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A detailed molecular-dynamics study is presented concerning the dynamic one-particle properties of
binary and ternary mixtures of hard-sphere-like particles. We have studied the self-diffusion coefficient
for each component of the mixture as a function of the density, and as a function of the difference in par-
ticle diameter. The results are compared with the predictions of the Enskog theory. At moderate densi-
ties positive deviations from the Enskog theory are found; at high densities we find negative deviations.
It is observed that the amplitudes of these deviations differ for each component of the mixture. For
moderate densities it is shown that these amplitudes have a particle-diameter dependence that is similar
to that of the amplitudes of the long-time tails of the velocity-autocorrelation functions. This finding in-
dicates that the vortex processes that give rise to the long-time tails are also responsible for the nonex-
ponential decay of the velocity-autocorrelation function at shorter times.

PACS number(s): 51.20.+d

INTRODUCTION

The velocity-autocorrelation function (VAF) and its
Green-Kubo integral, the self-diffusion coefficient, have
been studied extensively for the one-component fluid of
hard spheres. Considerably less attention has been paid
to the behavior of the VAF of hard-sphere mixtures. The
first molecular-dynamics (MD) studies concerning the
calculation of transport properties of one-component
hard-sphere fluids were performed by Alder and co-
workers [1-3]. They found that at high densities a VAF
has a significant negative part. As a result, the self-
diffusion coefficient is significantly smaller than the value
predicted by the Enskog theory.

The same MD studies [1-3] have also revealed
significant discrepancies between the MD and the Enskog
values of the self-diffusion coefficients at moderate densi-
ties. In the density range 0.4 <pc><0.7 it was found
that the self-diffusion coefficient exceeds the Enskog
value by 10-30%. This is due to a slowly decaying
nonexponential tail of the VAF. Several groups [4-7]
have derived an expression for the asymptotic decay of
this long-time tail that has been tested against more de-
tailed computer calculations [8—-10]. The most convinc-
ing support for the presence of the long-time tails has
been obtained recently by Frenkel and Ernst [10] for the
case of lattice-gas cellular automata. In their work they
have used explicitly the indistinguishability of the ‘“parti-
cles” after a collision, which is characteristic for the cel-
lular automata. Such an approach is not possible for
mixtures where the particles are defined to be distinguish-
able.

Up to this moment the discussion concerning the VAF
of hard-sphere fluids has been concentrated on proving
the existence of the long-time tails. However, it is impor-
tant to remember that the discrepancy between the ob-
served self-diffusion coefficient and its Enskog value is
mainly caused by the contribution of the nonexponential
tail of the VAF to the Green-Kubo integral at relatively
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short times where the asymptotic behavior of the VAF
has not yet been reached [1,3,5,9].

Less is known about the behavior of the VAF of hard-
sphere mixtures. Herman and Alder [11] have performed
a MD study concerning a test particle that differs only in
mass from the other particles. They found that the am-
plitude of the asymptotic tail of the VAF depends on the
ratio of the masses of the test particle and the other parti-
cles. Jackson, Rowlinson, and van Swol [12] have studied
the self-diffusion coefficient in binary mixtures, but they
did not compare their results with the Enskog theory.
Erpenbeck [13] has done MD calculations of transport
properties of an equimolar isotopic mixture of hard
spheres, but he did not consider the self-diffusion
coefficient.

In this paper we present the results of MD calculations
of several binary and ternary mixtures of particles that
differ in size, but not in mass. We have studied the densi-
ty dependence of the self-diffusion coefficients, as well as
their dependence on the relative particle size. We will
also propose a relationship between the self-diffusion
coefficients and the asymptotic tail of the VAF for mix-
tures at moderate densities. These results indicate that
the dynamic processes that cause the long-time tail are
also responsible for the nonexponential decay of the VAF
at shorter times.

