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Surface and bulk energies of dipolar lattices
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We calculate the field due to lines and planes of dipoles, and use this to calculate the bulk and surface
energies of various dipolar-lattice structures. The calculation technique is simpler than traditional
Ewald methods, and is well suited to surface-energy calculations. We find strongly anisotropic surface
energies for the lattices; the more closely packed lattices have negative surface energies for directions ap-
proximately parallel to the dipolar axis. These results should be applicable to ferro- and electrorheologi-
cal fluids.
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I. INTRODUCTION

Dipolar interactions arise in many fields of physics,
where they give rise to subtle effects, arising from the
long-range and anisotropic nature of dipolar fields [1—3].
The field of a dipole drops off with distance r as r . The
field E, due to an extended array of dipoles of size R, is
then naively given by

RE—J r dr/r3-lnR, (1.1)

diverging logarithmically with system size. Because of
this poor convergence, one must be very careful when
evaluating the local field at a point within an array of di-
poles. The field due to surfaces must be taken into ac-
count; the shape of a sample affects the local field. For a
finite sample, dipole sums are marginally convergent, and
a set of techniques have been developed to evaluate these
sums, falling under the general rubric of "Ewald summa-
tions" [4,5]. Essentially, this approach involves breaking
a sum up into two pieces, one which converges rapidly in
ordinary space and one which converges rapidly in
Fourier space.

The question of the bulk and surface energy of dipolar
lattices arises in the study of electrorheological fluids.
These are colloidal suspensions of polarizable particles in
a less-polarizable, nonconducting fluid. Upon application
of a strong electric field, the suspended particles are po-
larized, and form columnar structures aligned with the
field. A common approximation used is to treat the par-
ticles as point dipoles, neglecting higher-order multipole
moments. Tao and Sun argued that the ground-state
structure of the condensed phase, in a purely dipolar ap-
proximation at zero temperature, is a body-centered
tetragonal (bct) lattice, with particles close packed along
the field direction [6]. Throughout this paper we will also
make the point-dipole approximation.

Thus bulk fields determine the high-field or low-
temperature structure of systems of polarizable particles
(or of the analogous suspensions of ferromagnetic parti-
cles [2]). Surface energies arise in theories of structure
formation in such suspensions; structure formation is im-

portant in determining their kinetic and dynamical prop-
erties [7].

In Secs. II and III we describe a technique in which we
first calculate the field due to a one-dimensional periodic
structure (a line of dipoles) or a two-dimensional periodic
array (a plane of dipoles) [8]. The field due to each of
these structures is finite; in fact, the calculation is ex-
ponentially convergent. In Sec. IV we calculate the field
within various lattice structures by summing over lines
and planes, while carefully taking into account the effect
of surface charges. This approach is simpler than the
normal approach to Ewald summations, and is particu-
larly well suited to calculating surface energies, which we
do in Sec. V.

II. FIELD DUE TO A LINE

We wish to calculate the field due to an infinite line of
dipoles, with the dipole axis aligned with the line [9]. Let
the dipoles be placed along the z axis at positions z„=nc,
with n EZ. We will use coordinates (p, z), where p is a
two-dimensional vector in the x-y plane. Since we are in-
terested in the energy of interaction with dipoles perfect-
ly aligned along the z axis, we only need the z component
of the field; in the rest of this paper, we will use E to
mean E z.

Of course, we can ask ourselves how serious is this re-
striction. For ferromagnetic particles, a magnetic field
aligns the dipoles, but does not appreciably change their
magnitude. Thus in this case our assumption that all di-
pole moments are equal and aligned is valid. For elec-
trorheological fluids, the dipoles are induced by the field.
Thus, in principle, these moments can vary from position
to position, and transverse fields might be relevant. For
the lattice-energy computations, this effect is irrelevant,
as we confine ourselves to Bravais lattices only. Howev-
er, for the surface-energy computations, we are effectively
restricting ourselves to effects of the 1owest order in the
polarizability of the particles —when particle-particle in-
teractions are included, both dipole magnitudes and
directions might vary near a surface.

Consider the function
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2)(p, z)= g [1/[(z —z„)+p2]'/ j .

