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Parity breaking in directional solidification: Numerics versus amplitude equations
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Motivated by recent experiments on the directional solidification of nematic liquid crystals, the stan-

dard solidification model is investigated in detail, numerically {by the boundary-integral method) as mell

as analytically (using amplitude equations). For the parameter values suitable for the experiments, both
approaches yield a parity-breaking instability to traveling waves as well as a period-doubling bifurcation.
Moreover, they agree with each other quantitatively not only in the immediate vicinity of the expansion

point of the amplitude equations but over quite some range of parameters. The resulting phase diagram
is in general accord with that obtained in the experiments. Since the amplitude equations describe the
interaction of two modes with resonating wave numbers q and 2q, this demonstrates that both experi-

mentally observed transitions have the same origin: the 1:2-mode interaction. In addition, a third oscil-

latory instability observed experimentally can also be traced back to this interaction. Some questions

concerning the direction of some bifurcations are, however, as yet unresolved. Possible causes for these

discrepancies are indicated. For other parameter values the amplitude equations predict that no travel-

ing waves will arise from this mode interaction.

PACS number(s): 64.70.Md, 47.20.Hw, 68.10.Jy, 47.20.Ky

I. INTRODUCTION

In recent years there has been a lot of interest in under-
standing spatial and spatiotemporal patterns from a gen-
eral point of view. Particular progress has been made in
patterns arising in quasi-one-dimensional systems. The
best known systems of this kind are directional
solidification [1,2], directional viscous fingering [3],eutec-
tic solidification [4], Taylor vortex fiow [5], and convec-
tion in a narrow channel [6]. Although these systems are
very much constrained geometrically, they show a rich
variety of patterns and transitions: spatially period-
doubling instabilities, traveling waves, sources, sinks, and
solitary modes. At the same time, despite the large
differences in the microscopic equations, the phenomena
are sufficiently similar in these systems that a unified
description appears possible.

In one-dimensional systems the secondary bifurcations
(those off the cellular pattern), can be classified by exam-
ining the different ways to break the symmetry of the pat-
tern. For cellular patterns which are invariant under
translations in space and time, and which are reflection
symmetric, Coullet and Iooss [7] have shown that one
can expect ten different secondary bifurcations. Not all
of them have been observed yet.

In this paper we show that various transitions observed
in the experiments can be understood to arise from the
interaction of two relevant modes which have resonant
wave numbers q and 2q. We concentrate on the experi-
ments by Libchaber and co-workers [1,2] on nematic
liquid crystals where the transition between the isotropic
and the nematic phase is utilized. In these experiments,

similar to ordinary directional solidification, the material
is pulled through a fixed temperature gradient with a pul-

ling velocity uo, resulting in a moving nematic-isotropic
interface. Due to the diffusion of impurities the flat inter-
face can become unstable to spatial modulations. For
sufficiently small sample thickness spatially period-
doubled states, traveling modes, and solitary modes are
observed in these experiments. To model this system we
use the standard directional-solidification model [8]. We
investigate this model numerically using the boundary-
integral method [9] and analytically within the frame-
work of coupled amplitude equations describing the
above-mentioned resonant mode interaction. Both ap-
proaches yield a parity-breaking bifurcation to traveling
waves and an instability to a spatially period-doubled
state. What is more, both approaches agree quantitative-

ly with each other not only in the vicinity of the mode-
interaction point but over quite some range of parame-
ters. This confirms the above interpretation of the origin
of these phenomena.

As argued by Coullet, Goldstein, and Gunaratne [10]
the solitary traveling modes observed in experiments can
be described by a bifurcation which breaks the reflection
symmetry of the original steady-state pattern, i.e., by a
parity-breaking bifurcation which gives rise to traveling-
wave states, if this bifurcation is subcritical. Then kinks
connecting the reflection-symmetric with the asymmetric
state can arise. Such kink-antikink pairs exhibit all the
qualitative features of the experimentally discovered in-

clusion. In fact, an extension of the model [11]has been
shown to mimic the collision of the inclusions. They did
not show that such a bifurcation in fact occurs in these
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systems. Our calculations show that the standard model
does in fact exhibit a parity-breaking bifurcation. For all
the parameter values investigated, it is, however, super-
critical.

