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Hexagonal and roll flow patterns in temporally modulated Rayleigh-Benard convection
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We present experimental results for pattern formation in a thin fluid layer heated time periodically
from below. They were obtained with computer-enhanced shadowgraph flow visualization and with

heat-flux measurements. The experimental ce11 was cylindrical, with a radius-to-height ratio of 11.0.
The temperature of the top plate was held constant while that of the bottom plate was modulated

sinusoidally so that the reduced Rayleigh number e=—hT/hT, —1 had the form e(t)=ep+5sin(cot).
Here the time t and frequency co are scaled by the vertical thermal diffusion time. Experiments were per-
formed within the ranges 8.0&co&18.0, 0.4&5&3.3, and —0.2&op&0. 6. Measurements of the con-
vective threshold shift e, (5,co) were in good agreement with theoretical predictions. Comparisons were

made with theoretical predictions of a range e„(5,co) & ep & e&(5,co) (e& & e„e&)e, ) where only a hex-

agonal pattern with downflow at the cell centers is predicted to be stable, a range e& &ep&e&(5, co)

where both hexagonal and roll patterns are expected to be stable, and a range Ep ~ E'g where only a roll
pattern should be stable. At low modulation amplitudes {5& 1.2 for ~=15) only rolls were observed
over the range of E'p studied, although the rolls appeared perturbed for e~ & 6p & 6'g ~ At moderately high
amplitudes (1.2 & 5 & 2.3 for m=15), a cellular pattern with local sixfold symmetry and downflow at the
cell centers, which was reproducible from one cycle to the next, was observed over the range

e& & ep & ez. Over the range ep ~ e& roll-like patterns were observed. Over the range ez - ep e&, where

theory predicts bistability of rolls and hexagons, a coexistence between the two patterns was found. At
high values of 5 (5~2.3 for co=15), a pattern consisting of randomly placed cells and short roll seg-
ments that was reproducible from one cycle to the next was observed in all three regions. At sti11 higher
values of 5 (5 & 3.0 for co = 13), this pattern was observed to be irreproducible from one cycle to the next.
The transition from patterns resembling those predicted by the deterministic theory to irreproducible
random patterns as 5 is increased is presumed to be due to stochastic perturbations. These perturbations
appear to play an important role in those parameter ranges where the amplitude of the pattern decays to
a microscopic value during part of the modulation cycle.

PACS number(s): 47.25.Qv, 47.20.Bp, 47.20.Ky

I. INTRODUCTION

In a thin horizontal fluid layer heated from below, con-
vection will occur when the temperature difference AT
exceeds a critical value b, T, [I]. This phenomenon,
which is known as Rayleigh-Benard convection [2,3], is
usually discussed in the approximation where the vertical
temperature gradient in the conduction state is constant,
and where all fluid properties are temperature indepen-
dent except for the density where it enters into the buoy-
ancy force. This approximation is known as the
Oberbeck-Boussinesq (OB) approximation [4,5], and
when it is applicable, the fiuid flow which is stable im-
mediately above the first instability in a laterally infinite
system consists of straight rolls [6]. This flow pattern is
particularly simple because upflow and downflow are
equivalent in the sense that the original pattern can be
recovered by reflection of the velocity field about the hor-
izontal midplane of the sample (which corresponds to a
reversal of the velocity everywhere), followed by horizon-
tal translation of the pattern in the direction of the wave
vector by half a wavelength. Whereas the OB fluid pro-
vides numerous interesting examples of pattern formation
and bifurcation phenomena [7], the non-OB case has ad-

ditional interesting features. These arise from the fact
that upflow and downflow are no longer so simply related
to each other because the fluid properties in the top and
bottom part of the cell differ. Whereas the OB case al-
lows only rolls as stable solutions, the stable pattern near
onset for a non-OB fluid is one of hexagonal symmetry
[8]. In the hexagons, upflow in the center and downflow
near the outside of each cell is not equivalent to
downflow in the center and upflow near the edges. Thus
the original pattern cannot be recovered by a translation
after a reversal of the velocity field. Whether the hexa-
gons have upflow or downflow in the center is determined
by the temperature dependence of the relevant properties
of the system which determine the sign of a certain pa-
rameter to in the theory [8].

In the OB fluid, the rolls form via a forward or super-
critical bifurcation when the Rayleigh number, which is
proportional to hT, increases through its critical value
R, . By this we mean that the amplitude of the flow field
grows continuously from zero as e=—R/R, —1 becomes
positive. However, in the non-OB case, the hexagons
form via a backward or subcritical bifurcation, i.e., the
amplitude jumps discontinuously to a finite value as e
passes through zero quasistatically, and the bifurcation is
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hysteretic. Figure 1 illustrates this, and shows schemati-
cally the stability ranges [8] of rolls and hexagons in the
non-OB case. The amplitude 3 of the velocity field for
ro11s and for hexagons is shown as a function of e.
Dashed curves represent unstable solutions. The center
of each hexagonal cell contains upflow (downflow) when
A is positive (negative). The diagram assumes P) 0. Im-
mediately above threshold, rolls, which appear through a
supercritical bifurcation, are unstable to hexagons. They
are stable for e ~ ez. Hexagons are stable for e~ e ez.
For Eg E E'g both hexagons and rolls are stable, and
for the deterministic, laterally infinite, uniform system
the pattern is expected to be determined by the past his-
tory. The hysteresis loop between e~ and the threshold
is extreme1y small. The size of these ranges increases
with the deviation of the fluid layer from the OB approxi-
mation.

There are several ways of realizing a non-OB system.
The straightforward one is to choose a fluid with strongly
temperature-dependent properties and a sample thickness
which leads to a large critical temperature difference
5T, . This case has been treated theoretically by
numerous investigators [8—13], with the most complete
treatment, considering the temperature variations of a11

relevant properties, being the one by Busse [8]. A num-
ber of relevant experiments have been performed over the
years [14—20].

An alternate way of breaking the symmetry of the OB
system is to subject the sample to internal heating. In
that case the conduction temperature profile will be non-
linear, even though the fluid properties are essentially
temperature independent. This also breaks the reflection
symmetry about the midplane of the sample, and again
hexagonal patterns occur. This case has been considered
theoretically in some detail [13,21 —23], but carefully con-
trolled experiments are difficult and the results available
so far [24] are only semiquantitative.

Another way of generating a nonlinear conduction
profile is to subject the sample to time-dependent heating.
This, too, will lead to an existence range of stable hexa-
gons. The case where the heating consists of a temporal
ramp of the top and bottom temperatures (keeping their
difference constant) was treated both experimentally and
theoretically by Krishnamurti, who found good agree-
ment between her observations and calculations [25].
More recently, the temporal ramp was treated by Swift
and Hohenberg as a special case of a theoretical model
with arbitrary time dependence of the top and bottom
temperatures [26]. Their results generally agreed with
Krishnamurti's [27]. Clearly, the ramping experiment
can be conducted only as a transient because the mean
temperature changes monotonically.

An interesting variation of time-dependent heating ex-
periments which leads to a nonlinear conduction profile
and which lends itself to the study of stationary processes
is the case of time-periodic modulation of the bottom-
and/or top-plate temperature. In that case,

E(r ) =e0+ 5 cos(cot )

The results of Fig. l are then still applicable, provided
the amplitude 2 is replaced by its mean value and e is re-
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FIG. 1. Bifurcation diagram for non-Oberbeck-Boussinesq
(non-OB) convection, showing the convective amplitude A as a
function of the reduced Rayleigh number e. The dashed lines
represent unstable solutions. Hexagonal flow occurs through a
subcritical bifurcation and is stable for t.„&e ~ t.&. The flow in
the center of each hexagon is upwards for A )0, and down-
wards for 3 &0. This diagram represents a non-OB fluid layer
with a positive value of P (see text). For a layer with negative P
the hexagonal solution is inverted about the e axis. The bifurca-
tion to rolls is supercritical, but rolls are stable only above e&.

placed by e0. This case was examined theoretically
[26,28 —36] and experimentally [31,32,37—44] by several
authors. Initially, however, the primary theoretical and
experimental concern was the shift e, of the convective
threshold which is predicted to occur in the presence of
modulation, and no consideration was given to the in-
teresting nonlinear effects which lead to the formation of
a hexagonal pattern near the first bifurcation. Definitive
experimental measurements of the threshold shift were
made by Niemela and Donnelly [40], and their results
agreed well with the theory [30,34—36]. Only fairly re-
cently was it predicted by Roppo, Davis, and Rosenblat
[33] that modulation should yield a stable range of hexa-
gonal flow. A more quantitative treatment of the stabili-
ty range of hexagons was provided by Hohenberg and
Swift [26,35,36], who derived a 13-mode Lorenz model
[45] which describes the relative stability of hexagons and
rolls in the presence of modulation. It was also predicted
[33,35] that the modulation of the bottom (top) plate
should lead to downflow (upflow) in the centers of the
cells. The only previous experiments on modulated con-
vection which were done with flow visualization [41—44]
were conducted at low modulation frequencies and ampli-
tudes where the range of stability of hexagons is unob-
servably small.