COMPUTATIONAL

We have performed MD calculations in the NVE en-
semble of binary mixtures and three ternary mixtures of
spherical particles of different sizes. The particles of
component 1 have a diameter of o;;=2.6984 A. In the
calculations for the binary mixtures the diameter of the
Qartlcles of the second component vary between 2.6984
A=<0,,<5.3968 A= 20;. In the case of the ternary
mixtures the particles of the second component have a di-
ameter 05, =3.4 A and those of the third component are

33—4.2834 A. The masses of all particles are the same
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(40 a.u.). We have used the following interaction poten-
tial:

Viri=elo;/r)", n=42. (1)

For the interactions between unlike particles we assume
additivity: o;;=(0;+0,;)/2. The energy parameter ¢ is
chosen to be equal to the product of the Boltzmann con-
stant kK and the temperature 7. This “hard-soft-sphere”
potential yields results that to a very good approximation
are equal to those that are calculated using a genuine
hard-sphere potential [14].

The equations of motion are integrated using the
Stoermer-Verlet scheme, using a time step of either 1074
or 0.5X 107 's. The total length of a single run varies
between 4.5X 107! and 1.6 X107 %, depending on the
density of the system.

The binary mixtures are of equimolar composition.
We have further studied the three ternary mixtures with
the mole fraction ratios x;:x;:x, =1:1:2. All the mixtures
are studied in the density range 0.5=<p;_g.q=0.85.
Here p; _g,q is the 1-fluid density, which is defined as

Yy (2)

s
pi-mia=(N/V)oy, oi= 2 xix,‘73
ij=1

where s denotes the number of components in the mix-
ture. In most cases the system consists of 500 particles.
Additional calculations have been performed with sys-
tems of 2048 particles in order to be able to account accu-
rately for the tail of the VAF.

RESULTS AND DISCUSSION

Self-diffusion coefficients

We have determined the self-diffusion coefficient by
evaluating the slope of the mean-square displacement and
by integrating the VAF [15]. The difference between the
results obtained by those two methods is less than 5%.
Unless stated otherwise, the values of the self-diffusion
coefficients that will be presented here are average values
obtained from the two methods. The self-diffusion
coefficients are compared with the predictions of the ki-
netic theory. Al-Chalabi and McLaughin [16] have given
the first-order Enskog expression for the self-diffusion
coefficient in a binary mixture of hard spheres. Their ex-
pression can be straightforwardly generalized to mul-
ticomponent mixtures

1727 -1
kpTpy

2

160 <
D, p=kgT 3 > U%jpjgij(aij)
j=1

(3)

where p; represents the number density of component j
and p;; is the reduced mass p;=m;m;/(m;+m;). The
value of the pair distribution function at contact gi(oy;)
is calculated using the expression that is consistent with
the Carnahan-Starling equation for mixtures [17,18].

For the following discussion it is convenient to intro-
duce a reduced self-diffusion coefficient that is equal to
the ratio of the self-diffusion coefficient that is obtained
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FIG. 1. Density dependence of the reduced self-diffusion
coefficient D*=D,\p/D;y of the binary pseudomixture
011 =0y. X, our results; O, results of Ref. [3]. N =500.

by MD and the first-order Enskog value that is calculated
using Eq. (3),

D*=D;mp/D; g - (4)

In Figs. 1-4 we show for several equimolar binary mix-
tures the density dependence of the reduced self-diffusion
coefficients. In the case of the pseudomixture (o, =0,,)
we find that our results are in good agreement with those
of Alder and co-workers [1-3] for genuine hard spheres.
This can be seen in Fig. 1. It should be noted that the
values for D* of Alder and co-workers have been
confirmed recently by Erpenbeck and Wood [19]. In
Figs. 2—-4 the results for mixtures of particles with
different diameters are shown. The tendencies in Figs.
1-4 are the same. At high densities (p;_q,q>0.8) we
find for both components a value of the reduced self-
diffusion coefficient D* <1, and that D* decreases with
increasing density. This effect has been discussed by Ald-
er and Wainwright [1] for the one-component fluid.
Their qualitative explanation of this phenomenon is as
follows. Due to the high density a tagged particle is
closed in by its neighbors. Therefore, the collisions of the
tagged particle with its neighbors lead, on average, to a
reversal of its velocity [20]. As a result, the diffusive
motion of the tagged particle is slowed down. This is

05 0.7 0.9
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FIG. 2. Density dependence of the reduced self-diffusion
coefficient D*=D, yp/D;  of the equimolar binary mixture

with 0,,=2.6984 A and 0,,=3.400 A. X, component 1; O,
component 2. N =500.
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FIG. 3. Same as Fig. 2, but with 0, =2.6984 A and
0y, =4.2834 A.

called the backscattering effect. In the case of the binary
mixture we find at a given (high) density that the reduced
self-diffusion coefficient D;* has the highest value for the
component with the smallest diameter, and that this
difference between D} and D3 becomes more pro-
nounced as the difference in size of the two species of par-
ticles increases. This result indicates that the small parti-
cles are able to move through the cavities left by the rigid
coarse ordering of the large particles.