We can write this as

is the field at a point (r, 8) due to a dipole of strength d
located at the origin (in Gaussian units); thus, we can ob-
tain the desired field as the second derivative with respect
tozof g;

2)(p, z) =(1/p) g [1/(1+/„)' ] 2d
E(p, z)= — g k' cos(k z)ED(k p) .

m=1
(2.5)

where p„=(z nc—)/p and without loss of generality we
set 0(z &c. Then

1
00

g(p, z)= f dp 2 1/2 g 5[/ —(1/p)(nc —z)] .
( 1 +y2 )

1/2

(2.1)

We can use the Poisson-sum formula,

g 5[(P+z/p) —nc /p]

=(p/c) g exp[21rim (p/c)(1))+z/p)],

The modified Bessel function K0(x) is an exponentially
decaying function of its argument when x exceeds 1, so
this is a very short-range field. This is not unexpected;
since the potential must be a solution of the Laplace
equation, periodic in z, we would expect it to be roughly
exponential in the perpendicular direction. This implies
that lines out of registry with one another will experience
an attractive interaction.

One way to calculate the field in a dipolar crystal is to
divide the crystal into a series of lines and sum up the
field from each line. We will also need the field at a lat-
tice site due to other dipoles in the same line

and the fact that 1/(1+(I) )'/ is even to get
00

E0=2d g„-1(nc)

4d
3

4. 8060d
C3 C3

(2.6)

1 z
ri(p, z) =—g A cos 2mm-

m=0 C

where

(2.2)
where g is the Riemann zeta function.

+ 00 1
A = dP, cos(2mim p/c) =I(k p),

( 1 +y2
)1/2

(2.3)

and k =2am IC. This is a standard representation for
the modified Bessel function of the first kind [10].
I(k p)=2ED(k p). The m =0 term has a logarithmic
singularity, which, however, has no influence on the final
result.

Now note that

III. FIELD DUE TO A PLANE

We also wish to calculate the field due to a plane of di-
poles at positions (x =ma, y„=nb)where x,y are Carte-
sian coordinates in the plane and m, , n label the dipole po-
sitions. Here the dipole moments are perpendicular to
the plane. Start by considering the expression

1

[(x —x ) +( —
) +z ]'(x,y, z)= Y Y

d —=—(3cos 8—1)
dz r r

(2.4)
This can be written

(3.1)

l((x,y, z)= f fdx'dy', g +5(x' —(x —x ))5(y' —(y —y„)).1

m n

We now use the Poisson sum formula to obtain

P(x,y, z)= g +exp[i(k x+q„y)]f fdx'dy'exp[i(k x'+q„y')]/(x' +y' +z )'/1

m n

where k =2am /a and q„=2mn /b. We can evaluate the necessary integral (see the Appendix) with the result that

I(k, , =f fd d
(x2+y2 +z2)1 /2

=[2m./(k +q )]' exp[ —z(k +q )' ] .

Now I(k, q, z)=I(+k, +q, z), so we write 1( as

4 00 00 00 00

g(x,y, z)= g g cos(k x) cos(q„y)I(k,q„,z)+ g cos(k x)I(k, O, z)+ g cos(q„y)I(O,q„,z) .
ab

(3.2)

(3.3)

(3.4)
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Once again we can obtain the desired field as the second derivative with respect to z of g,

E(x,y, z)= 2 g g cos(k x)cos(q„y)(k +q„)'~exp[ —z(k +qz)'~~]
m=1 n=l

+ g k cos(k x) exp( —k z)+ g q„cos(q„y)exp( —q„z)
m=1 n=1

(3.6)

Just as with a line of dipoles, the field due to a plane of dipoles, evaluated at a point a distance z away from the plane, is
exponentially small when z exceeds the lattice spacing within the plane.

For dipoles at an angle (t to the normal to the plane, it is simple to generalize these results. For simplicity, we take
the dipole moments to be in the x-z plane, at an angle P to the z direction. As a further simplification, we compute only
the field in this direction, at the position x,y, z as in the above. A simple computation shows that this field is

E&(x,y, z)= cos P +2cosgsing +sin P 2 g(x,y, z) .2
d' d d . p d

dz dz dX dx
(3.7)

This is useful for the computation of the surface energy
in the [101]direction (see Sec. V below).