In the present paper we report experimental studies of
the effect of bottom-plate temperature modulation on the
convective pattern and on heat flow in a parameter range
where hexagons have a significant range of stability. We
compare our results with an appropriate special case of
the 13-mode Lorenz model of Hohenberg and Swift [35].
Whereas we find generally good agreement, there are
phenomena which occur in the experiment and which
have not been considered in the theory. The model as-
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sumes a spatially uniform pattern consisting either of
hexagons or of rolls. In the experiment we find that the
two coexist in the range of multistability where either is
stable. This observation differs from the ordinary non-
OB case where the temperature difference is steady, and
where essentially only one phase exists because the transi-
tion from hexagons to rolls (rolls to hexagons) occurs
when the rolls (hexagons) acquire a lower generalized po-
tential [19,20]. The hexagons produced by the modula-
tion, being a time-periodic state, cannot be described by a
potential, and the reason for the coexistence may be asso-
ciated with that. On the other hand, it is possible that
the coexistence is the result of stochastic forces which
can have a significant influence when the pattern ampli-
tude becomes microscopic during part of the modulation
cycle. We also find a parameter range involving large
modulation amplitudes where the pattern is neither hex-
agonal nor roll-like, but instead consists of randomly ar-
ranged cellular flow which is irreproducible from one
modulation cycle to the next. We believe that this
phenomenon is related to the stochastically induced pat-
terns which we have reported elsewhere [42,43,46] for
much smaller modulation frequencies and for temporal
ramps of e.

Brief reports on this work have already been presented
elsewhere [41,47,48].

The remainder of this paper is organized as follows. In
Sec. II we briefly review the predictions of the 13-mode
Lorenz model of Hohenberg and Swift. We present nu-
merical results based on a nine-mode special case of that
model in the parameter ranges of our experiments. Sec-
tion III presents a description of our apparatus, and of
the experimental methods which were used. The results
of this work are given in Sec. IV. In Sec. V we provide a
summary.

II. THEORETICAL PREDICTIONS

The prediction that a hexagonal pattern could be stabi-
lized in Rayleigh-Benard convection by subjecting the
temperature difference across the cell to external tem-
poral modulation was made by Roppo, Davis, and Rosen-
blat [33]. Their theory, however, involved a perturbation
expansion in the modulation amplitude 5, whose validity
was shown [35] to be limited to the range 5/co50. 06
where the range of hexagons is unobservably small. Re-
cently, Hohenberg and Swift (hereafter referred to as HS)
derived [35) a 13-mode Lorenz model [45] which
confirmed the qualitative prediction of Roppo, Davis,
and Rosenblat, but which was not limited to small values
of 5. A conclusion of HS was that there is an optimal fre-
quency range for observing hexagons, since their stability
region vanishes not only for co~ ~, but also for co~0.

The Lorenz model [45], which assumes a laterally
infinite layer and a spatially homogeneous pattern, in-
volves a truncation of an expansion of the solutions to the
equations of motion [Eqs. (2.2a) —(2.2c) of HS]. It was de-
rived for the case of modulated convection by Ahlers,
Hohenberg, and Liicke [32,34], and involves e(t) as given
by Eq. (1.1) as a parameter. Their three-made model,
however, assumes a straight-roll pattern and does not al-

low for competition between rolls and hexagons. HS
showed that this competition can be described by the ad-
dition of extra modes. They arrived at a 13-mode model
[26,35] representing three sets of rolls oriented at angles
of 2m/3 to each other, and the nonlinear interactions be-
tween them. The superposition of the rolls leads to a
hexagonal pattern when all three have equal amplitudes,
and to a roll pattern when the amplitudes of two sets van-
ish. HS simplified their model by imposing the restric-
tion, valid for stationary solutions, that two of the rolls
have equal amplitudes. This leads to a nine-mode model
consisting of the eight amplitudes x„z,y„z,x„&,y„~,
n =1,2, and an amplitude z which is of quadratic order
and is related to the convective heat current j"""by

J COIIV
g

1z (2.1)

Here the coefficient g can be calculated for the laterally
infinite system [6,36], but for the finite system it is best
taken from experiment in the absence of modulation [46].
The mode amplitudes x„~and y„zgive the amplitudes of
the lowest velocity and temperature mode, respectively,
of a roll pattern, and x„~and y„&do the same for the
hexagonal pattern. When the amplitude x» is positive
(negative), the solution of the model corresponds to hexa-
gons with upflow (downflow) in the center. The nine-
mode model is given by Eqs. (2.10) and (2.12) of HS, and
will not be reproduced here. Although HS solved their
model analytically for various limiting cases, none of
these solutions are applicable in the parameter range ac-
cessible to our experiment. We therefore integrated the
equations numerically in order to obtain theoretical pre-
dictions for the stability ranges of hexagons and rolls
suitable for comparison with our measurements.

The diagram of Fig. 1 is made applicable to modulated
convention [33] by changing the ordinate from A to the
average A of A over the modulation cycle, and the
abscissa from e to E'p e, where e, is the shift in the con-
vective threshold due to the modulation. One can further
make the identification A =x,~ for rolls, and A =x»
for hexagons. We caution the reader that the definitions
of E'g, E'g, and e~ used in this paper differ from those
used by HS by the additive constant e, .

For the numerical results to be presented we used a
Prandtl number o.=3.6 corresponding to our experi-
ments, and took g from static measurements for our cell.

The effect of external modulation on j"""=z lg is illus-
trated in Fig. 2(a). The case of steady heating is given by
the dashed curve. The solid curves correspond to
modulation with 6=2.0 and co=15. For steady heating,
j«» =0 for ep 0. Above threshold, j""' increases
linearly with ep such that j«""=g 'ep. The pattern con-
sists of rolls. Under modulation the threshold is shifted
to e, =0. 1378. Figure 2(b) provides a closeup view of the
hysteretic bifurcation. When ep is continuously increased
from zero, j' ""has a value of zero until e, is reached, at
which point j«"' jumps to a finite value on the hexagon
solution. The hexagons remain stable as E'p is decreased
until ep=ez =0.1362, where j«"" jumps to zero. This
hysteresis loop is very small; e, —ez =0.0016. With the
stability of our apparatus (eo may drift by as much as
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0.003), such a small loop is not observable.
The larger hysteresis loop between ez and ez is shown

in Fig. 2(c). In this case, the range of the loop is
ez —ez =0.104, which is almost two orders of magnitude
larger than the loop between e~ and e„and is easy to
resolve experimentally. As eo is increased from e„the
system remains on the hexagon solution until ez, at
which point j"""jumps up to its value on the roll solu-

tion. If, at that point, E'o is decreased, the system stays on
the roll branch until E'p=Eg where it jumps to the hexa-
gon solution.

We determined the stability boundaries e„e~,and Eg
for given values of 6 and co by numerically integrating the
HS nine-mode model and examining the growth rate
from one cycle to the next of ~x &z ~

and ~x &0 ~
once initial

transients had died away. The value of e, was found by
assigning the initial condition x,z =x» = —10 . We
defined e, to be the point where the growth rate of ~x, ~ ~

was zero. For co&@, the growth rate was negative, and
for E'o) e, it was positive. We determined ez by assign-
ing the initial values x»= —10 and x,~ = —10
Then ez was defined to be the point where the growth
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FIG. 2. (a) Prediction of the Hohenberg-Swift (HS) nine-
mode Lorenz model (see Ref. [35]) for the convective heat
current averaged over one modulation cycle j"""as a function
of E'p (the mean value of e ) for modulations with amplitude
6=2.0 and frequency co=15 (solid curves). The Prandtl num-
ber used in the model is o.=3.6, which corresponds to that of
the fluid used in the experiments. The dashed line represents
j"""(e)for a steady heat current. Modulation shifts the convec-
tive threshold from ep =0 to 6p =6 . Hexagons are stable for
e„cp e&, and rolls are stable only above e&. (b) Closeup of
the hysteretic loop between ez and e, . (c) Closeup of the hys-
teretic loop between ez and e~. Note that the definitions of ez,
Eg, and e& used here differ from those of HS by the overall addi-
tive constant E, .
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FIG. 3. (a) Stability limits of hexagons and rolls in the ep —6
plane for modulated convection with co=15 and o.=3.6. The
curves show the predictions of the HS model for e„e&,and e&.
(b) Stability limits in the ep —co plane for 5=2.0 and o.=3.6.
The solid curves show the HS predictions for e„ez,and ez.
The dashed line corresponds to the condition
j"""(t)+ 1.25 X 10 . Patterns modulated at small co (u ~ 1) ex-

hibited stochastic cellular flow when j"""(t) fell below this
value during the modulation cycle [42].
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rate of ~x,H ~

was zero. For co&a+ this growth rate was

positive, and for ep&ez it was negative. Finally, for
determining ez, the initial values assigned were
x &H

= —10 ', x &z
= —10,and ez was defined to be the

point where the growth rate of ~x,z~ was zero .For
E'p (6'g the growth rate was negative, and for E'p & E' g it
was positive. Note that the signs of the initial values of
x» and x,z were chosen to be negative. While the
choice for the sign of the initial value of x&z was arbi-
trary, that for x &H was not, because the sign of x» deter-
mines the flow direction in the centers of the hexagons.
When x,~ was given a positive initial value it was always
found to decay with time.

