
PHYSICAL REVIEW A VOLUME 45, NUMBER 12 15 JUNE 1992

Separatrix eigenfunctions

John R. Cary* and Petre Rusu
Department ofPhysics, Uniuersity of Colorado, Boulder, Colorado 80309 03-W

(Received 7 November 1990; revised manuscript received 20 February 1992)

Near-separatrix eigenfunctions for the double-well potential are analyzed. These functions are needed
for the study of systems with perturbed or slowly varying double-well potentials. The probability density
of separatrix eigenfunctions collapses to the classical result (a 5 function at the unstable fixed point) loga-
rithmically with the number of quantum states. Matrix elements with respect to this basis are also stud-
ied. Unlike the wave functions, the unnormalized matrix elements are nonsingular in the limit of large
quantum number.

PACS number(s): 03.65.Sq, 03.65.Ge

I. INTRODUCTION

Recent advances in nonlinear dynamics have shown
the richness of classical Hamiltonian motion [1,2]. Be-
sides the well-known integrable (or regular) systems, such
as the Kepler system and the pendulum, there exist sys-
tems with chaos. This chaos is manifest in the mixing of
phase space by the flow, the sensitivity of trajectories to
initial conditions, and the slow diffusion of approximate
invariants due to perturbations. Quantum chaos is con-
cerned with the manifestation of chaos in quantum sys-
tems that are chaotic in the classical analysis. (A review
of these matters is given by Zaslavskii [3].) It has been
found that the eigenvalues of classically chaotic systems
can be sensitive [4,5] to perturbations and that the eigen-
value distribution offers substantially [6,7] from cases
where the classical system is integrable. Such quantum
systems also may have irregular wave functions [8].
Quantum effects can also mitigate chaos by, for example,
eliminating momentum diffusion in maps [9,10].

Perturbations to an integrable classical system affect
the separatrix immediately. An example is the Hamil-
tonian H =

—,'p + V(x) for nonrelativistic, one-dimen-
sional motion in a potential with a local maximum. [A
symmetric double-well potential is shown in Fig. 1(a).
The phase-space contours of the Hamiltonian are shown
in Fig. 1(b). In general, the potential will not be sym-
metric in our analysis. ] Upon application of a time-
periodic perturbation, the unstable fixed point becomes
an unstable periodic point. Melnikov's analysis [11]
shows that a homoclinic tangle arises generically in the
vicinity of this unstable periodic point. This implies the
nonexistence of an analytic invariant in this region.

Because of its sensitivity to chaos-inducing perturba-
tions, the separatrix is a fruitful area for the study of
quantum chaos. In fact, quantum effects for wave func-
tions with energies near that of a local barrier maximum
have already been studied extensively in the semiclassical
limit. (Reference [12] is a review of semiclassical
methods. ) The transmission coefficient, given by the
standard tunneling factor for energies well below the lo-
cal maximum, is also less than unity for energies near to
but above the local maximum [13]. Moreover, the local

maximum causes a phase shift [14] between the incident
and transmitted waves. The effects of this phase shift on
the eigenvalues of the symmetric double-well potential
were calculated in Ref. [14]. Both the phase shift (recog-
nized in Ref. [15] and included in Ref. [16]) and the
modification of the transmission factor are important in
determining the bound-state energies of a general (asym-
metric) double-well potential. (Earlier work [17] had dis-
cussed the effects of the tunneling factor alone. ) The ac-
curacy of these and higher-order semiclassical results [18]
have been checked [19] by comparison with numerical
calculations. In later work [20] the results of Ref. [16]
were combined with general formulas [21] for the classi-
cal actions near a separatrix to determine the behavior of
near-separatrix quantum excitation frequencies in the
semiclassical limit.

For a complete picture, the structure of wave func-
tions, their associated normalization factors, and
methods for calculating matrix elements are needed in
the semiclassical limit. Yngve [22] showed that normali-
zation factors for the wave functions could be obtained
by combining a result of Furry [23] with known formulas
for the transmission coefficient and phase shift. Howev-
er, matrix elements seem to have been calculated only for
states well below or well above the barrier [24].

(a)

(b)

FIG. 1. (a) The double-well potential of the analysis. (b) The
classical phase space showing the contours of the Hamiltonian
for the potential (a).
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The goals of the present work are to study further the
structure of near-separatrix excitation frequencies and
wave functions and to provide methods for calculating
matrix elements between quantum states near the barrier
top in the semiclassical limit. For this reason we briefly
review the semiclassical analysis of the double-well poten-
tial in Sec. II. In this section we rederive the matching
coefficients in preparation for our analysis of the relative
probabilities for the regions near the barrier and far from
the barrier. In addition, we examine the behavior of the
excitation frequencies for asymmetric potentials, as Ref.
[20] was restricted to symmetric potentials.

With the wave functions in hand we proceed to discuss
the normalization in Sec. III. As mentioned above, nor-
malized wave functions were obtained previously [22].
However, we present another derivation, a direct integra-
tion by matched asymptotics of the semiclassical wave
functions. This approach allows us to calculate explicitly
the contributions to the probability from the various re-
gions, e.g., classically allowed and near the barrier, so
that we can show how the classical probability density is
obtained as %~0. In this process, we express the nor-
malization factor in terms of the WKB amplitudes in the
classically allowed regions, which is more natural for tak-
ing the classical limit. Finally, in Sec. IV we show how to
calculate the matrix elements for the near-separatrix
eigenfunctions.

