replica basis, we can choose to only allow the +=1 direction to have a source term. Because of the
preferential status of this direction, the effective closed loops will be 0 (1), as opposed to 0 (M) in the case of real closed
loops. Thus taking M ~0 will not alter the results found earlier for free ends.

In the dense phase, hairpins lead to effects very similar to those discussed for free ends in Sec. IV. To see how hair-

pins affect the transition near p =0, we first set p=(lit;+ i/2)/&2, and note that the action takes the form
r

F„[5n]S= + f dz d r iP, d, Q + —,'g, [ DV (P w)]g—, + —,'g—[ —DV' (P+w)]t—tj—
k~T

+ ( P 1+0 2)( /1+F2)+~ » ( 41~le 2 42~A 1)
8 2

(7.3)

where we have followed the usual summation convention.
Recursion relations can be constructed as before for finite

M, resulting in

dw(l) u

dl 4~
(7.4b)

dp(l)
O'V

X2
2

(M+1)+ D,2' 8m.
(7.4a)

where u =v —
A,z/4 was defined in the previous section.

The recursion relations for the other variables remain the
same as in (6.9a) —(6.9f). Upon taking M~0 we see that
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only the recursion relation for p is different from (6.9g)
and that (since y =2) w is a strongly relevant perturba-
tion. Although p has a different recursion relation, this
has no effect on the universal long-wavelength properties.
The M~O limit amounts to removing the second graph
in Fig. 7(c), while keeping the first graph. As before, the
surviving graph can be absorbed into a change in the
chemical potential.

Suppose our system is very dilute, i.e., JM ~0 and w )0,
so that P2 will condense. We can follow p, +w via the re-
cursion relations (7.4). The coupling p+w grows rapidly
under iteration, until it becomes large enough so that we
can integrate out the massive modes corresponding to
[g 2]. The resulting theory involves only g, and 5n,

S, =f dz d r —,'(B,g, ) +—(V Q, )—2

A,
2

+v4ai4pi+ (VA'ai'5n)

F„[5n]
+A(Vjf ) 5n)B,Q, +

8

(7.5)

with p, =p —w. We now have a theory in which directed
propagators are replaced by merely anisotropic gradient
couplings —the meandering in the parallel direction
scales just as the meandering in the perpendicular direc-
tion with different proportionality constants. The cou-
plings shown in (7.5) only serve as a caricature of those
found in the theory —they will be changed by numerical
factors depending on at which point we integrate out t/i2

As we go through the dilute-dense phase transition by let-
ting p, , change sign, the theory describes a quasi-isotropic

polymer melt with the self-avoidance in the limit M~O
[39,50].

The dilute limit of directed polymer melts without hair-
pins is described by an XY-like critical point (with a
diffusive propagator), as indicated by Fig. 8. The change
in this phase transition induced by hairpins can be sum-
marized by considering the mean-field diagram (see Fig.
15) associated with the polynomial part of (7.3). We im-
agine holding v and w fixed and varying the chemical po-
tential p, in the plane of rj = —p+w and r2= —p, —w.
When w =0, the critical point at r, =r2=0 is just that
considered in Fig. 8. When w+0, however, the trajecto-
ry as p varies passes through one of the Ising-like critical
lines (with a quasisotropic effective propagator, see Eq.
7.5) on the r, and r2 axes. In a similar fashion, the line
describing the XY-like symmetry of the dense phase for
r, =r2 &0 becomes unstable to Ising-like dense phases
when w =0.

The above discussion ignores the coupling to the
nematic field. This theory is similar to the compressible
Ising model [51] though the marginal operator present in
that theory is not present in ours. This is guaranteed by
the underlying nematic symmetry of our theory. Note
that the original field theory is invariant under
5n~ —5n, g~P*, and z~ —z. This prevents a term
such as (Vj 5n)g&, the usual coupling of the Ising model

ing-like

XY-like

FIG. 15. Trajectory with varying p through the r, -r2 plane,
where r

&

= —p, + w and r z
= —p —u. For w %0, the transition

from the dilute limit corresponds to an Ising-like phase transi-
tion. The line r, = r2 (0 corresponds to an XY-like phase.

to an underlying elastic lattice. The couplings that do ap-
pear do not affect the above arguments, and we are left
with an M component Ising model as M ~0, reproducing
de Gennes's theory of isotropic polymers. Note that the
upper critical dimension of this Ising-like transition is
d, =4, as opposed to the result d, =2+1=3 appropriate
when w =0.
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APPENDIX A: CONSEQUENCES OF
ROTATIONAL INVARIANCE

The full rotationally invariant coupling between the
nematic and the polymer is given by

F=gfds 1— d R(s)
8$

+F„[n], (A 1)

where s is the arclength along the polymer. We now con-
sider the following transformations of our fields (leaving
all other fields the same):

n Pl +U, ny Ply+Uy

R,(s)~R, (s)—v„R„(s)—v R (s),
(A2)

and

5n '(r '(z'), z') =5n(r(z), z)+v

dr '(z') dgrz)
dz' dz

(A3)

(A4)

where v = ( v, v ) is a constant vector in the plane perpen-
dicular to z. It is easy to check that (Al) is invariant un-

der these transformations if H, the magnetic field, is 0. In
terms of the small deviations defined in Sec. II, this trans-
formation, to linear order in v and the fields, is
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and thus to linear order in v

F'=F+g dz v. dr(z) —5n(r(z), z )
dz

(A5)

However, we may absorb the shift in 6n into a
redefinition of the field, so as to eliminate the effect of the
transformation and find that F is invariant under (A2).