Shown in Fig. 3(a) is a plot of e„ez,and es as a func-
tion of 5 for co= 15. For 5 ( 1 the range of e where hexa-
gons are stable is very small, making them difficult to ob-
serve. At larger values of 5, the range becomes consider-
ably larger and observation of the hexagons becomes
feasible. Figure 3(b) shows e„ea,and es as a function of
co for 5=2.0. The range where hexagons are stable is
very small at low frequencies, but it rises rapidly to reach
an observable value for co~10. The maximum value of
E'g e, is found at ~=25, and that for E'g E' is found at
co=30. At higher frequencies both E'g t. and 6g E',

decrease rnonotonically towards zero. Most experiments
described in this paper were performed with modulation
parameters represented within these two plots.

The results we have presented will change when the
Prandtl number is changed. Further, it is important to
note that since the HS model involves a truncation of the
solutions to the equations of motion, its predictions are
not expected to be accurate for all values of 5, co, and ep.
Its predictions have been shown [35] to be exact in the
limit 5«co/2&«1. HS have also shown, by compar-
ing the results of the model with exact predictions in cer-
tain other limiting cases, that near threshold the model is
accurate to within 15%. The values of 5 and co used in
our experiments, however, do not correspond to these
limiting cases, so it is not clear a priori how accurate the
model predictions should be for the parameters that we
Used.

III. APPARATUS AND EXPERIMENTAL METHODS

A. The quid

The fluid used was water near 50.6'C. It had thermal
conductivity A =6.41 X 10 W/cm K, thermal
diffusivity ~=1.52X10 cm /s, and kinematic viscosity
v=5. 50X10 cm /s. This leads to a Prandtl number
o. =v/~=3. 6. The water was distilled and fed through a
Milli-Q ion-exchange system (Millipore Co.} to achieve
high purity. It was degassed by boiling before it was
placed in the cell. The Quid layer was d =0.35 cm thick,
resulting in a predicted critical temperature difference
4T, =0.735 'C and a vertical thermal diffusion time
t„=d le =80 6s. When b, T =. 4.5 b, T, [b, T( t ) never ex-
ceeded this value during the experiments] in such a layer,
the parameter P which describes the extent of the depar-
ture from the OB approximation [8] has a value of
P= —0.298. For this value of P and steady heating a

pattern of rolls is predicted [8] to be unstable to hexagons
only over the small range O~e 1.02X10 . Experi-
mentally we never detected a hexagon pattern immediate-

ly above threshold without modulation, and we believe
that this system conforms very well to the OB approxi-
mation.

B. The apparatus

A special apparatus was designed for the purpose of
achieving high-amplitude modulations of the temperature
of the bottom plate. A schematic diagram is shown in
Fig. 4. It consisted of a cell whose top plate was in con-
tact with flowing temperature-controlled water and
whose bottom plate was also in contact with flowing, but
separately controlled, water. The water in contact with
the top plate was held at 50.6'C, and that in contact with
the bottom plate was held at 14.3'C. While the upper
surface of the top plate was held at the temperature of
the top bath, the temperature of the bottom plate was
raised close to that of the top bath by a heater embedded
in the bottom plate. A large power ( =90 W) was needed
for this, and this heat flowed primarily into the bottom
bath and not through the sample. By modulating this
power about its mean value, substantial modulation of
the temperature of the bottom plate could be achieved.

The top plate was a single-crystal sapphire disk with a
diameter of 10.16 cm and a thickness of 0.318 cm. The
plate was flat to within 5 pm. The bottom plate was a
composite of three disks which were epoxied (Stycast
1266) together. A schematic diagram is shown in Fig. 5.
The top disk was made of copper and had a diameter of
8.9 cm and a thickness of 0.48 cm. It was plated on its
upper side with 0.015 cm of nickel which was lapped and
polished to provide a mirror surface which was flat to
within 2 pm. A small groove, 2 mm wide and 0.7 mm
deep, was machined into the bottom of the disk as shown.
A second groove, which was 3 mm wide, 2 mm deep, and
1 cm long was located at the end of the groove; a small
thermistor (Fenwell GA51SM2) was epoxied (Stycast
2850 FT) in this second groove for measuring the temper-
ature of the disk. The leads of the thermistor exited the
disk through the first groove. The central disk of the bot-
tom plate, which was also made of copper, was 8.6 cm in
diameter and 0.32 cm thick. An array of 26 parallel
grooves, 1 mm wide, 0.5 mm deep, and separated by 3.2
mm, was machined into the bottom of this disk. Also
machined into that side was a concentric groove of the
same dimensions located at a radius of 4.5 cm. It con-
nected all of the parallel grooves. Within these grooves
was placed 1.73 m of 0.25-mm-diam manganin wire with
a resistance of 16.2 0 which was used as the bottom-plate
heater. The wire was coated with a thin layer of varnish
and epoxied (Stycast 2850 FT}into the grooves. The bot-
tom disk, which was made of acrylic, was 8.6 cm in diam-
eter and 0.4 mm thick. Its purpose was to electrically in-
sulate the heater from the flowing water, and to provide
some thermal resistance between the water and the bot-
tom plate. The thermal resistance allowed the plate to
warm up when power was applied to the heater. A 0.8-
mm-diam vertical hole, located 3.2 mm from the outer
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As illustrated in Fig. 4, the top plate of the cell was
mounted in a 1.5-cm-thick acrylic disk with a diameter of
25.4 cm, which we shall call the "cell container disk. "
The top plate was held in place by a stainless steel ring as
illustrated. This ring had an inner diameter of 9.4 crn,
outer diameter of 12.5 cm, and thickness of 1.6 mrn. An
acrylic ring was used to clamp the cell together through
the use of six machine screws as shown in the figure.

An acrylic flow-distributor ring of outer diameter 25.4
cm, inner diameter 10.2 cm, and thickness 2.54 cm was
mounted above the cell container disk. This ring was
used to circulate temperature-controlled water at a rate
of about 200 ml/s above the top plate of the cell, main-
taining it at 50.6'C. The water entered the region above
the top plate by way of 24 holes of diameter 5 mm. The
holes were directed radially inward and pointed slightly
downward in order to direct the water onto the top plate
at a distance of about 2.25 crn from the center. They
were evenly distributed around the ring and were con-
nected by an azimuthal channel of height 1 cm and width
1.5 cm, located in the bottom side of the ring at a radius
r =8.7 cm. Water entered this channel from a circulat-
ing source outside the apparatus. The water exited
through 24 horizontal holes of diameter 5 mrn located
directly above the inlet holes. The water flowed through
these holes into a second azimuthal channel with the
same dimensions as the first, and then exited the ap-
paratus. A 10-cm-diam glass window, through which the
inside of the convection cell could be observed, was
mounted in the center of an acrylic plate of diameter 25.4
cm and thickness 1.2 cm, as shown.

A second acrylic Qow-distributor ring with the same
dimensions as the first was mounted below the cell con-
tainer disk. Circulating water at 14.3'C entered the re-
gion below the bottom plate by means of a flow-
distribution system similar to that described above. The
water exited the apparatus through a central hole in an
acrylic disk of diameter 25.4 cm and thickness 1.9 cm, as
shown.

The flow-distribution system provided efficient removal
of the heat fiowing through the cell. Despite this, the
temperature of the top plate of the cell increased slightly
when a sufficiently high heat current passed through it.
Therefore a thermistor probe (Fenwell GA51M2) was
placed in the bath resting on the top of the top plate in
order to measure its temperature. Normally it was locat-
ed directly above the sidewalls of the cell so as not to in-
terfere with flow visualization, but it was moved across
the top of the top plate at other times in order to measure
possible horizontal temperature variations. When the
steady-state temperature difference between the bottom
and top plates was approximately equal to its convective
onset value, temperature variations of 2X10 C were
measured across the diameter of the top plate. The tem-
perature was lowest at a radius of about 2.25 crn, and in-
creased with larger and smaller r.

All experiments were automated with a PC-XT com-
puter which controlled the time-periodic power applied
to the heater in the bottom plate, measured the tempera-
tures of the bottom and top plates, and caused shadow-
graph images of the flow patterns to be taken.

C. Pattern measurements and analysis

We used a computer-interfaced shadowgraph method
to acquire digital images of the Qow patterns. A detailed
description of the necessary apparatus and of the image
processing is given elsewhere [46]. The method yields im-

ages in which regions of downflow (upflow) are relatively
bright (dark). The rapid emergence and disappearance of
a pattern observed during a modulation cycle at the rela-
tively high frequencies of the present work prevented
averaging a large number of images to improve the
signal-to-noise ratio. However, much of the noise could
be eliminated by filtering techniques [46].