It has previously been noted that the classical excita-
tion frequency is obtained very slowly in the limit of large
quantum number. In the classical system the excitation
frequency is the orbit frequency. Perturbations at the fre-
quency of the orbit drive the motion resonantly. In quan-
tum systems the excitation frequency is the frequency
difference between quantum states. Perturbations at the
frequency difference give rise to transitions from one
quantum state to the other. The quantum excitation fre-
quency is known to approach the classical excitation fre-
quency in the limit of small Planck's constant (iii~0) or,
equivalently, large quantum number (E~~). However,
for the case of systems with separatrices this limit is ap-
proached very slowly. In this classical system the
minimum excitation frequency is zero, which is the fre-
quency on the separatrix. However, in the quantum sys-
tem, the minimum frequency close to the separatrix is of
the order of coo/ln~N~ (equivalently coo/in~ 1/A'~), where

~o is a typical classical frequency. It has been suggested
[20] that this slow approach to the classical limit may
provide a means for observing quantum effects in systems
with very large (= 10 ) numbers of quantum states.

Here we And that the classical probability density is
also obtained slowly in the limit of large quantum num-
ber. However, this limit is more complicated. The classi-
cal probability, essentially the time of sojourn in a given
region, collapses to a 5 function on the unstable fixed
point for the separatrix. Thus, the probability density at
the unstable fixed point is infinite. Moreover, the total
probability of being inside an arbitrarily small interval

[
—5,5] around the unstable fixed point is unity, and, so,

the probability of being found away from the fixed point
is zero. For the quantum system with a large number of
quantum states, the probability density at the origin

diverges as 1/fi' . This indicates that the peak probabil-
ity density diverges rapidly (that is to say, converges rap-
idly to ~) in the classical limit. However, the classical
probability of being far from the separatrix falls to zero
only logarithmically with R. Thus, the separatrix wave
functions become peaked very rapidly as A'~0, but the
vanishing of the probability of being far from the fixed
point occurs very slowly.

Our analysis is geared in particular towards determin-
ing the elements needed for an analysis of the breakdown
of quantum adiabatic invariance theory for systems that
have a classical separatrix. This system is of particular
interest because of the recent results that show explicitly
how the classical adiabatic invariant is lost in such sys-
tems. Numerical experiments [25] indicate that the re-
gion of phase space swept by the separatrix is ergodic in
the limit a~0. Analytic calculations for special cases
[26,27] and in general [21,28] show that an ensemble of
orbits originally on one contour of the adiabatic invariant
is spread over an annulus of contours after the separatrix
crossing has taken place. The characteristic width of this
annulus scales linearly with the adiabatic parameter e in
the symmetric case and as @in~ 1/e

~
in the general case.

The results derived here have been used elsewhere in
the analysis of the adiabatically varied quantum system.
With the presently derived matrix elements a transforma-
tion to the rotating-axis representation [29] may be
effected. This rotating-axis transformation allows the be-
havior of adiabatic invariant loss to be determined [30]
for the quantum system in the limit of small e. The
rotating-axis equations may also be integrated numerical-
ly [31] to determine the differences between quantum and
classical analyses far from the quantum adiabaticity
threshold.

Possible applications of this analysis are to the Penning
trap [32], optical wave guides [33], and the study of
separatrix states in higher-dimensional systems [34]. The
usual Penning trap would have to be modified to produce
a separatrix in the longitudinal motion. This might be
effected by introducing five ring electrodes, with the
center one and outer two biased to repel, while the inter-
mediate electrodes are biased to attract. Schrodinger's
equation, derived via the paraxial approximation, is valid
for optical wave guides formed by modification of a
dielectric substrate. The longitudinal propagation coor-
dinate takes the place of time. Double-well potentials for
the transverse motion occur when the dielectric profile is
modified to split one wave guide into two.

II. SEMICLASSICAL ANALYSIS OF
THE DOUBLE-WELL POTENTIAL

The normalization factors and probabilities are in-

tegrals over all or part of space of the modulus of the
wave function. Thus, a first step is to obtain the wave

functions. Though this was in essence carried out previ-

ously, we present elements of this analysis in order to in-

troduce our notation and to collect the needed formulas
in one place. We carry out this analysis with patched
uniform approximations [12,35,36]. We note the charac-
teristic size of the wave function in the various regions
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and provide a more detailed discussion of the characteris-
tic behavior of the quantum excitation frequency for
near-separatrix wave functions for the asymmetric case.

A. Review of the uniform approximation

The goal of semiclassical theory is to solve the time-
independent Schrodinger equation,

fi =Q(x)$,

in the limit of small A, or large mode number. In this
equation,

Q(x)= —p (x),
where

p (x)—=&2m [E—V(x) ]

(2a)

(2b)

(3)

for which the solution is known. For new and old func-
tions related by

P(x) =f (x)y(g)

and with the choice,
' —1/2

f(x)= d
dx

(4)

is defined to be the momentum of a particle of energy E
at position x. For classically forbidden regions, the con-
vention is chosen that p is positive imaginary.

The idea of the uniform approximation is to transform
to a comparison equation,

ing points. We will see this in our analysis of the eigen-
function in the region near the barrier.

In the case of a single turning point, the comparison
equation is the Airy equation, for which the solutions are
known. For two turning points, the comparison equation
is the parabolic cylinder equation, which again has been
extensively analyzed. However, in the present case there
can be four turning points. A possible comparison poten-
tial is a quartic polynomial. However, for such a poten-
tial, full solutions are not known. Hence, we must still
asymptotically patch together solutions valid in separate
regions. This implies that our solutions will be valid only
if the barrier is well separated from the outer turning
points.

These regions are illustrated in Fig. 2. In regions 1 and
3, there is a single turning point, so the Airy function
solution is valid. In region 2, the parabolic cylinder solu-
tions are valid [37,38]. Matching will take place in the
overlap regions, where both approximations are valid

[12,35,39]. The overlap region of, for example, regions 1

and 2 is that region far from the barrier, yet not close to
the left turning point.