The paper is organized as follows: In Sec. II the exper-
imental system is described and the equations used to de-
scribe it are discussed. In Sec. III, the equations are for-
mulated as an integro-differential equation. Section IV
describes the coupled amplitude equations and the bifur-
cations resulting from them. The calculations of the
coefficients of the amplitude equations are given in the
Appendix. Independently, these coefficients have also
been calculated by Haug [12], who discussed reflection-
symmetric solutions only. The numerical results are
compared with those of the amplitude equations in Sec.
V. Finally, we conclude with a discussion in Sec. VI.

FIG. 2. Phase diagram of the alloy; temperature T vs concen-
tration c.

II. BASIC EQUATIONS

In this section we review the experimental setup and
the basic equations of directional solidification. The
liquid crystal is placed between two conducting plates,
with a small spacing between them. Although the spac-
ing does have an effect on the experiment we assume that
the system is two dimensional. The temperature is exter-
nally imposed and thus fixed. The bath is pulled with a
certain pulling velocity up towards the cold end. In Fig.
1 we have schematically drawn the experimental setup.

We assume that the alloy is characterized by the phase
diagram in Fig. 2. In both the liquid and the solid phase
(for the liquid-crystal case this is the nematic and isotro-
pic phase) the concentration field obeys the diffusion
equation

DL V c = (liquid),
BC

DsV c= (solid),C

Bt

~here DL and Ds are the diffusion constants in the liquid
and solid, respectively. The concentration far away from
the interface, c„, is fixed for each experiment. Local
thermodynamic equilibrium requires that the tempera-
ture is the same on both the liquid and the solid sides of
the interface. From the phase diagram we have

Ts TM —csms

TL TM cL mL

where ms (mL ) and cs (cI ) are, respectively, the slope
dT/dc in the solid (liquid) phase and the concentration
on the solid (liquid) sides of the interface. Since TL = Ts
the concentrations in the liquid and solid sides are related
by the ratio of the liquidus and of the solidus:
cL =csms/mL. Tsr is the melting temperature for the
pure material (c=O} and has a Gibbs-Thomson shift due
to the curvature s.: TM =Tsar(1 dpi'), where the capil-
lary length dp can be expressed in terms of the surface en-

ergy 0 and the latent heat L: do =0 /L.
The final boundary condition follows from the conser-

vation of matter,

cs) =DL (n Vc)L Ds(n Vc }s— (2)

so that at y=O we have T=TM. At the interface, we
therefore have

c Gy dpK

mL
(4)

To cast the equations in their final form we go to the
moving frame, rescale c by c „and rescale the lengths by
the diffusion length up/2DL and time by v p/4DL. Then
the equations read

V c +2 =B,c (liquid),
Bc

By

aV c+2 =B,c (solid},Bc

where v„ is the normal velocity. In the case of a
directional-solidification experiment the temperature is
imposed externally. For convenience let us choose

T(y)=T~+Gy,

nematic isotropic
with boundary conditions at the interface,

(n.Vc )I a(n. Vc )s = —v„(1—k)ci 8», — (7)
c
0
l
d

FIG. 1. Schematic setup of the experiment.

h
0 Cs —y

sc
k

where k =mL jms, a=as/DL, y=vdpTM/2DLmLc„,
and g —vmic„/2DL G. The normal velocity v„can be
written as the sum of the constant translational velocity
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&yv„=2+8,g . (9)

in the y direction, which is 2 in the rescaled variables,
and a possible contribution from the interface at y =g:

ci = 1+f cr n VGI ds —fGI P,ds,

c, =af csn VGsds —fGsgzds,
(10)