IV. FIELD OF VARIOUS LATTICE STRUCTURES

We can use these expressions for the field due to a line
and a plane of dipoles to calculate the field at a lattice site
in various structures. One must be careful to include the
field due to distant surfaces. To illustrate the method, we
will start by examining lattices with cubic symmetry.
Here, we already know what the field at a lattice site
must be, from classical dielectric theory

E =(4n/3)dg, (4.1)

where tII is the number density of dipoles and d is the di-
pole strength. Let us recall how this is calculated [11].
We consider an infinite lattice of dipoles, of cubic symme-
try. To calculate the field at a point, we draw an imagi-
nary "sphere of exclusion" around the point (Fig. 1). We
then calculate the field as the sum of the fieM due to the
dipoles within the sphere and the dipoles outside the
sphere. The sphere is assumed to be large enough that
macroscopic electrostatics can be used to calculate the
field due to those dipoles located outside of the sphere,

while we actually sum the field due to the individual di-
poles within the sphere. Now, if we sum the dipole field
due to particles in a cubic lattice over a spherical volume,
the field is zero by symmetry, so the total field is just that
due to a macroscopic spherical hole in a uniformly polar-
ized body, of polarization density dP, or E =(4~/3)dg.

Let us calculate the same field as a sum over lines of di-
poles. For definiteness, we will consider a close-packed
fcc lattice of particles of radius rd, with number density
/=1/(4v'2r„). We will imagine drawing an infinitely
long "cylinder of exclusion" (Fig. 2). The field is then the
field due to all the dipoles within the cylinder, plus the
macroscopic field due to an infinite cylindrical hole in a
uniformly polarized body. From elementary electrostat-
ics this macroscopic field is zero, so the total field is that
from the nearby dipoles. Figure 3(a) shows the lattice
structure; Fig. 3(b) shows a view looking down the z axis,
showing the neighboring column positions [12]. Dipoles
in the same column are spaced at 2V'2rd apart, so Eq.
(2.6) implies that the field due to the same column is
Eo =0.601 02d /( &2rd )3 =0.212 49d /rd There are . four
attractive nearest-neighbor chains, located at a distance
p =&2rd away, and displaced vertically by a distance
z =&2r& From Eq. . (2.5), each of these contributes a
field

I

I

p.t

++. ""." .++++ +.++I=

FIG. 1. A sphere of exclusion about the point O. The macro-
scopic field in the cavity due to the external medium of polariza-
tion P is 4mP/3. The contribution from the dipoles within the
cavity vanishes for lattices with cubic symmetry.

-;:.- I . .

l.
':::::::::::::.:.-':::::::::::::0::::::-:':-:::::::

FIG. 2. A cylinder of exclusion about the point O. The mac-
roscopic field in the cavity due to the external medium vanishes
in this geometry. The only contribution to the field comes from
the dipoles within the cylindrical cavity, whose field may be
summed by lines.
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(110) surface (b) (100) surface FIG. 4. A slab of exclusion about the point O. The macro-
scopic field in the cavity due to the external medium of polariza-
tion P is 4m.P. The contribution to the field from the dipoles
within the cavity can be summed by planes.

FIG. 3. (a) A close-packed face-centered-cubic (fcc) lattice.
The dashed line shows the conventional unit cell of the corre-
sponding body-centered tetragonal lattice. (b) A close-packed
face-centered cubic (fcc) lattice, viewed along the z direction.
The different numbers indicate lines of particles at various dis-
tances from line 0. The interaction between line 0 and lines 1

and 4 is attractive, while the interaction with lines 2, 3, and 5 is
repulsive. The dashed line shows the cut for computing the
(100) surface energy; the solid line shows the cut for computing
the (110) surface energy. Note that this diagram could equally
well show a body-centered structure, though with a convention-
al unit cell rotated with respect to that of the face-centered
structure.

E&=(fr /&2) g( —1) +'m lr 0(mn)dlrd
1

=0.18226d/rd .

The next four chains are repulsive next-nearest neigh-
bors, located a distance p= 2rd away, contributing a field

outside of the box. The macroscopic field is equal to that
within an infinite parallel-plate capacitor with charge
density dp on each plate, or E „=41rdp=22214d. lrd

The field due to dipoles in the same plane has been
evaluated numerically !5], with the result that
E0= —9.0336dl(2rd) = —1.1292dlrd. Here note that
the dipoles in the plane act to lower the local field.

There are two nearest-neighbor planes, located a dis-
tance z =V2rd away. The field due to each plane, evalu-
ated using Eq. (3.6), is E, = —0. 178 68dlrd. Note that
the nearest-neighbor field is negative, so the nearest-
neighbor planes are repulsive. The next-nearest-neighbor
planes are located at a distance of 2&2rd, and each con-
tributes a field of E2 =0.002 82d Ird. Then the total field

1S

E =E0+ g 2E„+E~„=0.74048d/rd .
n=1

We can apply this technique to other lattice structures,
obtaining the known results for the other cubic-lattice
structures. We also apply it to a hcp structure and a bct
lattice that is close-packed along the field direction,
shown in Fig. 5. The bct lattice arises naturally as a pos-
sible ground state of an electrorheological fluid at low

E2= —(m/&2) g m 'lr 0(&2mfr)(dlrd)
1

= —0.049 22d/rd .