B. Outer solutions

The solutions in regions 1 and 3 are found by using the
Airy equation as a comparison equation. These solutions
decay in the classically forbidden region, are basically
Airy functions near the turning points, and are the usual
rapidly varying phase solutions in the classically allowed
regions. For present purposes, we need only the rapidly
varying phase solutions. These are (cf. Refs. [12] and
[39])

the relation between the new and old dependent variables
1s

—1/2

= A ~p(x) ~

'~ sin A' ' f p(y)dy+n /4

in the overlap of regions 1 and 2, and

(ga)

dg Q A' dg d dg
dx F F dx dx 2 dx

(6)
P(x) =Pg(x)

Neglecting the last term in this equation gives the
lowest-order (in fi) differential equation for the transfor-
mation between the two independent variables. In this
case, the solution for the original problem is found to be
given by

P(x)= [F[g(x)]/Q(x) j'i y[g(x)] .

Examination of Eq. (6) indicates a possible problem at
turning points, the zeros of Q. At such zeros, Fmust also
vanish for the first term on the right side of Eq. (6) to be
finite. Thus, F and Q have zeros at equivalent points. In
addition, the second term on the right side of Eq. (6) must
not diverge, which it might without further considera-
tion, since it contains F as a divisor, without a compen-
sating factor of Q. As shown by Pechukas [36], arbitrari-
ness in the choice of a particular solution to Eq. (5) allows
a nondivergent solution for g(x) to be found. Pechukas
further showed that for such a solution, the comparison
equation has the same classical action integral (or quan-
tum tunneling factor for forbidden regions) between turn-

X+= A+ ~p (x) ~

' sin A' ' f p(y)dy+m. /4
X

(Sb)

in the overlap of regions 2 and 3. The points x and x+
appearing in these equations are the outer turning points
shown in Fig. 2.

LI,
a- a+ X+

E=O
E&0

FIG. 2. The regions for the analysis via asymptotic matching.
The outer turning points for zero and arbitrary energy as well as
the inner turning points for negative energy are labeled.
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C. Solution near the barrier

For simplicity we assume that the barrier maximum
occurs at x =0, at which point the potential vanishes:

and

q and g to be proportional to x:

dx x &v+ l&'

&2mE+mbx'

This implies that the proportionality is

q=Ax =—+2ma)0/Ax . (16)

(0)=0 (9b)

We denote the value of the second derivative of the po-
tential at the maximum by

d Vb—:— (0) .
dx

(10)

y —=v/A' .

Thus, the uniform approximation gives the solution,

(12)

(~+ 1~2)1/4P(x)=, [CW( y, ri)+—DW( —y, —ri)] .

(13)

When there are interior turning points, the value of y
is determined by integrating Eq. (6) (keeping only the
lowest-order term) between the turning points. This con-
dition,

The solution in region 2 is found by comparing with
the parabolic cylinder functions, which satisfy the equa-
tion,

d2
+(v+ —'g }y=0

d 2 4

A further scaling, g=~firI, shows that the solutions to
this equation are linear combinations of parabolic
cylinder functions, W( —y, 2)) and W( —y, —r)) (See Ref.
[40], Sec. 19.16), where

For positive energy, the parameter y is not determined
by the uniform approximation. The reason is that for
fixed energy, the rapidly varying phase approximation
without turning points becomes arbitrarily good in the
limit of vanishing fi. However, we are interested in the
case where the energy scales with A, because we want to
understand states within a few quanta of the barrier ener-

gy. In this case, we use the same comparison equation as
before.

D. Matching inner and outer solutions

A'/'/(mb)'/'«x .

Thus, the matching region is

/(mb)' «x «s (17)

Such matching has been carried out before [12,16], so
we will not repeat the details. The results are

The relation between the coefficients A and A+ of
Eqs. (8) and C and D of Eq. (13) is determined by the
matching condition: The two solutions must agree in the
overlap region. The overlap region is that which is close
enough to the center so that the potential can be approxi-
mated by a parabola, yet sufficiently far from the interior
turning points so that the rapidly varying phase solutions
(8) are valid. The first condition is simply x «s+. The
second condition follows from the discussion of Sec. 10.2
of Ref. [39]. For the present case of near-separatrix
eigenfunctions, this condition is

a statement that the tunneling factors have to be equal in
the original system and the comparison system, deter-
mines that and

C = A + cos(8+ )/fl

=~'/ A sin(8 )/A' (18a)

Z+
y = — f dx v'2m [ V(x ) E] . —

7Th
(14) D=~' A+sin(8+)/A'

We are considering states with energies near that of the
barrier. Otherwise, for positive energy the large tunnel-
ing factor effectively prevents communication between
the two sides of the potential barrier. In this case we can
shrink region 2 to be a small region around the barrier
maximum and approximate V(x} arbitrarily well by a
parabola in this region. Then Eq. (14) becomes

y =E/%coo,

= A cos(8 )/A'

where

z =v'1+ exp( —2my ) —exp( —
m y ),

8 =m.I+ /h —y/2,
and

p=y(1 —ln~y~ )+arg[I ( ,'+iy )] . —

(18b)

(19a)

(19b)

(20)

where co~= 1/b /m is the class—ical rate of exponential sep-
aration for trajectories near the barrier. It is also the
harmonic-oscillator frequency obtained for the inverted
potential. In this region the original equation and the
comparison equations have the same form, so we can take

The quantities

Ip =—2 I dy v'2m [E—V(y) ] (21)
Xy

are the classical action integrals. The lower bound is the
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location of the barrier maximum when the energy is neg-
ative, and it is zero when the energy is positive.

E. The quantum energy levels

The quantum energy levels come from the fact that
Eqs. (18) imply two values for the ratio A /A+ ..