III. NUMERICAL APPROACH

The numerical approach consists of rewriting the
above equations for the steady state (i.e., setting the
right-hand side of (5) and (6) to zero) into an integro-
differential equation over the unknown boundary,
parametrizing this unknown boundary and finding the
possible solutions. To derive the integro-differential
equation let ci be equal to c everywhere in the liquid and
zero in the solid. Let c, be the same with the solid and
liquid reversed. From Eqs. (5)—(8) and the boundary con-
dition c~1 at Do, we can write

where the integration is over the interface, P, and P2 are
unknown functions, and where GL and G& are the
Green's functions for the liquid and the solid, respective-
ly,

V 6+2 = —5(x—x') liquid,
BG

3'

aV G+2 = —5(x—x') solid .BG

An important dimensionless parameter is the Peclet
number p defined as p =vk, /4DI. Then, for small Peclet
numbers it is computationally efficient to use, as an expli-
cit form of the Green's function,

(
.+

~

.
~)

1
" cos[nm. (x —x')/p]e

[1+(nm/p) ]'

G — —(y —y'+ ~y
—y'~ )/a+ cos[nn(x —x')/p]e ~

y')l~+ly y' {&l~'+~~~&y~ }
' I—

4p' 2p n ——j [1/a +(nn/p) ]'

(12)

(13)

For high Peclet numbers it is more efficient to use for the
Green's function the expression

G —y 1 —(y —y')

. 2~

XKO(p[(x x'+2n)'—+(y —y') ] ) (14)

and a similar expression for Gz.
For the numerics we use the symmetric model, for

which a=1. Equations (10) reduce then to the single
equation at the liquid interface

ci l K= (1—k) ———yK nVG ds+ 1

(15)

For the experiment at hand, a=0.526. The amplitude
equations will be discussed for arbitrary a. In particular,
the coefBcients appearing in the amplitude equations
were calculated for arbitrary a.

The computational procedure consists of parametriz-
ing the (unknown) boundary with N points of equal arc-
length separation. Since the cell is symmetric around the
middle we can choose for our computational box just a
box of size 1,/2. As our independent variables we take
the normal angle n-y=cos8 defined on the midpoints of
the points of equal arclength. The additional indepen-
dent variable is the position of the cell: yo. The N+1
equations are the X—1 integral equations on the points
of equal arclength except the interval end points and the
requirement that the slope vanishes at both the tip and
the tail. One has to be careful with possible divergences
in the integral. A detailed account of this difficulty is
given in Kessler and Levine [13].

The resulting N+1 nonlinear equations were iterated
using Newton's algorithm. In our program we have used
the CLAMS routine DNSQE with an absolute accuracy of
10-'.

A question which should be addressed is for which N
(number of discretization points} we get an accurate re-
sult. A discretization of ten points already gives a correct
qualitative behavior. However, for accurate quantitative
results it is necessary to discretize the interface by at least
50 points. In Fig. 3 we have plotted the wavelength at
which a mixed solution bifurcates to a pure period-
doubled state (this bifurcation will be discussed in great
detail below). As we can see, the point of bifurcation
converges for increasing number of discretization points.
For a11 our calculations discussed below we have used 50
points.

As we have reported before [14], it is quite easy to find

traveling-wave solutions with the above method. These
modes have a nonzero transverse velocity v, in addition
to the pulling velocity in the y direction. If we go into a
frame which is moving with v = v x+ voy the mode is sta-
tionary again. Thus we modify Eqs. (5)—(8) for a= 1 to

2DL
V2c+ v.Vc =0 (liquid),

Vy

2DLV'c+ v.Vc =0 (solid),
v

(16)
(n-Vc)i —(n.Vc)s= —2(1—k)cl &y,

Cg
CL

= — gK
k

Equation (15) remains the same and the Green's function
is modified to
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—(y —y') —( u„ /2)(x —x'+ 2n)
EO

2m

1/2

p + [(x —x'+2n) +(y —y'} ]'~
4

(17)

The cell does not have re6ection symmetry around the
midline of the cell and consequently we have to deter-
mine the shape of the total cell. As an extra variable we
now have to determine v„and the number of discretiza-
tion points is 100.