We determined the average wave number
k= J J ~k~I(k)dk„dk of the pattern, where I(k) is the
normalized magnitude of the Fourier transform of the
image. We also calculated the standard deviation

hark

of k
from k. A more detailed description of this analysis is
given in Ref. [46]. The measurements of k and Ok were
scaled by dividing them by k, =3.117.

Another quantity used to characterize a pattern was
the total length B of the boundary separating regions of
upflow and downflow [46], which provided a measure of
the cellularity of the pattern. The value of B was norrnal-
ized [46] by a factor involving k in such a way that a
straight-roll pattern with arbitrary k would have B=1.
The boundary length of a hexagon pattern is larger (typi-
cally by 20%%uo).

D. Heat-flux measurements

Q —Qo= Q' " =Af AfhT/d—+Gb T, (3.1)

where Af, Af, and d are the cross-sectional area of the

The temperature difference hT across the cell was
directly measured with the thermistors inside the bottom
plate and above the top plate. At the operating tempera-
ture of 50.6'C the sapphire top plate had a conductivity
of A=0. 32 W/cm K, which is 50 times that of water at
50.6'C, and had a thickness that was 0.91 times that of
the fluid layer. The plate therefore had a temperature
difference that was 1.8%%uo of the total measured AT. Fur-
ther, for a nonzero heat current a small temperature
difference existed between the top of the plate and the top
bath; this temperature difference was carried across a
boundary layer of thickness =1 mrn in the bath immedi-
ately above the plate. The temperature measured by the
probe, whose head was also = 1 mm in diameter, was a
spatial average over that in the boundary layer. Because
of these additions to the true temperature difference
across the Quid layer, measurements of AT were sys-
tematically too large by 2 —3%.

The heat current through the fluid was not directly
measurable. Instead the total heat current Q generated in
the bottom-plate heater was accurately controlled, and
the temperature difference 6T was measured. For
b, T=O no heat flowed through the cell, but a current Qo
of about 90 W flowed from the bottom plate into the
14.3 C circulating water. In steady-state conditions with
no convection, the total heat current was purely conduc-
tive and given by
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j"""=(N 1)(1—+e) . (3.3)

fluid layer, its thermal conductivity, and thickness, re-
spectively, and where G is the thermal conductance
parallel to the fluid in the cell. We determined G from
measurements of Q, Qo, and 6T for b T &6 T„using
values of Af corresponding to the average temperature of
the Quid. For steady-state conditions, the convective
heat current Q"""is simply

Q"""—=Q —
Qo

—Q""' . (3.2)

The dimensionless heat-current density j""' is the ratio
of Q""" to the heat conducted through the fluid at
AT ~hT, . The Nusselt number N is the ratio of the total
heat current through the fluid to that which would be
conducted by a motionless fluid under the same condi-
tions, and is thus related to j"""by

0.4
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~ cortv
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FIG. 7. Measurements of j"""for an experimental run with
co=15 and 5=1.97. The line is a fit to the points for eo&0. 15,
where the increase of j"""is linear. It gives e, and the initial
slope S; of j""".

New static heat-flux measurements were made whenev-
er the cell had been taken apart. They were very similar
to those shown in Fig. 5 of Ref. [46]. As was experienced
there [46], the values of AT, typically varied by 1 —2%%uo,

although for a given cell assembly they were reproducible
to 0.1% or so. A typical value of AT, was 0.726'C,
which is within 1% of the theoretical value for a laterally
infinite system with perfectly conducting top and bottom
plates. After correction for the temperature difference
across the sapphire, the initial slope of N(e) gave
g=0.79, which does not differ significantly from the
values obtained in Ref. [46]. Results for g varied typical-
ly by 1 —2% between successive cell assemblies.

IV. RESULTS

A. Heat-fiux measurements
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Here we present measurements of the convective heat
current averaged over a modulation cycle j"""as a func-
tion of eo. They yield information on the convective
threshold shift, and on the initial slope ofj """(e)aobove
the threshold. Similar measurements were made by
Niemela and Donnelly [40] in experiments with liquid
helium with o. =0.49, and yielded the first experimental
confirmation of the theoretically predicted
[28 —30, 32, 34, 35 ] threshold shift.

All heat-flux measurements were taken using bottom
plate A and sidewall B. Shown in Fig. 7 are results for
co=15 and 5=1.97. They were obtained by beginning
the experimental run with eo= —0. 1 and modulating for
40 cycles at each value of eo. Measurements were made
of ET(t) and Q(t) during the last 36 cycles. By incre-

menting Q, eo was increased by approximately 0.02 and a
new 40-cycle set was performed. This procedure contin-
ued until so=0. 5. The results in Fig. 7 show a threshold
shift of over 10%, with a somewhat rounded bifurcation.
This rounding is due to the modulation; in the absence of
modulation the bifurcation was as sharp as that shown in
Ref. [46], Fig. 5. Above co=0 15,j """increas.es linearly
within our resolution. We determined the threshold shift
and initial slope by calculating the best-fit line through
the points above EO=0. 15. The line shown in Fig. 7 is

this fit.
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FIG. 8. Comparison of experimental measurements (shown

as solid circles) of j"""(eo)with the predictions of the nine-

mode model. The open circles are from static measurements
(6=0). The solid curves are the predictions. Only stable states
are shown. Note the small hysteretic loop immediately below
e„which is visible in (b).
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Shown in Fig. 8 as solid circles are measurements tak-
en as described above and also for co=15. They are for
(a) 5=1.42, (b) 5=1.97 (the same as in Fig. 7), and (c)
5=2.85. The open circles are measurements without
modulation. The best-fit line through the static measure-
ments was used to determine the unshifted threshold
KT, (co=0) Th.e initial slope for the static measurements
was S;=1.28, corresponding to g =0.781. The threshold
shifts were (a) e, =0.052, (b) e, =0.122, and (c)
e, =0.265. The initial slopes in Figs. 8(a), 8(b), and 8(c)
were S;= 1.22, 1.16, and 0.83, respectively.

Predictions of j"""for the experimental runs from the
HS Lorenz model are shown in Fig. 8 as solid curves.
Here we used Eq. (2.1), with g

' =S;(co =0), and
S;(co=0)=1.28 taken from the static experiment. The
locations of the theoretical values for e„ez,and ez are
indicated by the arrows. The predictions for e, are 0.070,
0.138, and 0.283 for Figs. 8(a), 8(b), and 8(c), respectively,
in good agreement with the experimental measurements.
Although e~ is not indicated by arrows in Fig. 8, the hys-
teresis loop between ez and e, is shown. It is barely no-
ticeable on the scale of the figure, however. The experi-
mental heat-flux values show no evidence of a discontinu-
ous jump at e, because the jump is masked by the round-
ing of the bifurcation. Even though the model predicts
that rolls should not occur until ep) ez, heat-flux predic-

tions for a roll pattern (upper curve) as well as a hexago-
nal pattern (lower curve) are shown in Fig. 8 for
ez & ep ez. The measurements do not exhibit the
discontinuity of j"""at e~ which is predicted by the
model, nor do they show any type of change at this point.
To investigate this further, we performed a run similar to
those described above, but with cp starting at =0.4 and
decreasing after each set of 40 modulation cycles until it
reached a value of —0. 1. We found that within experi-
mental resolution measurements with increasing and de-
creasing ep agreed with each other. Despite the lack of
qualitative agreement between experiment and the model
at co=as, the measured heat-flux values in Figs. 8(a) and
8(b) are in good overall agreement with their correspond-
ing theoretical predictions. The same cannot be said for
those of Fig. 8(c), where the measured values fall
significantly below those predicted by the model.

Shown in Fig. 9(a) are the experimental measurements
of e, as a function of 5 for co=15. The measurements
were made in the same manner as those shown in Fig. 7.
The solid curve represents the predictions of the HS
nine-mode Lorenz model, while the dashed curve
represents those of the three-mode Lorenz model of
Ahlers, Hohenberg, and Liicke [34]. Although the exper-
imental points systematically fall slightly below the curve
of the nine-mode model, the agreement is nevertheless
quite impressive. The predictions of the three-mode
model, however, deviate considerably from the experi-
mental measurements. The difference between the pre-
dictions is due to the larger number of modes in the HS
model, which gives it higher accuracy. At a lower fre-
quency (co=10) it was found [40] that the three-mode
model made very accurate predictions of the threshold
shift. It is not as accurate at co=15 because the impor-
tance of the higher-order modes increases with frequency
[34].

The initial slope of j"""above the convective threshold
is shown as a function of 5 for co= 15 in Fig. 9(b). These
results were taken from the same experimental runs used
to determine e, . For 0.5 ~ 5 ~ 2.0 they are roughly con-
stant at a value of S;=1.15, which is 10% lower than
S;"". Above 5=2.0, however, S; drops substantially to a
value =0.8. Due to the large scatter in the data it is not
clear whether the decrease is sudden or smooth. In order
to understand the reason for the behavior of S, it is of
course important to be able to observe the convective
pattern. We will therefore defer discussion of this behav-
ior until Sec. IVF, where we will examine the patterns
corresponding to the heat-flux measurements of Fig. 8(c).