A

A+

cos(8+ }

K sin(8

a sin(8+ }

cos(8 )
(22)

Equating these two expressions yields [16] the equation,

cot(8 )cot(8+) =a

2ny/[ 1+( 1+ 2ny )1/2]2 (23)

which was also noted in Ref. [41]. Here we discuss this
equation in more detail to determine the scaling of the ex-
citation energy of states with energies near the barrier
maximum. The symmetric case was analyzed previously
in Ref. [20]. In this discussion we will make use of an al-
ternate form

cos(8 )= —cos(8 )/(1+e2 r)'~

for which

8 =8 +8 =nI /h p=rr(I—+I )/& —
tp

and

8a —=8+ —8 =nIa/h: n(I+ I—)/h . —

(24)

(25a)

(25b)

cos(8~) =0 .

Since

(26)

lim q=O,
iy) —+ oo

(27)

Either Eq. (23}or (24) may be solved for the allowed ener-

gy values.
For large negative r (states trapped deeply below the

barrier maximum) the right side of Eq. (23) vanishes.
Thus, the eigenvalues for deeply trapped states are given
by the two sequences of roots,

Ir=(n+ —,')h, (29b)

again the usual result.
To analyze the case r =O(1), it is necessary to know

the behavior of the classical action near the separatrix,
i.e., for small E A. ccording to Ref. [21],near the separa-
trix the classical action is given by

Ig = Yp+E(1+inlay/& I ) A)0 (30)

S+
ln(E+ /2bs+ ) =2f dx

b

2V(x)
(31)

The classical actions (30) are finite near the separatrix,
but their derivatives T+(E)—=BI+/BE=ln~E+/E~/coo
diverge. This occurs because this derivative is the classi-
cal orbit period, which is infinite on the separatrix, since
the separatrix contains a fixed point.

Far from the separatrix, Eqs. (28) and (29) show that
the energy separation is given by EI =h, where p =+ or
T as appropriate. Taylor expansion thus gives the typical
energy-level separation as

b,E /h =2m/T (32)

That is, the quantum frequency separation is the classical
orbit frequency. This is the standard result of semiclassi-
cal theory. (For negative-energy states this analysis
neglects the possible degeneracies mentioned earlier. )

To determine the typical frequency separation near the
separatrix, we combine Eqs. (24) and (30) to obtain

for either sign of E. The quantities Y+ in this equation
are the phase-space area enclosed by the lobes of the
separatrix. Similarly, Y&=—Y+ +Y, and Y& =—Y+—Y . The positive quantities Ez are of the order of
typical energies of the system, such as the depths of the
wells. These quantities are given in Ref. [21] for a gen-
eral Hamiltonian. For the present case, where the Ham-
iltonian is the sum of the usual kinetic energy p /2 and a
potential energy depending on only the position, the
quantities Ez are given by

1/2

these two sequences correspond to

Iq =(n+ —,
' )h, (2&)

cos[mNr+r inlrrI —arg[l (-,'+&r)]]

cos[nN~+ (r /2)ln r+ /r I ]
&1+exp(2n r )

(33)

cos(8r) 0, (29a)

or

the familiar result that the action is quantized in units of
Planck's constant. The two sequences of Eq. (26) or (28)
correspond to wave functions trapped on either side of
the barrier. When the two sequences predict a degenera-
cy, the states are no longer localized [6,42] to one side of
the barrier, and the splitting of the degeneracy is deter-
mined by the right side of Eq. (23). Indeed, when the sys-
tem is symmetric, so that I+ =J, the states have
definite parity, so that the probabilities for being in either
half of the we11 are identical.

For large, positive r the right side of Eq. (24) vanishes.
In this case, the quantum levels are given by

in which

N =Y/h forp=+, T, orh (34a)

are the various separatrix actions in units of Planck's
constant,

and

rp= Ep/Acoo for p—=+ (34b)

(34c)

The quantities y are of the order of the number of
trapped quantum states N and, hence, are large in the
semiclassical limit, since they are ratios of macroscopic
energies to the energy of one quantum.
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For y & 1, Taylor expansion of the I function is used.
This yields

cos f ~NT +y [» 1 y T I

—g( —,
'

) ] j

cos[m Na+ (y /2)inly+ /y l ]

&1+exp(2rry )
(35)

in which 1t is the digamma function. In the limit of large

inly T l
the right side of Eq. (35) is a slowly varying func-

tion compared with the left side. Furthermore, the right
side is always less than unity in magnitude. Hence, there
is one solution of Eq. (35) in each half-period of the left
side of this equation. Therefore, the typical spacing of ei-
genvalues near the separatrix is given by

sy =~/[inly, l

—q(-,')] (36a)

or

AE /A' =~co o/[1 nl y Tl

—p( —,
'

) ] . (36b)

These equations show that the spacing does not vanish, as
does the classical orbit frequency, but instead is lower
than a typical classical frequency (e.g. , coo) by only a fac-
tor of the order of the logarithm of the number of
trapped quantum states.

Considerable simplification results when the potential
is symmetric. In this case, the states can be classified ac-
cording to parity, and Eq. (24) becomes

sical limit requires that the logarithm of the number of
quantum states be large. This is a much more stringent
condition than the usual one that simply requires the
number of states be large. This indicates that quantum
effects may be observable even in macroscopic systems by
examining the dynamics of states near the separatrix.

III. RELATIVE PROBABILITIES

In the previous section, the relations between the
wave-function amplitudes for the various regions were
obtained. This is sufficient to obtain the energy spec-
trum. However, for integration of the rotating-frame
equations [30], for example, matrix elements of the nor-
malized wave functions are needed. In this section we
show how to obtain these normalization factors. The am-
plitudes needed to have normalized wave functions were
previously obtained by Yngve [22]. However, the present
analysis allows one to see the contributions to the nor-
malization from the various parts of the wave function.
Moreover, we give the values of the WKB amplitudes in
the regions 1 and 3, where the rapidly varying phase ap-
proximation is valid. These are the most convenient for
taking the classical limit.