Once we have found steady-state solutions we can ex-
I

amine their stability. For this we will use the quasistatic
approximation, i.e., we neglect the time derivative of the
concentration field but allow the interface to have a non-
constant normal velocity. Details of this approach can be
found in Kessler and Levine [15]. In brief, Eq. (15) is
thus modified to

c&= ———ye= (1—k) ———ya n.VGds+ (1—k) ———ya GB,gds+1 . (18}

The basic idea is to perturb the steady-state solution with a small normal shift, substitute this perturbation into the
integro-differential equation above, linearize and solve the resulting eigenvalue problem for the growth rate of the per-
turbation.

To be more specific, we perturb by

x(s }=xo(s) +no(s)5(s, t),
where we assume that 5(s, t) =5(s)e ' and 5(s) «1. We substitute this perturbation into (18) and linearize in 5. This
gives us the rather messy looking equation

I

fds' (1—k) +yao [5(s')no V'+5(s)no V]no V'G+(1 —k) —y[5"(s')+a05(s')] no. V'G

+(1—k) +ylro [ —5'(s'}to V'G+a05(s')no V'G] + —y[5"(s)+a05(s)]
yo 5(s)

= —p, fds'(1 —k) +yao 5(s')G, (20)
XO

M M

g AJ5=@, +B;5 (21)
j=0 j=O

70 s

I

& i «
I

s & s &

I

«s

v=30

where to is the tangent vector of the steady-state solution.
Once we have chosen M points with equal arclength ds,

the discretization of the integrals gives us a set of equa-
tions of the form

I

This is just an ordinary eigenvalue problem for p& and
can be solved with one of the standard numerical pack-
ages.

We can either perturb the steady state by a perturba-
tion which is symmetric with respect to the end points of
our computational box or one which is antisymmetric.
The latter corresponds to a parity-breaking perturbation
and we expect that at the point where the traveling-wave
branch merges with the steady-state branch, the stability
of this steady-state mode will change. As we have report-
ed before [14],this is indeed the case.

55

IV. AMPLITUDE EQUATIONS

Let us now return to the basic equations (5)—(8). To
derive the amplitude equations it is useful to introduce
the fields

50
10 20 30 40

Number of points

I I I I I R I I I I I I I I I I I I I I I I 1 'I
I I I I

50

a (x,y, t)=ci(x,y, t}, y )g

w(x, y, t)=c, (x,y, t}, y &g

(22a)

(22b)

FIG. 3. The wavelength at which the mixed mode S+ merges
with the period-doubled mode S2 as a function of the number of
discretization points (these modes are discussed in detail in Sec.
IV).

and the interface position g(x, t) Equations (5) a. nd (6)
can then be rewritten as

(23a)
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(23b)

w=ku .

a'„g

[1+(g g)2]3/2

= —(2+8,g)u(1 —k), (24)

(25)

(26)

These equations have a trivial planar solution,

B„w+B„w+2a '8 w =a 'B,w,

and the boundary conditions at y =g(x, t) read

—a„g(a„u —~a„w )+a, u —aa, w

Parameter

do
6
TM

m(

D!
D,
k

Value

2X10 ' cm
23.3 K/cm
313.65 K
1'/mol %
1.2 mol%
3 8X10 cm/s
3.8 X 10 cm/s'
0.88

TABLE I. Parameter values of the liquid-crystal system used
in the numerical calculation.

[y go])
uo(y) =1+ ——1 e

(27)

with interface position (=go. When we increase the pul-

ling velocity above a certain critical velocity this planar
interface becomes unstable due to the well-known
Mullins-Sekerka instability [8]. To get the dispersion re-
lation, we perturb the planar base solution with a
sinusoidal perturbation with growth rate p„

iqx +A, 1y +altu =up+gu&e
iqx+A1y +pitw =1+gw&e

(28a)