At moderate densities the situation is reversed. In the
density range 0.5 <p;_g,iq <0.65 we find for the reduced
self-diffusion coefficients values D;* > 1. Furthermore, we
find that the largest particles of the mixture have the
largest value for D*. Again the difference between DT
and D3 seems to be more pronounced as the difference in
the size of the two species of particles increases, although
at these densities this dependence of D* on the particle
diameter is not as clearly observable as in the high-
density region. The positive deviation of the self-
diffusion coefficient from its Enskog value was first ob-
served by Alder and Wainwright [1] in a one-component
fluid. They have explained it qualitatively [2] in terms of
an average vortex flow pattern around a tagged particle
that moves through the fluid. The persistence of velocity
of the tagged particle is increased by the additional driv-
ing force caused by the surrounding particles. This may
give rise to an increase of the self-diffusion coefficient.
The difference between D} and Dj that we observe in the
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FIG. 4. Same as Fig. 2, but with 0,,=2.6984 A and

05,=5.3968 A.
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FIG. 5. o, dependence of the density at which D*>1
changes to D* <1. @, binary mixtures; X, ternary mixtures.
N =500

mixtures suggests that the large particles are more in-
volved in this process than the small particles. Closely
related to this vortex model is the observed algebraic de-
cay of the VAF at long times. This will be discussed in
the next section.

The one-fluid density at which the reduced self-
diffusion coefficients change from values larger than 1 to
values smaller than 1 appears to be dependent on the ra-
tio of the diameters of the different particles. In the case
of the pseudomixture (o, =0c,,) we find that this cross-
over occurs at p;_g.iq=0.81, whereas for mixtures with
the largest difference in the two diameters (o;;=0.50,,)
we find this crossover at p;_g,q=0.71, as illustrated in
Fig. 5. This dependence on the relative particle size im-
plies that the one-fluid density is not a proper scaling
function for corresponding state comparisons of trans-
port properties of different mixtures at densities at which
the backscattering effect contributes to the VAF.

We conclude this section by presenting the results for
the self-diffusion coefficients of three-component mix-
tures. In Fig. 6 we show the density dependence of the
self-diffusion  coefficient in the mixture with
x;=x,=0.5x;. We have obtained similar results for the
mixtures with x; =x3;=0.5x, and x,=x3;=0.5x,. The
results for the three-component mixtures are consistent
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FIG. 6. Density dependence of the reduced self-diffusion
coefficient of the ternary mixture with x,=x,=0.25 and
x3=0.5, 0,,=2.6984 A, 0,,=3.4000 A, and 0,;=4.2834 A.
X, component 1; O, component 2; ¥, component 3. N =500.
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with the results for the binary mixtures, as discussed
above. In the high-density region we find values of the
reduced self-diffusion coefficients that are smaller than 1.
However, in contrast to the binary mixture, we find for
the three-component mixtures no large discrepancy be-
tween the different reduced self-diffusion coefficients at
high densities. This indicates that the space in the cavi-
ties between the large particles is taken by the medium-
sized particles, thus limiting the space in which the small
particles can move. In the moderate density range we
find that the largest particles have the largest D* values
and that the smallest particles have the smallest values.
The 1-fluid density at which the crossover occurs from
D} >1to D* <1 is independent of the composition of the
ternary mixture. This is due to the o - parameter,

which has about the same value for the three mixtures
studied here (see also Fig. 5).

The results presented above are for mixtures in which
all components have the same mass. However, it is to be
expected that more or less similar results can be obtained
for mixtures of particles that differ also in mass. See, for
example, the results for isotopic mixtures of Herman and
Alder [11]. In the next section we will discuss how devia-
tions from the Enskog theory manifest themselves in the
form of the VAF.