B. Initial survey of the parameter space

0.5
0

FIG. 9. (a) Experimental values of t., as a function of 5 for
co= 15 (shown as circles). The solid curve represents the predic-
tion of the nine-mode model, while the dashed curve shows that
of the three-mode model of Ahlers, Hohenberg, and Liicke (see
Ref. [34]). (b) The initial slope S; of j"""above the convective
threshold as a function of 5 for co= 15.

In the experimental runs described in Sec. IVA, the
pattern faded away and later reappeared essentially un-
changed during the course of each cycle. Images were
taken during the 40th cycle at each value of E'p at the
time when the intensity was approximately at its peak.
In Fig. 10 images are shown for co=15 and 5=2.03. The
run was made with bottom plate A and sidewall A, and
yielded heat-flux measurements similar to those of Fig. 7.
The images in the figure were taken with (a) so=0.217,
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FIG. 10. Shadowgraph images of convective flow patterns for co=15, 5=2.03, and (a) 6'p=0. 217 (b) 0.254, (c) 0.289, (d) 0.325, (e)
0.359, and (fj 0.395. Sidewall A was used. The bright regions show downflow at the center of the hexagons, while the dark regions
show upflow along their outer boundaries. The images were taken when the patterns were at approximately their peak intensity dur-

ing the cycle. At these modulation parameters the HS model predicts the boundaries e, =0.142, e& =0.257, and e& =0.363.

(b) 0.254, (c) 0.289, (d) 0.325, (e) 0.359, and (f) 0.395. For
the parameters of this run e, =0.142, ez =0.257, and
e~ =0.363. In Fig. 10(a), where e, & eo &e„,the flow ob-
served in the center of the container is clearly cellular, al-
though the pattern adjacent to the sidewall consists of
concentric rolls. The cellular flow consists of isolated (or
sometimes nearly isolated) regions of downflow (which
appear as light areas in the shadowgraph) surrounded on
all sides by regions of upflow (dark areas). The cells are
aligned in a nearly perfect hexagonal lattice in the center
of the container, although the lattice is distorted in the
regions closer to the sidewall in order to accommodate
the circular geometry of the container. We believe that
these cells correspond to the theoretically predicted
[33,35] hexagonal cells. The existence of downflow in the
cell centers is also as predicted.

The rolls which appear adjacent to the sidewall in Fig.
10(a) probably occur due to two factors: dynamic
thermal sidewall forcing, which has been discussed exten-
sively elsewhere [42,46,49 —51], and forcing due to fiuid
flowing underneath the sidewall. The latter effect is due
to the expansion or contraction of the fluid in the cell and
the sidewalls when the mean temperature is increased or
decreased. By the design of sidewall A [see Fig. 6(a)],
fluid flows underneath the sidewall to or from the outer
channel. Although the flow velocities must be very small,
they may contribute significantly to the forcing of paral-
lel rolls in their vicinity.

The circular rolls in the pattern of Fig. 10(a) influence
the overall pattern more as eo is increased. In 10(b),

where co=a+, the cells still exist, but they are slightly
connected in the azimuthal direction. In 10(c) the cells
have connected to form a circular pattern in most of the
cell. In one region of the container, however, the cellular
pattern has remained, resulting in an overall pattern
which exhibits a coexistence between circular rolls and
cells. As Eo is increased further in Figs. 10(d) —10(f) the
coexistence persists, although the region of the container
where cells exist decreases in size.

The experimental run described above was repeated
several times. Each time the cellular pattern of Fig. 10(a)
was reproduced for e, ~ so& e~. The orientation of the
cells was the same every time. We believe that this repro-
ducible alignment may have been due to thermal pertur-
bations from the thermistor and its leads in bottom plate
A, since one of the directions of the constrained lattice is
aligned with the groove holding the thermistor (see Fig.
5). The location of the region of coexistence seen in Figs.
10(c)—10(f) was also reproduced.

In Fig. 11 the cellular pattern of Fig. 10(a) is compared
to the patterns consisting of irreproducible randomly
placed cells that were observed in low-frequency (co= 1)
modulation experiments [42—44]. Figure 11(a) shows
once again the image of Fig. 10(a), while Fig. 11(b) is
from Ref. [44] and shows the emerging pattern from an
experimental run with co=1, 6=0.51, and 6'O=0. 21. Fig-
ures 11(c) and 11(d) are the central portions of the
Fourier transforms of Figs. 11(a) and 11(b), respectively
(the modulus of the transform is shown as gray levels as a
function of the wave-vector components k and k»). The
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container used for the run of Fig. 11(b) was also circular,
and had as aspect ratio L = 10. Circular rolls do not exist
next to the sidewall in this container because a special
sidewall which minimized thermal sidewall forcing [44]
was used. The Fourier transform of Fig. 11(a) clearly ex-
hibits sixfold symmetry, while that of Fig. 11(b) does not.
The length scales of the patterns also differ. While the
average wave number of Fig. 11(a) is k =1.02k„that of
Fig. 11(b) is k=1.12k, . Finally, the pattern in Fig. 11(a)
is reproducible from cycle to cycle, while that of Fig.
11(b) is not. We therefore believe that the cellular flow
observed in Fig. 11(a) is not related to the random cellu-
lar flow studied in Refs. [42] and [44].

The coexistence observed in Figs. 10(c)—10(f) cannot be
reproduced by the HS model, which assumes that the
pattern is spatially uniform and on that basis predicts
hexagons for Figs. 10(a)—10(d) and rolls for Figs. 10(e)
and 10(fl. Unfortunately, it is not clear from Fig. 10
whether the coexistence observed would occur in a la-
terally infinite system, or whether it is due to the forcing
of concentric rolls by the sidewall. We therefore made
efforts to eliminate this forcing. The two sidewall designs
used in Refs. [46] and [44], which were successful in elim-
inating the forcing for low-frequency modulation and in

(b)

(c)

FIG. 11. Comparison of the cellular flow pattern and its
Fourier transform observed at co=15, co=0.217, and 5=2.03
with the random cellular flow pattern observed at co = 1,
co=0.21, and 5=0.51. (a) Figure 10(a), with the low-wave-
vector portion of its Fourier transform below it (c), demonstrat-
ing the sixfold symmetry of the central portion of the pattern.
(b) Image from Ref. [44], which shows the pattern emerging
above onset. The low-wave-vector portion of its Fourier trans-
form is below it (d), showing that the intensity of the transform
is distributed over a ring instead of having sixfold symmetry.

ramping experiments, were found not to be successful in
this case. However, sidewall B (Fig. 6) reduced the forc-
ing sufficiently. With that wall the expanding or con-
tracting fluid generates flow to or from the outer channel
through small radial holes located at the midheight of the
cell. This flow, since it is not azimuthally symmetric and
is symmetric about the midplane, does not force rolls that
are parallel to the sidewall. Furthermore, since the spac-
ing of the holes is 0.78d and is therefore incommensurate
with the wavelength of a roll pattern, the holes should
not be able to force rolls that are perpendicular to the
wall. Although thermal forcing still exists when using
the design of sidewall B, it is apparently not sufficiently
strong to dominate the flow pattern if the match between
the thermal properties of the fluid and sidewall is ade-
quate. We found that when certain plastics other than
acrylic (e.g., Delrin, high-density polyethylene, or
chlorinated-polyvinyl chloride, C-PVC) were used with
this design, concentric rolls still occurred.

Figure 12 shows results from an experimental run simi-
lar to that of Fig. 10, but with sidewall B and bottom
plate A. The heat-flux measurements shown in Fig. 7
were made while obtaining these results. The modulation
parameters are ~=15, 5=1.97, and (a) co=0.214, (b)

0.253, (c) 0.289, (d) 0.325, (e) 0.363, and (f) 0.398. As be-
fore, e, =0.138, ez =0.252, and es =0.356. In Fig. 12(a)
the pattern is once again cellular, and no concentric rolls
occur adjacent to the sidewall. The cells, however, do
not form a perfect lattice of hexagons. There exists local
sixfold symmetry in several regions of the pattern, but
these regions are not aligned with each other; this leads
to defects in the lattice structure. In Figs. 12(b)—12(e)
coexistence is once again observed, but this time the rolls
are not all parallel to the sidewall. This result suggests
that the coexistence observed in Fig. 10 is perhaps not
due to the forcing of rolls by the sidewall, but instead is
intrinsic to the problem and would occur in a laterally
infinite system. As eo is increased through the coex-
istence range, the ratio of the area of the regions contain-
ing hexagons to that of the regions containing rolls de-
creases. In Fig. 12(f) the pattern is essentially roll-like,
although slight signs of cellular flow exist along the per-
imeter of the pattern. The boundary between the purely
cellular region and the coexistence region is consistent
with ez, and the boundary between the coexistence re-
gion and the roll region is consistent with e~. Several
other experimental runs were performed with the same
sidewall, bottom plate, and modulation parameters. In
each run defects appeared in the cellular patterns for
@0&0.25, and in each run the defects were located in
different places.