(28b)

g=g +rtg, e'~'e ' (28c)

where A]+2k,
&

—
q =0 and A&+(2/a)A, —

q =0. Before
substituting these expressions into the boundary condi-
tions (24)—(26) one has to take into account that they ap-
ply at y =g(x, t) with g(x, t) given by (28c). This is done

by expanding u and w at the interface y =g(x, t) around

y =go. Substituting these expressions into the boundary
conditions and linearizing in g we get an equation for p,
[cf. (A6) in the Appendix]. The neutral curve is defined
as the curve in parameter space at which p, =0. In the
velocity —wave-number space the neutral stability curve
(U, q) is closed as shown in Fig. 4. Inside the curve the

Z) —p)Z) +gIZ) I Z) (29)

Since the system has translation symmetry, x ~x+Ax,
the amplitude equation has to be invariant under

iq b,x
Z& ~Z, e ' . The lowest-order term is therefore cubic.
The sign of the cubic coefficient g determines the nature
of the bifurcation. If g &0 we have a supercritical or for-
ward bifurcation while if g &0 we have subcritical or
backward bifurcation. The value of g has been calculated
first by Caroli, Caroli, and Roulet [17] for arbitrary
values of a. Although they obtained the right sign, a
small error in their calculation was corrected by Woll-
kind, Oulton, and Sriranganthan [18]. We have calculat-
ed the value of g for the parameter values shown in Table
I which characterize the liquid-crystal system. Figure 5

planar interface is unstable to perturbations with the
respective wave numbers.

To describe the nonlinear evolution of these perturba-
tions we derive amplitude equations for the modes in
question. The details of this derivation will be given in
the appendix. Here we concentrate on the general as-
pects of the results. At the minimum (v„q, ) of the neu-
tral curve there is only a single such mode. Denoting the
amplitude of the corresponding interface deflection by

Zt, i.e., g(x, t)=g o+Z~(t)e ' +c.c.+. . . , (the ellipsis
denotes higher-order terms) one obtains the following
Landau equation:

800—

700—

200—

100

0

I ~ I I

I

I

I I I I I I I I

50 100

Wavelength k (p,m)
150

x10-'
1.0

bQ

V
0.5

V
C)
U

0.0

C
aS

-0.5
0.0

r///
/

/
/

/
/

I I I I I I I I I I I » I I I I

0.1 0.2 0.3 0.4

Partition coefficient k
0.5

FIG. 4. The neutral stability curve in the parameter space
(wavelength A, vs velocity v) for the material parameters in

Table I. The planar interface is unstable inside the curve.
FIG. 5. The Landau coefficient g as a function of the parti-

tion coefficient k for various values of a.
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gives g as a function of k for various values of e. It
shows that for sufficiently small k the bifurcation can be-
come subcritical, as is usually the case in the
solidification of metals [19]. The tricritical line (g=0) in
a-k space is shown in Fig. 6.

Above the minimum more perturbation modes become
relevant. In particular, for the case of an infinite system a
continuum of modes arises. This can be taken into ac-
count by allowing slow spatial variations in the amplitude
Z1, leading to a Ginzburg-Landau equation. In the
present paper we will not discuss this in detail. Instead
we will focus on another aspect arising from the widening
of the neutral curve.

A characteristic feature of directional solidification is
the fact that the neutral curve is very flat (see Fig. 4).
This implies that rather close to its minimum it is already
wide enough that perturbation modes with resonating
wave numbers q and 2q become relevant [20]. Previous
analyses in other systems have shown that such reso-
nances can have a strong influence on the dynamics. In
particular, in Taylor vortex flow it has been shown that
this resonance modifies the band of Eckhaus-stable wave
numbers considerably [21] and can lead to a new instabil-
ity which limits the wave-number band but is not of the
long-wavelength Eckhaus type [22]. It is important to
note that the effects of such resonances cannot be de-
scribed by a single-mode Ginzburg-Landau equation.
Since the neutral curve of the present system is flatter
than that of Taylor vortex flow, it is to be expected that
these resonance effects are even more pronounced. In the
following we therefore investigate the amplitude equa-
tions pertaining for the dominant resonance.