If we add up these fields, we get a total field of
E =Ep +4E ] +4E2 =0.745d /rd . The exact result to five

figures is E =(41r/3)(1/4v 2rd ) =0.74048d/rd, so we

get l%%uo accuracy already at the next-nearest-neighbor lev-

el.
We can also calculate the field as a sum over planes.

To do this, we draw an infinite "box of exclusion" (Fig. 4)
and sum the field due to the planes of dipoles within the
box with that due to the macroscopic continuum located

FIG. 5. A body-centered tetragonal lattice. This lattice has

been compressed so that the particles are close-packed along the
z direction, the direction of the field. This lattice has a lower

bulk energy than do the close-packed fcc or hcp (hexagonal
close-packed) structures.
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TABLE I. Local fields in units of d jr& for various lattice
structures. The compressed bct lattice has the highest field, and

thus the lowest energy. The close-packed lattices (fcc and hcp)
are quite close in energy to the bct lattice.

BCT

076

BCC
I

FCC

Lattice

bct
fcc
hcp
bcc
sc

Local field

0.762 52
0.74048
0.74006
0.680 17
0.523 60

E

(d/r, ')
0.72

0.68

temperatures or high fields [6]. Our results confirm those
of Tao and Sun; in particular, we find that the bct lattice
has the largest field of the lattices that we examined.
Table I shows the field for these lattices.

Note that while the bct structure has the largest field,
and thus the lowest energy, the energy differences with
the close-packed fcc and hcp structures are small, ap-
proximately 3%%uo. Thus, at finite temperature entropic
terms in the free energy will play an important role in
determining the structure. To find the lattice with the
lowest free energy, one must take into account the contri-
bution of lattice vibrations and other thermally excited
modes. In principle, we might expect a series of structur-
al transitions as the dipolar strength is increased, if these
contributions are significantly different for different struc-
tures. Note also that this calculation has ignored
higher-order multipolar interactions. For particles with
appreciable polarizabilities, these interactions will con-
tribute terms of the same order of magnitude as the dipo-
lar terms, and could change the preferred lattice struc-
ture.

It is also interesting to understand why the bct lattice
has a larger field than the close-packed fcc. We can write
the field in each case as

E =F.„„,+(477/3)gd, (4.2)

where E.„„,is the field due to the nearby dipoles within a
sphere that is large microscopically but small macroscop-
ically and (477/3)pd is the long-range field due to the rest
of the body. We see that

I

0 for a fcc lattice

0.06438d/r& =0.384dg for a bct lattice,Enear

(4.3)

and the long-range field is

0.74048d/r& for a fcc lattice
(417/3) d = '

0.698 13d/rz for a bct lattice . (4.4)

%'e see that the long-range field favors the fcc structure,
due to the higher density, but that the larger field due to
the nearby dipoles favors the bct structure. The fcc and
bcc lattices can both be obtained by varying the ratio of
the height c of the unit cell in the direction parallel to the
field (we refer here to the unit cell of the corresponding
simple tetragonal lattice) to its width a in the direction
perpendicular to the field. We always fix the distance be-

2J2

FIG. 6. The local field E as a function of the vertical distance
c between the particles for body-centered tetragonal lattices,
given in units of d/rz. The parameter c is measured in units of
the particle radius rz. The closest possible packing is chosen for
each value of c. By varying c, we can go from the compressed
bct lattice of Tao and Sun to the fcc lattice via the bcc lattice.

tween nearest-neighbor particles as 2'. The case of a bct
lattice is then the case with a minimum possible value of
c =2', with a =&6r&, that of the bcc lattice is the sym-
metric case a =c =4' /& 3; and that of the fcc lattice
corresponds to the minimum possible value of a =2r&,
with c =2&2rz. It is interesting to calculate the local
field as we go continuously from the fcc structure to the
bct structure by varying c/a. Figure 6 shows the field as
a function of c as we go from the bct lattice to the fcc lat-
tice via the bcc lattice. The bcc lattice not only has a
smaller local field, but has a lower density, and thus a
lower long-range field than the bct structure.

V. LATTICE SURFACE ENERGIES

This technique is particularly useful for calculating
surface energies. The surface tension of a dipolar crystal
is interesting in order to examine the stability of various
lattice structures, and arises in at least one theory of
structure formation in electrorheological fluids [7].