Velocity-autocorrelation function

The Enskog theory predicts in the first order a VAF
with an exponential decay

——tmi
kpTD,

{v;(0);(2)) =exp (5)

Alder and Wainwright [2] found significant deviations
from the exponential decay of the VAF. At moderate
densities they discovered that the VAF has a slowly de-
caying tail. They proposed that the VAF of fluids at
moderate densities has an algebraic long-time decay

(O], =alt/ty) 42, (6)

Here a is an amplitude, d is the dimension of the system
(in our case d =3), and ¢, is the mean free time of the
particle.

The discovery of the long-time tail initiated a consider-
able amount of theoretical and computational work.
Several groups have found expressions for the asymptotic
behavior of all the relevant current autocorrelation func-
tions for one-component fluids using hydrodynamics [4],
modified kinetic theory [5], and mode coupling tech-
niques [6]. These expressions are supposed to be valid for
times longer than 10z, [5]. However, as shown clearly by
Alder and co-workers [1,3], the nonexponential part of
the VAF has its largest contribution to the self-diffusion
coefficient around 5¢,.

The argument that links the presence of long-time tails
with a positive deviation for the self-diffusion coefficients
from the predictions of the Enskog theory is that the vor-
tex model discussed above is a hydrodynamic model.
Therefore, the vortex motion should affect the long-time
behavior of the correlation functions. Here we attempt

to obtain support for Alder’s qualitative explanation [2]
for the positive deviation from the Enskog theory.

For mixtures the one-component expression for the
long-time tail cannot be used. This is because for mix-
tures one also has to consider the conservation law of
concentration and then quantities like the osmotic
compressibility may enter the expression for the long-
time tail. Wood [7] has discussed the long-time tails for
binary mixtures, but unfortunately, he did not consider
the VAF.

In order to study the tail of the VAF in binary mix-
tures, we have performed several MD runs with 2048-
particle systems. In these calculations the mixtures have
a density of p;_g,q=0.5. For each mixture we have
averaged the VAF over six independent runs in order to
obtain the required small statistical uncertainty for the
VAF tail. Each MD run has a length of 1.6 X107 %,
For our analysis we have normalized the real-time axis of
the VAF of component i with respect to the mean free
time of component i,

s -1
to;= |87k )2 3 ofipgi(oyug ' . ™
j=1

In Table I w= have presented the values of ¢,; for the mix-
tures under consideration. It should be noted that, in the
special case studied here in which all the particles have
the same mass, the mean free time is closely related to the
self-diffusion coefficient [see Eq. (3)]. The conversion
from the ¢ axis to the ¢ /¢, axis causes the VAF to decay
initially on the same scale. This is illustrated in Fig. 7 for
the mixture with ¢,,=2.6984 A and 0,,=4.2834 A. In
Fig. 7(b) a clear difference can be seen between the ampli-
tudes of the tails of the two VAF’s. As mentioned ear-
lier, integration of the VAF yields the self-diffusion
coefficient. We have integrated both VAF’s up to the
1.5X 107 s self-diffusion coefficient. In the case of the
VAF’s shown in Fig. 7, we have shown in Fig. 8 how the
integral of the VAF

kpTty, f
D,-’Emi 0

t/ty:
DXt /1) = "d(t/1g)(v,(0)0,(t /1)) (8)
converges for large times to the value of D§;. Figure 8
also demonstrates clearly that a significant positive devia-
tion from the Enskog value has been obtained as early as
t/t,=10. This indicates that processes that play on a
relatively short time (i.e., ¢ /¢, < 10) do give rise to an im-
portant positive deviation of the self-diffusion coefficient
from its Enskog value. Similar results have been ob-
tained for the other mixtures studied here. In the case of

TABLE 1. Mean free times ?, for each component of the
mixture. x; =x,=0.5, p;_g,¢=0.5.

g1 02 Loy toy

(A) (A) 107 % 10713
2.6984 2.6984 2.233 2.233
2.6984 3.4000 2.939 2.227
2.6984 42834 3.997 2.314
2.6984 5.3968 5.515 2.475
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(a) The long-time behavior of the VAF can be studied best
when the exponential Enskog contribution, as given by
Eq. (5), is subtracted from our MD results. Next, the re-
S sulting non-Enskog part is multiplied with (¢ /¢,)*/2 [10].
S In Fig. 9 we show the resulting functions for all binary
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FIG. 7. VAF’s of the equ1molar binary mixture with ;_{
0;=2.6982 A and 0,,=4.2834 A. Solid line, component 1; N
dashed line, component 2; p;_g,;q=0.50, N =2048. (a) Real-
time axis; (b) collision time axis; at the inset a magnification of
the tails of the VAF’s are shown.

the one-component fluid this was already shown by Alder
and co-workers [1,3].