The appropriate starting point is the point in parame-
ter space where both the mode with wave number q and
that with wave number 2q go unstable simultaneously. In
the vicinity of this codimension-2 point the interface
deflection has to be expanded in both modes,
g(t) =go+Z&(t)e'~" +Z2(t)e '~"+c.c.+. . . (the ellipsis
denotes higher-order terms}, and one obtains the coupled
amplitude equations

Z& =p,Z&+c, Z& Z2+a&Z, IZ, I +b&Z, IZzI

Zz=p2Zz+c2Z, +b2Z~IZ& I +a2Z2IZzI

(30a)

(30b)

The form of these equations is again already determined
by the fact that they have to be equivariant under
Z, ~Z, e'~ ", Z2~Zze '~ "(translation symmetry}, and
under Z, ~Z f, Z2~Zz (reflection symmetry). The
latter assures that the coefficients are real. Calculating
the coefficients from the basic equations (23)—(26) in-
volves a considerable amount of algebra which is dis-
cussed in the Appendix.

The amplitude equations (30) have been studied previ-
ously by various authors [23-25]. Here we summarize
their main results and plot a typical bifurcation diagram
arising from these analyses. We will follow the analysis
of Proctor and Jones [23].

We use the translational invariance of the problem and
write

Z — '(f+y)/4 Z — i (f—y)/2
1
—pe 2

—CTe (31)

p=p1p+c1pucosy+a 1p +b,per

c'r =p2u+c2p cosg+a2cr +b20p

j'= —(c2p /o +2c,o)sing,

and a separate equation for f,
P=(czp lo —2c,o )sing .

(32a)

(32b)

(32c)

(33)

There are three different types of steady-state solutions
of Eqs. (32) (i.e., with p =o =&=0).

(i) Pure modes, which we will call S2.

P2p=p, g =, y =p,2

a2
(34)

introducing the spatial phase f and the temporal phase y.
Since P is not invariant under translations it cannot enter
the dynamical equations. Substituting this into (30), and
equating real and imaginary parts, one obtains a set of
three coupled equations for p, 0., and y,

0
~ rt

0.8

0.6—

0
0.4

t0
~ W
M

0.2

supercritical

I I

I

I I I I

These solutions represent cells with wave number 2q and
the coefficient a2 is the corresponding Landau coefficient
g. They exist if p2a2 (p and lose their stability to mixed
modes when the inequality

b1+2 P
I 1( +C1

a2 a2

' 1/2

(35)

is violated. The phase y does not play a role for this
mode but it will for the remaining two steady-state
modes.

(ii) Mixed modes, denoted by S+ ..

0.0
0.0

critical
I I I I I I I I I I I I I I I

0.2 0.4 0.6 0.8

Partition coefficient k
1.0

FIG. 6. The tricritical line, g=O. To the left of the line the
Landau coefficient g is negative and the bifurcation off the pla-
nar interface is subcritical, while to the right g is positive and
the bifurcation is supercritical.

0 I 1+cle+a1p2+b1P2

O=p2o c2p +a2o +b2ap

x+=~ .

(36)

The two mixed modes represent cells with wave number q
which have a nonzero amplitude in their first harmonic
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2q. The mixed mode S undergoes a Hopf bifurcation
on the line given by (36) together with

c2p
a&p +azar =

20
(37)

which gives rise to standing waves characterized by
j'=0=/, but time-dependent amplitudes p and o.

(iii) Traveling waves, denoted by TW:

p — 2 0' 0
c) 2pi+p2
c2

F2[2(c ~ /c2 )a
&

b—, )+p& [
—2(c, /c2 )bz+a 2]

cos+ =
c )0.6

(38)

(39)

with

C) C)6—=4 a) —2b)+2 b2 —a2 . (40)

and bifurcate off S+ at IcosgI =1. Within the amplitude
equations (30) this bifurcation is always supercritical.
Note that the fifth-order terms invoked in Ref. [2] are in
fact not necessary for the occurrence of traveling waves.
The TW's can become unstable to modulated waves
(MW's) with time-dependent amplitudes and phases. In
addition, for certain parameter ranges a homoclinic orbit
arises which is structurally stable due to the symmetry of
the system [23,25].