As just mentioned, we will use the normalization con-
dition to obtain the value of the mean-square amplitudes,

(40)

cos(vrIT —y) = —[I+exp(2~y ) ] (37) of regions 1 and 3. The amplitude (40) may be expressed
in terms of the norm

For large, positive y, the right side of this equation van-
ishes, and so the quantization condition (29) is obtained
as before. For large, negative y, the right side asymp-
totes to —1. Hence, the solutions are nearly degenerate
roots at

=- = J
"

dx l pl'/~ ' (41a)

of the unnormalized wave function. The requirement
that P be normalized gives

I+ =(n+ —,')h, (38)
A =1/:-'I (41b)

but split by the exponentially small deviation of the right
side of (37) from —l. Of the two corresponding eigen-
states, one is even, and the other is odd. The two states
are not localized in either well, but have the same ampli-
tudes in the two wells for the even case and opposite am-
plitudes for the odd case. For y + 1 the result analogous
to (35) is

cos f vrNT+ y [ln l y T l

—g( —,
'

) ] j
= —

( 1+e ~) (39)

which again shows that the states have a separation given
by Eq. (32).

These results indicate that quantum effects strongly
modify the interaction of such systems. A classical sys-
tem most strongly interacts with an external force that is
in resonance, i.e., has a frequency equal to the classical
orbit frequency. Thus, we may say that the classical exci-
tation frequency is the orbit frequency. A quantum sys-
tem interacts strongly with external forces of frequencies
equal to the frequency differences. In analogy, the quan-
tum excitation frequency is the frequency difference be-
tween states. These excitation frequencies agree in the
semiclassical limit, as they should. However, Eq. (36b)
indicates that for states near the separatrix, the semiclas-

As usual, the overall phase is irrelevant. From the ampli-
tude (41b) and the Eqs. (22) and (40) the wave amplitudes
for both sides of the potential follow immediately. The
ratios are

2
cos (8+ )

cos (8+ )+a sin (8+ )
(42)

:-=A2+ =+gA2+ A':-
with

(43a)

The relative sign of A+ and A is determined from
(18a) for a particular wave function, i.e., particular value
of y.

Equation (42) shows explicitly how deeply trapped
wave functions are localized on one side of the barrier.
For example, for the sequence I+ =(n+ I/2)h of Eq.
(28), which corresponds to cos(8+)=0 of Eq. (26), Eq.
(42) implies that A /A vanishes. Thus, wave functions
corresponding to quantization of the action to the left of
the barrier have no (or exponentially small) amplitude in
the right barrier.

The normalization integral can be written as a sum of
two parts,
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=-, =—f dxlyl'/I~. l' (43b)

+ 2++ 3+ (44)

each corresponding to a portion of the real line as shown
in Fig. 2. In particular,

:-, =f dxlyl'/~', , (45a)
0

where y+ is in the overlap region (17), and

,.=f dxlyl'/~'. . (45b)
y+

The exact choice of the end point y+ of the integrals
must be irrelevant, if the asymptotic theory is correct. In
fact, we would like to write these results in such a way as
to make manifest the independence of the normalization
on the limit y+.

To calculate the integral (45b) we must insert the uni-
form Airy solution, which we have not given. We have
given only the rapidly varying phase solutions (8). How-
ever, beyond the right turning point, the Airy solutions
become exponentially small. In addition, the region sur-
rounding the outer turning point where the Airy solu-
tions differ significantly from the rapidly varying phase
solutions has a width that is O(A' ), and there the Airy
functions reach a magnitude that is only O(fi ' ). Thus,
the contribution of this region to the integral is small in
the limit %~0 and can be ignored. As a result, we can

and

=f '
dx I@I'/I & (43c)

The integrals of (43b} and (43c}once calculated, together
with Eq. (42), determine the normalization integral (40),
which in turn determines the amplitude (41). Given ei-
ther of the integrals (43b) or (43c), the other follows
readily. Thus, we now concentrate on the calculation of
(43b).

In the case where the energies are far from the separa-
trix, the normalization integrals are more easily calculat-
ed. They are given by the integrals (43) limited to the re-
gion between the turning points. In these integrals the
usual rapidly varyin~ phase functions (8) are used. The
singularity (-1/&x) of the square of these functions
near a linear turning point is not a problem as this singu-
larity is integrable. However, for energy equal to that of
the separatrix, the square of the WKB wave functions
diverges more strongly (-1/x), such that the integral no
longer converges. This indicates that the central region 2
will inhuence the normalization integrals for energy close
to the separatrix energy. It is this case that we now turn
to.

To calculate the integral (43b), the integration is divid-
ed into two parts,

+ 1

~+ I2m V(x)l'i

+ dx
' ~+ lmbl'"x

1

Imb I

"zx

The lower limit of the first integral in this equation may
be replaced by zero, since it is not singular at the origin,
and y+ is small. Then this integral may be evaluated
with the use of Eq. (31). The second integral of this ex-
pression is simply a logarithm. Therefore, we obtain

:-,+= ,'lmbl '~—'lnlE+/2by'+
I

=-,' lmb I
-'"inly+/q+ I, (47)

in which the definition

'gy =A/ y (48)

has been used. The expression (47) isolates the depen-
dence of the integral on its lower limit. As we shall see,
this dependence is canceled by a corresponding depen-
dence in =2~.