When the vortex model of Alder and Wainwright [2]
indeed does explain the positive deviation of the self-
diffusion coefficient from its Enskog value, then it should
be possible to relate the amplitudes of the long-time tails
to the non-Enskog part of the reduced self-diffusion
coefficients D;* — 1. In the following, we will try to obtain
a relationship between the amplitude of the long-time
tails and D* —1.
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FIG. 8. Time dependence of the integral D*(t/ty) of the
equlmolar binary mixture with o,,=2.6982 A and 0,,=4.2834
A. Solid line, component 1; dashed line, component 2; the hor-
izontal long-dashed line, the first-order Enskog value D*=1;
Pl—ﬂuid=0' 50, N =2048.

FIG. 9. Non-Enskog part of the VAF’s multiplied with
(2/t5)"%. Solid line, component 1; dashed line, component 2;
P1-fuia =0.50, N 2048. 0,,=2. 6982 A and (a) 0yp=2. 6982 A
(b) 05,=3.4000 A (c) 0,=4.2834 A and (d) 0,,=5.3968 A.
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FIG. 10. Diameter-ratio dependence of the ratio of non-
Enskog quantities. X, (D} —1)/(Dj —1); @, a,/a;. p—guid
=0.50, N =2048.

mixtures that are considered here. Several conclusions
can be drawn from Fig. 9. First, the non-Enskog contri-
bution to the Green-Kubo integral is the largest around
t/ty=7. Second, the algebraic (z/t,) /> decay occurs
at times larger than ¢ /t;=10. For these times the ampli-
tude ratio a,/a, of the long-time tails is nearly constant.
At times larger than ¢ /t;=20 our results are unreliable
due to statistical noise. We have calculated the ampli-
tudes a; and a, in the time interval 10=¢ /¢ty =20 from
our data using Eq. (6). The ratio of these amplitudes can
be compared with the ratio of the non-Enskog factors of
the self-diffusion coefficients (D} —1)/(D3 —1).

In Fig. 10 we show the (0,,/0;;) dependence of the
amplitude ratio of the long-time tail a,/a, and the ratio
(DY —1)/(D3 —1). The values of the self-diffusion
coefficients used here are those that are obtained by the
integration of the VAF’s (see Table II). The uncertainty
margin in the values of the self-diffusion coefficients is ob-
tained from the standard deviation of D; in the six in-
dependent MD runs, while the standard deviation of «; is
obtained from the fit of Eq. (6) to the VAF. It should be
noted that the manner on which the results are presented
in Fig. 10 causes an artificial proportional increase in the
standard deviations. In all cases we find that
(D} —1)/(D3—1) and a,/a, are of the same order of
magnitude. The ratio (DT —1)/(D5 —1) is always some-
what larger than a,/a,. The reason for this difference is
unclear. It might be that the usage of the interaction po-
tential defined in Eq. (1) affects the short-time behavior of
the VAF. Another possibility might be that the
Carnahan-Starling approximation for the contact values
g;(o,;) that are used in the calculation of the Enskog

value of the self-diffusion coefficient are responsible for
the defect. A small error (of the order of 5%) may give
rise to such a difference. Nonetheless, it is important to
note that (D} —1)/(D3 —1) and «,/a, both decrease
more or less in the same manner in which the diameter
ratio increases. Furthermore, from the values of D;* and
a;, as given in Table II, more detailed information can be
obtained. The values of D} and a, are constant within
the error bars, whereas D} and «a; both decrease as o5,
increases. This indicates that the processes that give rise
to the long-time tail of the VAF of the large particles are
not affected by the presence of the small particles. The
situation is different when the VAF of the small particles
is considered. The processes that give rise to the long-
time tail of the VAF of the small particles are disturbed
by the presence of the large particles. The results indi-
cate that the presence of the large particles causes some
sort of screening of the vortex flow pattern around the
small particles. The last conclusion that can be drawn
from Table I is that the ratio (D3 —1)/a, is constant,
and that (DT —1)/a, is almost constant when the rela-
tively large uncertainty margins are taken into account.
This finding indicates that is it possible to calculate D,
(and possibly also D) once the self-diffusion coefficient of
the one-component fluid and an accurate expression for
a; are known. This last statement is only valid at densi-
ties at which the backscattering effect can be neglected.