8,'=8, —v V
(A6)

We now change the coefficient of Q*B,lij from 1 to some
constant value a. The transformations lead us to

Returning now to the coherent-state field theory (3.8),
we find that it must be invariant under

5n (r ', z') =5n(r, z)+v,

S' [(g'), g', 5n ]=S [$*,$,5n]+v f dz d r( —a)g', V~/+ ,'(/*V—jg PVz—g*)

=S [$*,$, 5n]+(I —a)f dz d r v f VzP . (A7)

Thus S will only be independent of v if a = 1.

APPENDIX B: DERIVATION OF
HYDRODYNAMICS

In fact, the hydrodynamic theories described in Sec. IV
can be derived from the more microscopic boson theory
[52]. To this end, we begin with (4.3), taking h =0 to
start,

D(V~)'
S = fdzd r +Dp(VI8)

4p

straint in (B4) becomes

B,p+ Vj (2DpP) =0, (B6)

B,p+V~ (2DpP+p5n)=0. (B7)

Returning to the path integral for a single polymer (2.1),
we identify the Euclidean Lagrangian as

2

which suggests that 2DpP is the "tangent" field intro-
duced in Sec. V. However with the nematic field includ-
ed, we would have

+ipse, O+ipV&8 6n —pp+ —p

(Bl)

1 dr
4D dz

Leading to the Euclidean momentum

(B8)

We now introduce a vector field P, via a Hubbard-
Stratonovich transformation, in order to eliminate the
Dp(Vj8) term in (Bl). We now have

. OI. i drp=l —6n
a, 2Dd. '

so that

(B9)

I

Z~ =f2)P2)p2)8e

with

(B2)
=2Dip+6n .

dz
(B10)

D(V~)'S' =f dz d r +ipd, 8+i pV ~8 5n

Apparently, P is the field associated with i p. Letting v be
the field equivalent of the velocity, we have

v =2DP+6n, (B1 1)

—Pp+ p+DpP +2iD—pP V~8 . (B3)

If we integrate out P we return to the original action S .
However, we can now integrate over 0. Since it appears
but linearly in S', its integration results in a 6-functional

Z= fX)PXlpe 5[8,p+V~. (p5n+2DP)],

where

(B4)

D(V~)
SH =f dz d r Dp P + —Pp+ —

p
4p

(B5)

Thus we have traded interactions between 0 and 6n for a
constraint relating p, P, and 6n. We must now identify
the physical meaning of P. In the case 6n=O, the con-

so our constraint becomes

B,p+Vi (pv)=0. (B12)

5S = —f dz d r 2h&pcos8 . (B13)

We may expand this term in powers of 0 if the fluctua-
tions in 0 are small, which they will be if the polymers are
sufficiently long. To lowest order (B13)is

Note that pv = t is the momentum" field of our quantum
bosons, which we have called the "tangent" field in the
previous sections. We now replace P by (v —5n)/2D in

(B5). Upon expanding p around some mean-field value

po we are lead to the hydrodynamics of Sec. V.
If we were to add sources to the theory, (Bl) is changed

by
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5S =fdzd rh&p8 (B14) Surface of
Discontin

Now upon integrating out 0, we no longer have a 5 func-
tional as in (B4), but instead

Z= fnvnpe '" (B15)

' sag

V

I

with

D(Vtp)'
SH= f dz d r Dp(v 5n)—+

4p
pp+ p2

Vortex

Loop

+ '
[a,l, +V (P.-)]

4h p
(B16)

resulting in the hydrodynamic theory of finite length po-
lymers (5.5). There we had the term

FIG. 16. Surface on which a vortex loop lies. The plane,
denoted by hashed lines, is the "branch disk" on which the
phase 8 jumps discretely by a multiple of 2m.

(B,p+V t) (B17)

Recalling 6 =k~TI /2po and I =
po

' /h, we have

—,'(G/ktt T) =(4+poh ) ', as required.
The integration over 8 in (B3) needs a more careful

analysis. Indeed, it will constrain the number of lines
passing through a surface to an integer. When changing
variables from f and g' to p and 8, theta is only deter-
mined mod 2n.. Because of this, we can consider field
configurations in 9 which increase by 2m as we go around
a particular line. This vortex line is analogous to a point
vortex in the two-dimensional XY model. We can now
consider a closed vortex loop (the three-dimensional ana-
log of a vortex-antivortex pair) where 8 jumps from 0 to
2mn as we traverse a surface with the vortex loop as the
boundary (a so-called "branch" disk). Rewriting the 8-
dependent part of (B3), we have, for a volume X bounded

by the surface BX,

t f dV(pB, 8+t V 8)=i f dS T8
X 5X

i f d V 8—(B p+ Vt t ), (B18)

where T= (t„t,p ) is the three-dimensional particle
current. The volume integral on the right-hand side of
(B18) will lead to the constraint (B12) in the volume V,

when 8 is functionally integrated over. The surface in-

tegral contains the new constraint.
Consider a vortex line that lies on the surface t)X (see

Fig. 16). If we now split t)X into the parts above and
below the surface of discontinuity, BX„andBXd, respec-
tively, the surface integra1 is

2trin f dS T+i f dS T8, , (B19)
ar

where 0, is the smoothly varying part of 0. In the same
way that we generated the equation of continuity, the
second integral will constrain the total Aux through the
closed surface 5X to be 0 (no free ends). However, upon
summing over all possible values of n, the first integral in
(B19) will constrain the "Aux" of lines passing through
the surface BX„to be an integer. If polymers are dense
and entangled, this set of nonlocal constraints should be
unimportant in the hydrodynamic limit, where the Quc-
tuations in 8 are small.
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