The calculation of:-2+ begins with the insertion of Eq.
(13) into (45a) and the use of the relations (18) to elimi-
nate the amplitudes C and D in favor of the amplitude
A+. This calculation is facilitated by the introduction of
Whittaker s function, which is related to the parabolic
cylinder functions via

replace the upper bound in the integral (45b) by the right
turning point and use the rapidly varying phase solution

:"3+=f dx sin A' ' f p(y)dy+~/4 IQI'~
V+ x

That the upper singularity is integrable is another mani-
festation of the unimportance of the region near and
beyond the outer turning point. In this integral the
square of the sine yields two terms, as sin a
= [1—cos(2a)]/2. The term cos(2a) has a rapidly vary-

ing phase and, so, vanishes as A~O. Therefore,

:-3+=
—,
' f dx /p(x) . (46)

Vy

This is the usual semiclassical result: The contribution to
the normalization integral of some region dx of the real
line is proportional to the time dt =m dx/p that would
be spent in this region by a classical particle.

We can simplify Eq. (46) by setting the energy to zero,
because unlike the barrier region, in the region of the in-
tegral (46) the wave-function amplitude is not sensitive to
the energy. To evaluate this integral, we add and sub-
tract the term that is singular at the origin. Thus, we ob-
tain

D,r, &2(ge ) = —exp;„g4 1 vry
v'2 4

+—arg[l ( ,'+iy)] [—z
' W( —y, r))+i@' 8'( —y, —g)] . (49)

This relation may be derived from Ref. [39],Eqs. 19.3.1, 19.17.6, and 19.17.7. In addition, the scaled variable g is used
for the integration. This procedure gives
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e y "I+ i ~/8 —i ~N+ i(y/2)lnl y+ I

( ™4)+. . ]'
4 mb 0

e
—n.y /2 im/4 —i2mN+ —iy 1nly+I ~+

d71D;, (ri '
)

4 rnb 0

7/ ++ driD, r, /2(rie
' )D;,/2(rie' /

) +c c.
The second integral can be converted to a more easily evaluated form by using the relation,

I ( ,' —iy—)
D ( ~e i ~/4

)
— I' e

—nr/2+ I'n /4D ( e
—i w/4

)+e nr/2 —'i n /4D (
—i n /4

) i—iy —1/2 't i Le
27' iy —1/2 qe e , »2 qe

Insertion of this relation yields

(50)

e
—ny/2

4&mb

r(-' —i )
/4

—i2mN+ —iy 1nly+ I

&2m.

I ( ,' i y—)—
emy/2 —i~/4L +c c~ ~

&2~

in which the definitions (Al) and (Bl) have been used. These integrals are calculated in Appendixes A and B. Combin-
ing this equation with (A4) and (B7) yields

1 1 «[P(-,'+iy)]
2 mb 4 mb

e Im, e
8V mb I ( —,

' —iy)
(2~N+ tr l~lr+—I

—
~r/~ 3 i y 1 i y

4 2 4 2
(51)

This equation shows that the contribution of the barrier region to the normalization integral need not scale with
Planck s constant. The first term diverges logarithmically with the scaled matching point, but the scaled matching
point need only be large compared with unity, according to Eqs. (16), (17), and (48), not necessarily large compared with
some inverse power of Planck s constant. The remaining terms are also seen to be of order unity for y of order unity.

We now have a complete picture of the relative probability of being in the various regions. The contribution of the
near-barrier region, which is the small-x part of the complement of the region (17) where the rapidly varying phase
solution breaks down, is of order unity, as is the contribution of the region where x is 0 (1). It is the contribution of the
intermediate region (17) that gives the dominant contribution.

We add:-2+ and:-&+ to obtain the normalization integral over the positive x axis. The terms containing lnlri+ I
can-

cel, as they must, since the analysis cannot depend on the choice of matching points. Below we give the result for both
:"+and:"

»Iy+I «[f(—,'+iy')] n'&2 sech(ny)sin(28+)e

4&mb 8&mb
t

e aery

8&mb
2 Im f —+1 iy

4 2
—~tanh(ny) [1+e r &2cosh(ny)cos(28+)] . (52)

(53b)

Identities for the g function and our relations (19) and (20) for the angles 8+ were used to obtain Eq. (52). The complete
normalization constant is obtained by inserting Eqs. (52) and (42) into Eq. (43a). Several terins, including all of those in

the brackets of (52), cancel after combination and use of the dispersion relation (23). The result is
2

1 n sin(8 )cos(8 )e
inly, I

—«[P( —,
' )+iy]+ (53a)

e~r+e ~r

»lyTI —«[1((2+iy)] inly+/y Isin(8~)+me rsech(my)cos(8~)

4' Cop Sm ' coosin(8r )~/ 1+e "r

»lyTI —«[g( —,'+iy)] ~sech(~y)+
4v'mb 8&mb

(54)

The quantities 8T and 8& were defined in Eqs. (25).
For the symmetric case, Eq (53) redu. ces via the rela-

tion, sin(8T)=+(1+e "r) ', derivable from Eq. (3),
to

I

where the sign is given by the parity of the state, i.e.,
=+3 +. For y of order unity, the first two contribu-

tions to the normalization are positive. The last contri-
bution is positive (negative) for states of positive (nega-
tive) parity. This arises because the negative-parity states
must vanish at the origin, and so the contribution of the
near-origin region to the normalization will be smaller.
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As must be the case, the normalizations (53) and (54)
are finite for any value of y provided A does not vanish.
[The quantity sin(8r) in the denominator of the last term
of (53) cannot vanish, as Eq. (24) indicates that cos(8r)
has a magnitude less than unity. ] However, Eqs. (53}and
(54) indicate that the normalization constant diverges
logarithmically for fixed y in the limit A~O, because in
this limit yr=0(1/iri). The reason is that in this limit,
the classical probability density becomes singular on the
separatrix, because the particle spends all of its time at
the x point. Quantum effects regularize this singularity.
The quantum probability density no longer diverges, but
the probability of not being near the barrier approaches
zero logarithmically with Planck's constant.