Figure 13 shows a plot of the average wave number as
a function of eo for co=15 and 5=1.97. The solid circles
correspond to the images shown in Fig. 12. The value of
k remains nearly constant at k=k„varying by only
=1%. It is interesting to note that k varies with eo most
smoothly in the regions 0.2 ~ t 0

~ 0.25 and
0.35~so 0.45, which correspond to the hexagon and
roll regions, respectively. In the region between, which
corresponds to the coexistence region, the results for k
are more noisy.
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(a) (b) (c)

FIG. 12. Images of convective Qow patterns as in Fig. 10, but with sidewall B. Modulation parameters are co=15, 5=1.97, and (a)

6p =0.2 14 {b) 0.253, (c) 0.289, (d) 0.325, (e) 0.363, (fj 0.398. For these parameters the nine-mode model predicts e, =0. 1 38,
ez =0.252, and e& =0.356. Sidewall 8 was used while obtaining the images shown throughout the remaining part of this paper.

C. The hexagon region

%e present in this subsection results obtained within
the region e, ~ ep ~ e~. In all examples co = 18 and
5=1.99; for these parameters e, =0.125 and ez =0.248.
Sidewall 8 and bottom plate B were used. Bottom plate
B was used because of concerns that in bottom plate A
the presence of the thermistor directly beneath the cell
might cause thermal perturbations in the plate that
would influence the pattern; in bottom plate B the
thermistor and its leads rest below the sidewall (see Fig.
5).

0.99

k

kc

0.95—

0

b
o ~ 0

C

0 f
~ 0

y 0
od

0.95 l

0.2
l

0.5 0.4

FIG. 13. Average wave number k/k, as a function of eo for
co=15 and 5=1.97. The solid circles correspond to the images
shown in Fig. 12.

Figure 14 shows the temporal evolution of a roll-like
convection pattern after modulation was started. Before
the experiment was started, a straight-roll pattern was
thermally imprinted by a method similar to that of Chen
and Whitehead [52]. It was modulated for 12 cycles with
ep=0. 382) e&, in order to allow initi. al transients due to
the modulation to end while in the ro11 region. The pat-
tern during the 12th cycle is shown in Fig. 14(a). After
the end of the 12th cycle, E'p was quenched to 0.191 and
the modulation was continued. The evolution is shown in

images taken during the (b) 10th, (c) 30th, (d) 50th, and
(e) 70th cycle following the quench. In Fig. 14(b) the pat-
tern is essentially unchanged except for a few perturba-
tions near the sidewall. In Fig. 14(c), however, cellular
flow is emerging. The pattern in the vicinity of the
sidewall is almost completely cellular, while that in the
center still has some unbroken segments of the original
rolls. In Figs. 14(d) and 14(e) the pattern is almost com-
pletely cellular. Cells which are aligned at 60 from the
original roll axis can be observed. Despite these signs of
sixfold symmetry, the pattern clearly has a number of de-
fects within it.

In order to determine whether such a pattern would
eventually evolve to a perfect hexagonal lattice we per-
formed a similar experiment with 256 cycles and with
ep=0. 183 after the quench. The results are shown in Fig.
15, where the images were taken during the (a) 136th, (b)
176th, (c) 216th, and (d) 256th cycle. The pattern clearly
has not evolved into a perfect lattice, and continues to
evolve during the run. It is interesting to note that al-

though E'p+E'g, coexistence between cells and rolls oc-
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FIG. 14. Evolution of a straight-roll attern shown in (a) tp 'n (a), o a cellular pattern. The modulation parameters are co=18, 5=1.99,
and @0=0.191. For these parameters e, ~ eo ~ e&. Images (b) —(e) were taken during the (b) 10th, (c) 30th, (d) 50th, and (e) 70th c cle
respectively, after eo was quenched from an initial value larger than 6g.

casionally occurs. This is particularly evident in Fig.
15(a), where a long roll segment exists in a pattern that is
otherwise almost completely cellular. In Figs.
15(b)—15(d) this roll has disappeared, but several cases
where cells have partially connected are observable.
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FIG. 15. L5. Long-term evolution of a cellular pattern in the re-

gion e, ~ E'p E' g . The modulation parameters are co = 18
6 = 1.99, and eo =0.183. The images were taken during the (a)
136th, (b) 176th, (c) 216th, and (d) 256th cycle after eo was
quenched from an initial value larger than ez.

D. The bistable region

In this subsection we discuss the region E'g E'p E'g.

The results shown here were also obtained with bottom
plate B and sidewall B. It has already been shown in Fig.
12 that a pattern that is originally cellular evolves to one
exhibiting coexistence when ep is increased into the bi-
stable region. We also find that a roll-like pattern evolves
to one involving coexistence when ep is quenched into the
bistable region from a value greater than e~. Such an
evolution is shown in Fig. 16, where the modulation pa-
rameters are co=15, 5=1.99, and e =0.276. The origi-
nal pattern was a thermally printed straight-roll pattern.
The system was modulated first for 12 cycles at
E'p =0.387 & ez before quenching into the bistable region.
Figure 16(a) was taken during the last cycle before the
quench. The other images were taken during the (b)
10th, (c) 50th, (d) 90th, and (e) 130th cycles following the
quench. In Fig. 16(b) the pattern has not evolved notice-
ably except for some minor perturbations around the
sidewall. By Fig. 16(c), however, the cellular flow has
clearly emerged in certain areas of the cell. These areas
tend to be in the vicinity of the sidewall, while in the
center of the container much of the original pattern has
remained. In Figs. 16(d) and 16(e) the percentage of the
pattern that is cellular is roughly the same as in Fig.
16(c), but the pattern has nevertheless evolved, and the
regions containing the cells have shifted to different parts
of the cell. By Fig. 16(e) the pattern has lost any resem-
blance to its original form.

In order to determine whether the pattern ever reaches
a point where it no longer evolves, we made a run where
the system was modulated for over 1000 cycles (this re-
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FIG. 16. Evolution of a straight-roll pattern, shown in (a), to one exhibiting coexistence. The modulation parameters are co=15,
6=1.99, and @0=0.276. For these parameters e& eo e&. Images (b)—(e) were taken during the (b) 10th, (c) 50th, (d) 90th, and (e)
130th cycle following the quench, respectively.

quired approximately ten hours). The parameters were
co = 15, 5= 1.99, and eo =0.257. The modulation was
started with a circular roll pattern at co=0.257. Images
were taken once every 32 cycles. Sample images taken
during the (a) 160th, (b) 288th, (c) 416th, (d) 544th, (e)

672nd, and (f) 800th cycle are shown in Fig. 17. During
the entire run the pattern remained in a state of evolu-
tion. As in Fig. 16, the regions where rolls and cells exist
continually change. However, this process is slow, and
the patterns in successive cycles are very similar to each

(b) (c)

L.
I'=

~ ~

WC

(e)
FIG. 17. Long-term evolution of a pattern in the bistable region. The modulation parameters are co=15 6= . p=6=1.99 and e =0.257.

The images were taken during the (a) 160th, (b) 288th, (c) 416th, (d) 544th, (e) 672nd, and (f) 800th cycle of the modulation.
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We measured the boundary length 8 between regions

of upflow and downflow [46] (see Sec. III C) in order to
quantitatively describe the degree of cellularity of the
patterns in the bistable region. We measured 8 for all the
images taken during the experimental run of Fig. 17 in
order to observe whether the degree of cellularity would
remain constant throughout the run. The results are
shown in Fig. 18(a) as a function of the cycle number.
The solid circles correspond to the images of Fig. 17.

FIG. 18. (a) Boundary length 8 between the regions of
upflow and downflow (see text) as a function of the cycle num-

ber for the modulation run of Fig. 17. (b) k /k, as a function of
cycle number for the same run. In both plots the solid circles
correspond to the images of Fig. 17.

The variations in 8 are much larger than the experimen-
tal resolution, which is illustrated by the smooth varia-
tion of B in Refs. [44) and [46]. It is interesting to note
that the variation of 8 from one image to the next is
greater during the first half of the run. Nevertheless, it is
clear that 8 is never constant during modulation in the
bistable region.

The average wave number of the pattern as a function
of the cycle number is shown in Fig. 18(b). The solid cir-
cles once again refer to the images in Fig. 17. The values
of k lk, do not show any systematic variation throughout
the run. The peak-to-peak variations of 2%%uo are con-
sistent with those found between ez and ez in Fig. 13,
and are larger than the experimental resolution for k.

In considering the fluctuations in B, shown in Fig.
18(a), it is worth noting that the distinction between cel-
lular and roll-like flow provided by 8 is quantitative rath-
er than qualitative. We illustrate this in Fig. 19(a) which
shows the central portion of a pattern in which rolls and
cells coexist in almost the entire cell. For this run the
modulation parameters were ~= 15, 5= 1.99, and
6p =0.262, and the image was taken during the 90th cy-
cle. The image is displayed with one-bit gray scaling in
Fig. 19(b), where each pixel whose value is greater than
or equal to the mean pixel value is shown as white, and
the other pixels are shown as black. Determination of B
is made by measuring the boundary length between the
black and white regions of the image [46]. With this rep-
resentation the pattern appears to be almost completely
roll-like. The cellular contribution to the pattern can be
detected, however, by changing the threshold above
which pixels are displayed as white to a higher value, as
is done in Fig. 19(c).