To calculate the surface tension along a plane with nor-
rnal n we imagine pulling the lattice apart along the
direction n, until the planes on either side of the cut are
separated by a distance that is small macroscopically, but
much larger than a lattice spacing. We then calculate the
total energy of this system. The surface energy cr(n) is
defined by

U„,„=U„~+2o(n)S, (5.1)

where U,&z is the energy before the separation, U„,
„

is
the energy after the separation, and S is the surface area
created (on one side of the cut). Thus, we need to calcu-
late the change in energy per unit surface area. Note that
the condition that both of the planes be retained in com-
puting the field is crucial in order to avoid spurious long-
range contributions to the surface energy. The long-
range contributions should be included in the expression
for the bulk electrostatic energy of a body of arbitrary
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shape.
Once again, to illustrate the technique we will consider

a fcc lattice. Let us first calculate the surface energy
along a plane parallel to the dipole axis. Figure 3(b)
shows the view looking down along the z axis. The num-
ber 0 indicates the particle at which we calculate the
field. Each of the numbers represents a line of dipoles; 1

indicates a nearest-neighbor line, 2 indicates a next-
nearest-neighbor line, and so forth. The dashed line indi-
cates the new surface. To calculate the field, we include
all dipole chains on the left side of the cut; thus, the
difference in field at a point on the inside of the lattice is
equal to the field due to all the chains on the right-hand
side of the cut. Thus, the difference in the field at the
point indicated is 5E, = —(E, +2E2+E&+4E~
+2E5+ )= —0.087816djrd. We can also ask what
the change in field is for a particle sitting one row back;
in this case 5Eb = —(E3+2E~+ 2E5 + )

=+0.001 512d/rd. Then the change in energy, per par-
ticle, is 5U= —

—,'d(5E, +5Eb+ )=0.043132d Ird
Because of the exponential decay in field strength we only
need consider the field of a few lines near the cut in order
to achieve high accuracy. To get the surface energy, we
just divide by the surface area per particle, 4rd, to get

cr(100)=0.010783d /rd . (5.2)

o (001 ) = —0.021 639d Ird . (5.3)

Note that the surface energy in this direction is negative,
indicating that the total energy is actually lowered by
splitting the lattice along this direction, as long as the
bulk density is maintained, so that the long-range macro-
scopic field of 4mdg is now lowered. This is a microscop-
ic analog of the well-known Taylor instability of a liquid
dielectric in a field normal to its surface [13]. This insta-
bility is due to the fact that a protuberance parallel to the
field will have a larger local field, and therefore a lower
energy, so that the proturberance will tend to grow.
Thus, the only stable shapes are those highly elongated
along the field direction, for which there is very little
(001) surface area [7]. The more physically relevant sur-
face tensions will be those in directions perpendicular to
the dipole axis. This can also be seen by directly consid-
ering the contribution of the bulk depolarization energy
(as in Ref. [7]), which directly favors elongated shapes.

We also calculate the (110) surface energies. Our con-

Typically the dipole moment d ~ rd, so that cr ~ rd. This
proportionality between the surface energy and the size
of a particle is an explicit indication of the dependence of
this effect on the short-range ordering of the lattice.

Now let us calculate the surface energy along a plane
perpendicular to the dipole direction. The change in field
at the plane next to the cut is just the sum
5E, = —(E, +E2+E3+ ) =+0.175 88d lrd, where

E„is now the field due to the nth plane. The change in
the field at the next plane in is
5Eb = —(E2+E&+E~+ ) = —0.002 801/rd, so the
total change in energy per surface particle is
5U = —

—,'d (5E, +5Eb+ ) = —0.086 556d2lrd, and

the surface energy is

TABLE II. Surface energies in units of d'/rd for various lat-
tice structures in various directions. The Miller indices are
defined with respect to the simple cubic (or simple tetragonal)
lattices. The dipole moment is always taken in the z direction.