The quantum modifications disappear for y greater
than or of order unity. For the symmetric case (55) the
last term is exponentially small for large y. Since
g(z)-ln~z~ for large z, the first two terms reduce to
In~Er/E~/2m' coo, which according to the discussion
just after Eq. (31), is one-fourth of the sum of the classical
periods of the left and right wells divided by the square
root of the mass. The factor is seen in Eq. (46). One half
is the prefactor due to locally averaging sin . Another
half comes from the quantum integral being one integra-
tion between turning points, while for the classical period
one must integrate from one turning point to the other
and back. The divisor of m' arises because our normal-
ization led to p(x) being in the denominator rather than
U (x)=p (x)/m '~ as would be the case in the integral for
the classical period.

A similar disappearance of the quantum effects is seen
in the asymmetric case. For large, positive y, the last
term in Eq. (53b) is small, and so the first two terms
reduce to ln~Er/E

~
/2m '

coo, as before. For large, nega-
tive y wave functions trapped in, say, the positive well,
A /A is exponentially small, and A+ /A goes to unity,
so that only the j=+ term in the sum is important. For
this term, the last term in the brackets vanishes: The ex-
ponentials in the numerator and denominator cancel, and
the cosine is exponentially small, according to our discus-
sion of Eq. (42). Thus, for wave functions trapped
in the positive well, the normalization constant is
ln~E+ /E

~
/4m '~

coo, or one-fourth of the classical period
for a particle trapped in the right well.

Figure 3 shows a typical near-separatrix wave function.
Far from the barrier the rapidly varying phase approxi-
mation applies. Thus, the wave function is given by Eqs.
(8), where according to Eqs. (46) and (54), the amplitude

O(h )—

O(1/ln lhl)—

is O(1/In~I/iri~). On the barrier side of this region the
parabolic cylinder functions apply. Equations (18) show
that these functions rise to an amplitude that is
O(1/R' ), so that the probability of being in this region
is order unity.

IV. MATRIX ELEMENTS

Insertion of this result into the matrix element yields

&y„lUly, & =5„,U(o)+ &y„lU—U(0)l((), &, (ss)

because the matrix elements are orthonormal. (It is now
necessary to restore the subscripts referring to the quan-
tum state. ) The first term in (55) is simply a shift of the
energy levels. For the remainder we define the matrix
elements Mkj via

&(()„IU —U(o)lyj &

kj
k j

(56)

where the quantity A. is the value for state j of the am-

plitude A that appears in, for example, Eqs. (40}—(42}.
Thus, the elements Mk are calculated with the unnor-
malized wave functions. In this section we calculate
these elements Mk ..

Taylor expansion shows that near the unstable fixed
point, the function in the matrix element (56) has the
form,

U(x) —U(0)=U'(0)x+O(x ) . (57)

The linearity of this function in x near the origin coun-
teracts the 1/x singularity of the wave functions (8) at the
origin. Thus, the integrand of the numerator of (56} is
finite. This implies that region 2 does not contribute to
this integral, because its width vanishes with A', and the
integrand is finite. Only regions 1 and 3, where the rapid-
ly varying phase approximation is valid, contribute.

In keeping with the last section, we write the integral
in the form,

Matrix elements are needed to calculate the transition
probabilities between states. In particular the matrix ele-
ments of the time derivative B,H of the Hamiltonian are
needed for the transformation to the rotating-frame basis,
which is used in the study of the loss of quantum adiaba-
ticity in systems with a separatrix. In this section we dis-
cuss the calculation of matrix elements for macroscopic
functions of position. That is, we consider the matrix ele-
ments of a function U(x) that varies on the same scale as
the potential.

The first step in calculating this matrix element is to
add and subtract the value of U at the unstable fixed

point,

U(x)= U(x) —U(0)+ U(0) .

O(h )

A +Ak+ A Ak
M = M. +jk A. A jk+ A A jk — ~

j k j k
(58a)

FIG. 3. A typical near-separatrix wave function. where
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M,k~—=+ f dx pk[U(x) U—(0) jpj .3 ~3k~ 0
(58b)

U(x) —U(0)
+'" t/P/Pk

(We have chosen the eigenfunctions to be real. ) The
quantities 3 -+ are the amplitudes A+ for the eigenmode
j. After calculating M k+, M k will follow immediately.

Use of Eq. (8b) and (58b) yields the result,

+~k U(x) —U(0)
M k+=— dx

PgPk

+
Xsin — p (x')dx'+—

4

X~
Xcos p~ x 8x

x

X~
Pk X dX

X

To evaluate the momenta in (61) we use Taylor expansion
of (60),

mE
pj(x) =p, (x)+

p„(x)
~+

Xsin —f p (x')dx'+-
k 4

where

p„(x)=&—2m V(x) (62)

in which a+.k is the greater of the interior turning points
for the energies E and Ek, and x+ k is the lesser of the

outer turning points for these energies. These choices are
not critical, because the integrand is bounded near the
origin and integrable at the outer turning point. Hence,
the error by making a different choice for the integration
limits is less than O(1). The quantities p. are the classi-
cal momenta corresponding to these energies, i.e.,

is the momentum for the separatrix trajectory. This ex-
pansion breaks down near the maximum. But this is
unimportant as before, because the region of breakdown
is small, and the integrand is finite. For the numerator of
the integrand we need only the first term of the Taylor
expansion. Upon inserting these relations, no additional
error is incurred by setting the lower limit of the integral
to zero and the upper limit to the outer turning point of
the separatrix. Thus, we obtain

p (x)=+2mE —2m V(x), (60) '+d U(x) —U(0)

in agreement with Eq. (2b).
Combining the sines in Eq. (59) yields a cosine of the

sum of the arguments and a cosine of the difference. The
cosine of the sum is a rapidly varying function that in-

tegrates to zero in the limit of small A. Hence, this in-

tegral is not important. %e are left with

E —Ek
Xcos m ' f dx'/p„(x'), (63)