In the discussion presented above, we have not men-
tioned the possible influence of the finite system size. The
magnitude of the correction term due to an extrapolation
is proportional to 1/N. Using the accurate extrapolation
performed by Erpenbeck and Wood [19], we estimate
that such a correction to D* for the extrapolation from
N=2048 to « is less than 1%. This is less than the nu-
merical uncertainty of the results presented in Table II.
Furthermore, since we are comparing D;* (N=2048) with
a; (N=2048) we do not expect that an extrapolation to
the thermodynamic limit will affect the conclusions. All
our observations concerning the behavior of D;* and q;
indicate that the processes that give rise to the long-time
tails of the VAF’s also are responsible for the positive de-
viation of the self-diffusion coefficient from its Enskog
value. Thus our results give support for the vortex model
introduced by Alder and Wainwright [2] as an explana-
tion for the behavior of the self-diffusion coefficient at
moderate densities.

Finally, we will consider the VAF in the high-density
regime. In Fig. 11 we have plotted the VAF’s of an
equimolar binary mixture (0;,=2.6984 A, 0,,=4.2834

TABLE II. Reduced self-diffusion coefficients and the amplitudes of the long-time tails for four

equimolar binary mixtures at p; g, =0.5. N =2048.

on 02

(A) (A) D* D* a, a,
2.6984 2.6984 1.284+0.038 1.322+0.046 0.568+0.062 0.666+0.068
2.6984 3.4000 1.289+0.044 1.319+0.027 0.433+0.057 0.638+0.054
2.6984 4.2834 1.214+0.015 1.319+0.036 0.358+0.058 0.745+0.053
2.6984 5.3968 1.179+0.033 1.314+0.036 0.216+0.029 0.71540.042
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t11071%s)

FIG. 11. eVAF’s of the equignolar binary mixture with
0,,=2.6982 A and 0,,=4.2834 A. Solid line, component 1;
dashed line, component 2; p,_q,4=0.85, N =500.

A) at a density P1—fuia=0.85. It can be seen that both
autocorrelation functions have a significant negative part
at intermediate times. The VAF of the large particles has
the negative well at shorter times than the VAF of the
small particles. A similar behavior can be found when
both VAF’s are plotted as a function of the collision time
t /ty. This result indicates that the large particles are ear-
lier involved in the backscattering process than the small
particles. This observation supports the claim we made
in the previous section, that the small particles are able to
move through the coarse network created by the ordering
of the large particles.

CONCLUSIONS

We have shown that for component i of a multicom-
ponent mixture, the deviation of the self-diffusion
coefficient D; from its Enskog value depends on the diam-
eter ratio 0; /0 ;. In the case of mixtures at moderate
densities we have found a positive deviation, which is the
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smallest for the smallest particles present in the mixture.
This observation has enabled us to obtain a relationship
between the ratio of the non-Enskog contributions to the
self-diffusion coefficients and the amplitudes of the long-
time tails of the VAF’s. This relationship gives support
for the vortex model introduced by Alder and co-workers
as an explanation for the positive deviation of the self-
diffusion coefficient from its Enskog value [2]. Our re-
sults for the mixtures at moderate densities imply that
the vortex flow pattern is the largest around the largest
particles of the mixture. The vortex motion around the
smallest particles is hindered by the presence of the large
particles.

At high densities we found that the self-diffusion
coefficient has a negative deviation from its Enskog value.
The deviation is most negative for the largest particles in
the mixture. This indicates that the small particles are
able to move relatively freely through the coarse network
of large particles. The mobility of the smallest particles
is reduced when particles of intermediate size are added
to the mixture.

Finally, we have shown that the 1-fluid density is not a
proper scaling parameter for corresponding state com-
parisons of the transport properties of different mixtures.
Such comparisons can only be made when those mixtures
have almost the same o, /o, values, or at densities at
which the backscattering effect does not contribute to the
shape of the VAF.
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