E. The roll region

The results for this section were also obtained with bot-
tom plate B and sidewall B.

Theoretical predictions [8,33,35] state that for eo) ez
only rolls are stable, and therefore cellular flow should
not be observed. We attempted to experimentally deter-
mine this boundary for co=15 and 5=1.99 (F~ =0.356)
in order to compare it with the boundary predicted by

(c)

FIG. 19. (a) Central portion of a pattern exhibiting coexistence between roll-like and cellular flow within the same spatial region.
(b) The same image as in (a), but displayed with one-bit gray scaling, where pixels with values greater than the mean value are shown
as white, and the others as black. (c) One-bit representation of the image in {a),but with an increased threshold value.
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FIG. 20. Evolution of an initial straight-roll pattern after 130 cycles of modulation near e~. The modulation parameters are
co= 15, 5= 1.99, and (a) @0=0.327, (b) 0.335, (c) 0.363, (d) 0.392, (e) 0.446, and (f) 0.471. The value of e& for these modulation pararne-
ters is 0.356.

the HS model. Experimental runs using values of ep near
were performed in order to determine the value of E'p

above which coexistence would not be observed. For
each run we first thermally printed a straight-roll pattern
similar to that shown in Fig. 16(a) to use as an initial pat-
tern. We then modulated for 130 cycles to observe
whether the initial pattern remained unperturbed. The
results are shown in Fig. 20, where all images were taken
during the 130th cycle. The values of Eo were (a) 0.327,
(b) 0.335, (c) 0.363, (d) 0.392, (e) 0.446, and (fj 0.471. Cel-
lular flow is seen in all cases. However, in Figs.
20(a) —20(c) cellular flow occurs in the interior regions of
the pattern while in Figs. 20(d) —20(f) the cells are found
only in the vicinity of the sidewall. Furthermore, in the
latter images the original pattern has remained largely
undisturbed, while in the first three images many parts of
it have gone through considerable evolution. Therefore
there is a certain degree of consistency between these re-
sults and the predictions of the HS model. Nevertheless,
the experimental boundary between the roll region and
the coexistence region is not sharp, making it dificult to
measure the boundary as a function of co and 5.

It has been shown in Fig. 17 that for ez ~ep ez the
pattern, which contains both cellular and roll-like flow,
evolves over long time scales. However, even for values
of E'p that are considerably higher than e~, where cellular
flow is generally not seen in the pattern, the pattern con-
tinues to evolve over long periods of time. This is shown
in Fig. 21, which tracks the evolution of a roll-like pat-
tern for co=15, 6=1.99, and ep=0. 526) ez. For this ex-
periment a horizontal straight-roll pattern was once

again thermally printed for use as the initial pattern. The
images shown were taken during the (a) 32nd, (b) 160th,
(c) 288th, (d) 416th, (e) 544th, and (f) 672nd cycle. In Fig.
21(a) the original pattern is still generally intact. By Fig.
21(b), however, it has evolved significantly. The evolu-
tion continues in Figs. 21(c)—21(f). Even at this large eo,
some evidence of coexistence between cellular and roll-
like flow is often apparent. In the absence of modulation,
such a roll-like pattern would not evolve significantly
over the time scale of these experiments.

F. Limitations
of the deterministic hexagon-roll stability diagram

The results presented so far have dealt only with values
of co and 5 for which cellular and/or roll-like flow

relevant to the theoretically predicted [33,35] hexagons
could be observed. However, we were not able to observe
cellular flow with local sixfold symmetry in all the re-
gions of the parameter space where hexagons are predict-
ed to exist. We present here images of other types of
flows that were observed in portions of the theoretically
predicted hexagon region. Once again, sidewall B and
bottom plate B were used when obtaining these results.

At low modulation amplitudes hexagonal flow did not
occur in the hexagon region. Instead, roll-like patterns
continued to exist throughout the experimental runs, al-

though the rolls were slightly perturbed. Figure 22
shows images of an initially straight-roll pattern after 130
cycles with co = 15. For Fig. 22(a), 5 = l. 22 and
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(a) (c)

(d) (e)

FIG. 21. Evolution of an initial straight-roll pattern during modulation with ~=15, 5=1.99, and co=0.526& e~. The images
were taken during the (a) 32nd, (b) 160th, (c) 288th, (d) 416th, (e) 544th, and (f) 672nd cycle.

Ep 0.087; for Fig. 22(b), 5=0.98 and eo =0.055. For
Fig. 22(a) e, =0.051, ez =0.095, and ez =0.163; for Fig.
22(b) e, =0.032, ez =0.056, and ez =0.104. In Fig. 22(a)
the pattern shows mostly cellular flow with local hexago-
nal symmetry, with a hint of roll formation, as we might
expect for Ep so close to ez. In Fig 22(b),. however,
where E'p is also very close to ez, the pattern remains in
its original straight-roll form, and only faint signs of
modulation of the width of the rolls can be found in cer-
tain portions of the pattern. It is possible, of course, that
if more cycles were performed in case (b), the roll pattern
would eventually evolve to a cellular pattern.

,1k' ~];:

(a)

FIG. 22. Evolution of an initial straight-roll pattern during
modulation with small 5. The images were taken during the
130th cycle. The modulation parameters are co=15, with (a)
5=1.22, so=0.087, and {b)5=0.98, co=0.055.

At high modulation amplitudes, hexagonal patterns
were also not observed. In this case, however, the pat-
terns consisted of randomly positioned cells. For a range
of 5, these random cellular patterns were reproducible
from one cycle to the next. For 5 above this range the
patterns were irreproducible from cycle to cycle. Exam-
ples are shown in Fig. 23, which is for an experimental
run similar to those which yielded Fig. 12, but with
co=15, 5=2.85, and (a) e'0=0. 377, (b) 0.404, (c) 0.436, (d)
0.470, (e) 0.496, and (f) 0.529. The heat-flux measure-
ments obtained during this run were shown in Fig. 8(c).
The patterns are clearly different from those observed
while using smaller values of 5, such as those of Fig. 12.
This difference may account for the discrepancy between
the experimental and theoretical values of the initial
slope S; of j""",since the theoretical predictions assume
patterns consisting of either an array of rolls or a lattice
of hexagons, and the patterns observed clearly consist of
neither. Although in this particular run we did not deter-
mine the reproducibility of the pattern, other runs with
similar modulation parameters yielded similar patterns
that were nearly reproducible from one cycle to the next
but changed on a longer time scale.

The transition from patterns with local sixfold symme-
try to those containing randomly placed cells is shown in
Fig. 24, which presents images taken during the 69th cy-
cle of experimental runs with co=15. The other parame-
ters are (a) 5 =2.33, co=0.266; (b) 5=2.68, ED=0.350; (c)
5=2.86, co=0 350; and (.d) 5=3.08, @0=0.371. All of
these sets of parameters are within the hexagon region.
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(b) (c)

(ci) (e)

FIG. 23. Flow patterns observed during a run with co=15, 5=2.85, and increasing values of eo. The values of eo are (a) 0.377, (b)
0.404, (c) 0.436, (d) 0.470, (e) 0.496, and (f) 0.529. The images were taken during the 40th cycle.

1
~. »i

(b)

I/I ~
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FIG. 24. Flow patterns observed during runs with co= 15 and

large values of 5. The images were taken on the 69th cycle. The
modulation parameters are (a) 6=2.33, co=0.266; (b) 5=2.68,
@0=0.350; (c) 5=2.86, co=0.350; and (d) 6=3.08, so=0. 371.

While the pattern in Fig. 24(a) contains cells with local
sixfold symmetry, those of Figs. 24(b) —24(d) show that as
5 is increased the patterns progressively exhibit less of
this symmetry and are of a more random nature. During
the transition between hexagonal flow and random cellu-
lar flow, the pattern appears to be composed more of
short segments of rolls than of cells, as shown in Figs.
24(b) and 24(c). Images were also taken during the 70th
cycle of the runs, and showed that in all four runs the
patterns were essentially reproducible from one cycle to
the next.

Shown in Fig. 25 are images of patterns taken in the vi-
cinity of the boundary between reproducible and irrepro-
ducible How. The images on top were taken during the
69th cycle, and those on the bottom during the 70th cy-
cle. The modulation frequency is co=13 (the apparatus
was unable to reach this boundary with co= 15), and the
other modulation parameters are (a) 5=2.82, co=0 411;.
(b) 5=2.99, so=0.438; and (c) 5=3.24, co=0.429. All
three sets of parameters are located within the hexagon
region of the HS model. In Fig. 25(a) most major
features of the pattern are reproduced, while in Fig. 25(c)
the central portion of the pattern is clearly not repro-
duced. In Fig. 25(b) a large number of features in this
central portion are reproduced, but roughly the same
number of features are not. Therefore Fig. 25(b) is

roughly at the reproducibility-irreproducibility boundary,
which apparently is not very sharp.