X

the result for both wells. The total matrix element is ob-
tained by inserting (63) and (22a) into Eq. (58a). In the
general case, this yields

~j+ ~k+ + U(x) —U(0) g +k +
M,k

= ' dx cos m dx'/p„(x')
2Aq Ak 0 p, (x) X

J' — k — 0 U(x }—U(0) j k+ dx cos m dx '/p„(x')
2AAk ' p (x)

(64a)

'+
d

U(x ) —U(0)8x
0 p (x)

Xcos m f dx'/p, (x'), (64b)
x

if the two states have the same parity, while

Mk=O (64c)

For the symmetric case this result simplifies to if the states are of opposite parity.
In contrast with the normalization factors, the unnor-

malized matrix elements for states near the separatrix do
not diverge in the limit %~0. The integrand is bounded
because the 1/p singularity is canceled by the vanishing

(57) of U(x) —U(0} near the origin. The phase of the
cosine diverges as 1/x ln

~

I /A ~, because the energy
di6'erence (52b) scales as A'/In~ I/R~, but the cosine is

bounded. Moreover, the contribution of the near-origin

region is small because the oscillations of the cosine are
arbitrarily rapid near the origin. This indicates that the
major contribution to the unnormalized matrix element
comes from the region far from the x point.
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V. SUMMARY AND CONCLUSIONS

We have discussed the probability density and shown
how the matrix elements for macroscopic functions of po-
sition may be calculated for near-separatrix eigenfunc-
tions. Our analysis of the normalization constant shows
that the probability of being far from the s point vanishes
logarithmically with Planck's constant. Thus, it ap-
proaches the classical limit (zero) very slowly. Our
analysis of the matrix elements shows that the region
near the fixed point does not contribute to the unnormal-
ized elements. Thus, the quantum resolution of the clas-
sical divergence is only through the wave-function nor-
malizations.

This work provides a basis for the calculation of transi-
tion probabilities between separatrix states due to per-
turbing forces. It also provides a basis for the calculation
of the loss of the quantum adiabatic invariant [30].
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—i /~/2ei 1r/4
1

3 I'y 1 iy
4 2 4 2
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In the development of Sec. IV, the integral

Hence, the integrands in (A2) are exponentially small for
large ~, and the second integral may be ignored. For the
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[Ref. 43], p. 885. The result is
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f)+
L2 —= dry D;» 1/2(rle—

0

XD i/2(»le ) (B1)

APPENDIX A: EVALUATION OF
THE INTEGRAL L i

In this section, we calculate the integral,
YJ +

Li —— d»)D;», /2(»Ie
' / ),

0
(Al)

L2=e' (L2, +L~b),

where

(B2)

is needed for large g+. In this appendix we evaluate this
integral. We do so by introducing the auxiliary variable
'p=qe '" and modifying the contour of integration as
in Fig. 4. Thus, we obtain

which is needed for the development of Sec. III. To
evaluate 1.&, we introduce the auxiliary variable
~=ge ™/4. Thus, the integration is along the ray
arg(r) = —m. /4. We deform this contour as shown in Fig.
4 to be first along the real-~ axis, then along a circular arc
to ~=—g+e ™4.we obtain

and

I+
L2, —— dr D;» i/2(r)D;» i/2(

—r)
0

(B3a)

—in/4

L2b = f d&Di» 1/2(&)Di» ——1/2( &) . (B3b)
71+

YJ +
L, —:e' drD;», /~(r)

0

—i n/4

+ f d r Di2»
& /p ( r )

7/ +

Im(t)

Re(t)

(A2)

The integral (B3a) diverges as»l+ ~ ao. To extract this
behavior we set the index of the first Whittaker function
to y'. In this case the integral over the infinite domain
can be found. We subtract the added portion of the in-
tegral. Then we take the limit y'~y.

The asymptotic form of the integrand for difFering in-
dices may be obtained from Eqs. 19.3.1, 19.4.2, 19.8.1,
and 19.8.2 of Ref. [39]. The result is

Di »' 1/2(& )Di» 1/2( —7)
i

z' —» ' ' . (B4)r —,
' —iy)

Thus,

FIG. 4. Contour modification for the integral (A2). The orig-
inal integration contour in the complex-v plane is the darker
line. The deformed contour (lightly drawn) is composed of a
piece along the real-v axis and an arc of angle m/4 at large ~.

L2, = lim f d~D, » &/~(r)D, » &/2(
—»)r' r

&2~ i(r' —r)—
&

I ( —,
' —iy)

The first integral in this expression can be found in Ref.
42, p. 885. The second integral is trivially found. This
gives
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iL z, /&2sr = lim
r' r

I(r' —r )
+ v/ 2i(y'+r —1)/2

I ( ,' ——iy)
1 + l

I ( —' i—y/2)l"( —' —i y'/2) I ( —', —i y'/2)I ( ,' ——i y/2)

The numerator and denominator in this expression
vanish as y'~y. Therefore, we obtain the result by
L'Hopital's rule. This gives

I-,'Inlq2+/2I
&2n.

I ~l iy) 2

,'—[4—.' -t'y—/2)+4( .' -ty—/2))) .

(B5)

The second part L2& is straightforwardly integrated. We
6nd

The entire integral Lz is found by inserting (B5) and (B6)
into (B2). The result is

L2=e' . Pln~ri+/2~r( ,' i-y—) '

.'—[4—(4 -t y—/2)

+f( ', iy—/—2)+i')) .

Finally, we use Eq. 6.3.8 of Ref. [39] to obtain

i n —V'2n.

4 r(,' —y)
(B6)

e i n /4

Lz= . ln g+~ ——'lb( —' iy) ——
2 p(] '

)
+ 2 2 4

(B7)
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