Lattice (100) (110) (101) (001)

bct
fcc
bcc
sc

0.008 228 0.005 250
0.010783 0.023 120
0.013 535 0.008 064

—0.002 567 —0.003 428

—0.005 753 —0.024 265
—0.011 576 —0.021 639
—0.004 032 —0.027 070

0.001 714 0.005 134
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-APPENDIX: EVALUATION OF I (k, q, z)

In order to evaluate the field of a plane of dipoles we

need an expression for

I(kq, )=f f d d
(x +Y +z )'i (Al)

vention is to determine the Miller indices from the unit
cell of the corresponding simple cubic or simple tetrago-
nal system. This implies, for instance, that for the body-
centered structures the (100) energies are determined by
making a 45' cut across Fig. 3(b) (and then computing the
field of the missing lines), while for the (110) body-
centered energies the cut is made in the vertical direction.
Except for this subtlety, the computation of the (110) sur-
face energies is entirely analogous to the computation of
the (100) surface energies.

Finally, using Eq. (3.7), we can compute the (101) sur-
face energy. This surface of a cubic or tetragonal crystal
can be represented as a square or rectangular lattice (or
as a sum over such lattices for the body-centered struc-
tures), so the surface energy can be expressed as a sum
over planes. Note that for the tetragonal lattices, this
direction is not at a 45' angle to the field direction. For
the preferred body-centered structure of Tao and Sun,
the [101]direction is at an angle of arctan(&2/3) to the
field direction. As with the (001) surface energy, it is
necessary to include the electric field induced by the
second surface created when the lattice is separated. This
second surface is set a macroscopic distance from the
first, and is parallel to it. Also reminiscent of the (001)
surface energy is the fact that these surface energies are
negative for the more closely packed lattices.

Table II shows the results of surface energy calcula-
tions for various lattice structures. Note that the simple
cubic structure has a negative surface energy in the [100]
direction. This is due to the fact that all the lines of par-
ticles are in registry with each other, so that if we calcu-
late the field by summing over lines, all lines are repul-
sive. All of the attractive contribution comes from the
particles in the same line, so the energy is lower for an
isolated line than for a simple cubic structure.
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We first perform the integral over y, making the
change of variables y'=y/(x +z )', q'=q(x +z )'
so that the y integral becomes

We change variables again, to w =(x +z )'/, to get

I(k, q,z)=4f, cos[k(w —z )' ]Ko(qw) .
(

2 2)1/2

&f "dy' '"qy =2It. (
( I+ i2)1/2 (A2)

(A4)

This is a tabulated integral, [14], and the final result is
that

Then I(k, q, z) is

I(k, q, z)=4f dx cos(kx)J o[q(x2+z2)' z] .
0

(A3)
I(k, q, z)= 2'

( k 2+ q
2)1/2 exp[ —z(k +q )'/ ] . (A5)

[1]L. D. Landau, E. M. Lifshitz, and L. P. Pitaevski, Electro-
dynamics of Continuous Media (Pergamon, New York,
1984).

[2] R. E. Rosensweig, Ferrohydrodynamics (Cambridge Uni-

versity Press, New York, 1985).
[3] D. H. Reich, T. F. Rosenbaum, G. Aeppli, and H. J. Gug-

genheim, Phys. Rev. B 34, 4956 (1986).
[4] J. M. Luttinger and M. Tisza, Phys. Rev. 70, 1954 (1946);

B. R. A. Nijober and F. %'. De%ette, Physica 23, 309
(1957).

[5] M. Warner and R. M. Hornreich, J. Phys. A 18, 2325
(1986).

[6] R. Tao and J. M. Sun, Phys. Rev. Lett. 67, 398 (1991).
[7] T. C. Halsey and W. Toor, Phys. Rev. Lett. 65, 2820

(1990); %'. R. Toor, J. Coll. Interface Sci. (to be pub-
lished).

[8] Our method is a variant of one described in W. Harrison,
Pseudopotentials in the Theory of Metals {Benjamin, New

York, 1966), 167ff.

[9]T. C. Halsey and W. Toor, J. Stat. Phys. 61, 1257 (1990).
[10]G. F. Carrier, M. Krook, and C. E. Pearson, Functions of

a Comp1ex Variable (McGraw-Hill, New York, 1966).
[11]H. Frohlich, Theory ofDielectrics, 2nd ed (Oxf. ord Univer-

sity Press, New York, 1986).
[12] Actually, we can also construct a fcc lattice made from

chains close-packed along the field direction by choosing
the field to be in the [011]direction of the lattice in Fig.
3(a). A chain in this lattice has two repulsive and four at-
tractive nearest-neighbor chains.

[13]G. I. Taylor and R. McCewan, J. Fluid Mech. 22, 1 (1965);
J. R. Melcher, Field Coupled -Surface Waues (MIT, Cam-
bridge, MA, 1963).

[14] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrais,
Series and Products, 4th ed. (Academic, New York, 1980),
635ff.