Finally, runs were carried out where 5 and eo were kept
constant while co was varied. The results are shown in
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FIG 25 Patterns observed during experimental runs with co=13.0, and with the other parameters in the vicinity of the
reproduclbility/irreproduclbllity boundary. The images were taken on the (top) 69th and (bottom) 70th cycles The parameters are
(a) 5=2.82, @0=0.411; (b) 5=2.99, co=0.438; and (c) 5=3.24, co=0.429. For all cases e, eo e&.

Fig. 26, which presents images from the 69th (left side)
and 70th (right side) cycles. The modulation parameters
are 5=2.0, co=0.22, and (a) co=8.0, (b) 9.0, (c) 10.0, and
(d) 12.0. In Fig. 26(a) the central portion of the pattern is
not reproduced, while in Fig. 26(b) it is partially repro-
duced. In Figs. 26(c) and 26(d) the entire pattern is essen-
tially reproduced. Note that in Fig. 26(d) signs of local
sixfold symmetry occur, while in Fig. 26(c) they do not.
Note also the concentric rolls in the vicinity of the
sidewall in all patterns of this figure, indicating the in-
creased influence of sidewall forcing at lower modulation
frequencies.

We showed in earlier publications [42—44] that in low-
frequency modulation experiments (co = 1) there is a
threshold convective amplitude below which a pattern
cannot sustain itself against stochastic perturbations
present in the system. We found that, when E'p was below
a threshold value Es(5), the pattern consisted of random-
ly placed cells similar to those shown in Fig. 11(b). The
boundary between reproducible roll flow and irreproduci-
ble random cellular flow was sharp within experimental
resolution [42—44], and semireproducible random cellu-
lar flow patterns such as those shown in Figs. 23 —26 were
not observed. It seems likely to us that during the runs
which exhibit semireproducible random cellular flow at
the higher frequencies, stochastic perturbations are able
to influence the convective patterns slightly without be-
ing able to destroy them completely in a given cycle be-
cause the amplitude of the convection falls below a
threshold value only for a relatively short time.

In the previous low-frequency work it was determined
that for Ep (Eg the parameter z of the three-mode Lorenz

TABLE I. Minimum values during a cycle of x &H, y &0, and z for the

modulation parameters corresponding to the images of Figs. 23 —26.

Figure co 5

min min &min+1H »H
eo (units of 10 ) (units of 10 ) (units of 10 )

23(a)

23(b)

23(c)
23(d)

23(e)

23(Q

15.2.85 0.377
15 2.85 0.404
15 2.85 0.436
15 2.85 0.470
15 2.85 0.496
15 2.85 0.529

0.99
1.10
1.22

1.35

1.45

1.59

0.97
1.08
1.19

1.31

1.42

1.55

99
117
137
154

165

181

24(a) 15 2.33 0.266
24(b) 15 2.68 0.350
24(c) 15 2.86 0.350
24(d) 15 3.08 0.371

2.50
1.41
0.84

0.45

2.46
1.38
0.82

0.43

160
124

77

40

25(a) 13 2.82 0.411
25(b) 13 2.99 0.438
25(c) 13 3.24 0.429

0.41
0.26
0.08

0.40
0.25

0.08

26
21

6

26(a) 8 1.96 0.213
26(b) 9 1.97 0.229
26(c) 10 1.98 0.210
26(d) 12 1.98 0.220

0.07
0.18

0.40
1.49

0.07
0.18

0.39
1.47

0.13
0.82

3.16
34.2

model [34,45] (which is equivalent to z in the HS model
and is proportional to j""") falls below a threshold
z =10 during part of the cycle, whereas for larger E'p it
always stays above this threshold. It is not clear that z is
the best representative of the convective amplitude; the
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hypothesis that the pattern is undisturbed when z
remains above 10 . The values of x, '" and y, '" at the
pattern reproducibility-irreproducibility boundary vary
somewhat with co. Therefore a more sophisticated
theoretical approach must be used for the detailed predic-
tion of this boundary. It would be interesting to examine
the Langevin model used by Swift and Hohenberg [53] at
our present frequencies to determine mean attractor life-
times.

(b)

(c)

FIG. 26. Patterns observed during runs with 5=2.0 and
@0=0.22, and whose parameters are in the vicinity of the
reproducibility/irreproducibility boundary. The images were
taken on the (left) 69th and (right) 70th cycles. The frequencies
are (a) co=8.0, (b) 9.0, (c) 10.0, and (d) 12.0. For all cases
&c —&0 —&R.

amplitude of the lowest Fourier mode of the velocity
(x,R or x» in the HS model) or of the temperature devi-
ation from the conductive profile (y, R or y») may be
more relevant. Numerical integration of the HS model
shows that at low frequencies it does not matter which of
these is chosen, because they are strongly coupled by the
relations z=x,z, x,~ =y&z, etc. At low frequencies,2

therefore, when z falls below 10,x,~ and y, ~ fall below
10 . At the frequencies of the present work this cou-
pling no longer holds. Therefore we have determined the
minimum values of x», y», and z during a modulation
cycle for runs with the parameters corresponding to
those of Figs. 23 —26 and have listed them in Table I. All
results are consistent with the hypothesis that fluctua-
tions are able to disturb the convective pattern
significantly during a single cycle when x, and y, fall
below a threshold which lies between 1.6X10 and
2.5X10 . However, they are not consistent with the

V. CONCLUSION

In this paper we have presented heat-flux measure-
ments and shadowgraph images which revealed competi-
tion between cellular and roll-like patterns in convective
flows in a thin horizontal fluid layer subjected to a tem-
perature difference which is modulated at moderately
high amplitudes and frequencies. Over the theoretically
predicted range e, ~ eo e~, we observed cellular flow

with local sixfold symmetry. For e~ & so& e~, a pattern
exhibiting coexistence between cellular and roll-like flow
was observed. For eo& e~, rolls were observed. All pat-
terns were essentially reproducible from one modulation
cycle to the next, but evolved on much longer time scales
than a modulation period. At high modulation ampli-
tudes, the patterns consisted of randomly located cells at
all values of E'0 studied. These cells also were essentially
reproducible from one cycle to the next and evolved on
long time scales. At still higher modulation amplitudes,
the random cellular patterns became irreproducible from
one cycle to the next and were similar to those observed
previously [42,44,46] at much smaller modulation fre-
quencies and in temporal ramps through the threshold.

Some of the results were in good agreement with
theory and others were unexpected. Among those in
agreement with theory were the measurements of the
convective threshold shift and the observation at
moderately large modulation amplitudes of cellular pat-
terns with local sixfold symmetry over the range where
hexagons were theoretically predicted to be stable. It is
not surprising that perfect hexagonal patterns were not
observed in these experiments when one considers that
under steady heating in finite containers the roll patterns
that are observed are frequently not straight and parallel
as theoretically predicted for an infinite system, but in-
stead are bent and contain defects such as grain boun-
daries and dislocations.

The results which are not explained by the model are
likely to be associated with the fact that over a wide pa-
rameter range the pattern amplitude periodically decays
to microscopic levels during part of each cycle. When
the amplitude is sufficiently small, the pattern can be al-
tered by stochastic effects associated either with thermal
noise or with external noise inherent in the experiment.
An important result which differed from the model pre-
diction was the observation of coexistence of cellular and
roll-like flow over the range ez ~ eo ~ e~. The coexistence
explains the absence of the theoretically predicted hys-
teresis loop in the heat-flux measurements over this
range. Coexistence was not predicted because the
theoretical models [33,35] assumed a spatially homogene-
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ous pattern. Further theoretical work is therefore re-
quired in order to understand this phenomenon. Presum-
ably a model with spatial variation and possible stochas-
tic forces would result in a pattern which is a mixture of
rolls and hexagons, in proportions which vary smoothly
from pure hexagons to pure rolls as eo varies from E'g to

The observation at high modulation amplitudes of pat-
terns involving randomly placed cells and short roll seg-
ments was also unpredicted. We believe that these pat-
terns may be due to the influence of stochastic perturba-
tions which become important during the part of the
modulation cycle when the amplitude becomes very
small.

A comparison between experimental results on modu-
lated convection and classical non-OB convection is in-
structive. The possibility of stochastic perturbations in
modulated convection is a factor which is absent in the
usual non-OB case associated with temperature-
dependent fluid properties, because there the amplitudes
never are small and stochastic forces are negligible.

Indeed, the coexistence of cells and rolls over the entire
range from ez to e~, which is shown in Figs. 10 and 12,
does not occur. Instead, hexagons (rolls) give way to rolls
(hexagons) at a nearly unique value eT of 6p'as ep is in-

creased (decreased) [20]. The value of eT. can be
identified as the value of E'0 at which the generalized po-
tentials for the two phases (hexagons and rolls) become
equal. Equilibration between the two phases in this case
occurs via nucleation near the cell walls, and stochastic
effects do not appear to play a significant role. In the
modulated case there is no potential, even near threshold.
It is difficult to know which, if any, of the observed effects
are associated with the corresponding lack of an ex-
tremum principle.
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