As an example of a phase diagram arising from the
analysis above, the bifurcation lines corresponding to the
liquid-crystal experiment are plotted in Fig. 7 as func-
tions of p& and pz, which in turn depend on v and q [cf.
(A6) and (A7) in the Appendix]. The solid line denotes

These traveling waves exist provided that c&/cz (0 and
cosyI ~1, i.e.,

T

p2 2 Q] 6& +p& 2 b2+Q2

the bifurcation of the mixed modes S+ off the pure mode
S2, given by (35). At the dotted curve the mixed mode
S loses its stability against the standing wave [given by
(36) with (37)]. To the right of the dashed curve condi-
tion (41) for the existence of the traveling wave is
satisfied. For these lines the coefficients a;, b;, and c;
have been evaluated not at the codimension-2 point
(p&=o=p2), but at the parameter values in question
[p,;=@;(q,v)]. This takes certain higher-order correc-
tions into account (see the Appendix) which considerably
improve the agreement with the numerical result (cf. Fig.
12). For comparison, the corresponding results with the
coefficients evaluated at p&=O=p2 are shown as thin
lines.

V. COMPARISON BETWEEN THE AMPLITUDE
EQUATIONS AND THE NUMERICAL RESULTS

Before comparing the numerical results with those of
the coupled amplitude equations it is useful to check the
numerical resolution using the neutral stability curve and
the single-mode amplitude equation (29). Figure 8 shows
the results for the neutral curve around the
codimension-2 point. Here the solid curves are given by
the dispersion relation [Eq. (A6) below] and the asterisks
denote the location where the numerically determined
cellular solution becomes planar. For the discretization
chosen in all of the subsequent calculations (50 points in a
computational box) the neutral stability curve corre-
sponding to the q mode agrees very well with (A6) while
the one corresponding to the 2q is shifted upwards a little
bit. This is due to the fact that for the 2q curve the
effective resolution is only half as fine since a full cell
rather than half a cell is contained in the computational
box.

Near the minimum (v, q ) of the neutral stability
curve only one mode goes unstable. In Fig. 9 the numeri-
cally determined amplitude of the cell at the critical wave
number is plotted as a function of the velocity v. The
figure shows that the bifurcation from the planar to a cel-
lular interface is supercritical (or forward) not only for
k=0.88 but also for k=0.4 (inset). In fact, the nonlinear
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FIG. 8. The numerical and analytical results for the neutral
curves in the vicinity of the codimension-2 point (q, =0.057,
v, = 16.59).
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FIG. 9. The amplitude of the cell at the minimum of the neu-

tral stability curve for k=0.88. The inset shows the same plot
but now for k=0.4.

FIG. 10. The square of the amplitude of the cell at the
minimum of the neutral stability curve (k=0.88) as a function
of v —v, /v, . The dashed line is the approximate slope at v =v,
(see text).

analysis of Sec. IV shows that for a= 1 (i.e., in the sym-
metric model) the bifurcation is supercritical for all
values of k (see Table II). In fact, we can perform an ex-
pansion similar to that performed by Caroli, Caroli, and
Roulet [17],who show that in the one-sided model (a=0)
the bifurcation becomes subcritical for k &0.45 (see also
Fig. 6). The same expansion for the symmetric model
shows that the bifurcation is always supercritical [26].

More quantitatively, close to threshold the amplitude
A of the cells scales as

dPi V Vc Uc
A

gUc

(42)

where u, is the critical velocity at which the planar inter-
face becomes unstable. Using the analytical expressions
for dp&/dv and v, we can determine the value of g from
the numerical calculation. In Fig. 10 A is plotted versus

( v —v, ) /v, for k =0.88 with v, = 15.4 pm and

dp, /dv=0. 28. The slope turns out to be 0.092 which

yields a Landau coeScient g = —48. This agrees very
well with the value found in Sec. IV and Table II
(g = —50).

We now present the results of our numerical calcula-
tions. As mentioned before, we can find all the steady-
state solutions and can therefore determine where in pa-
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rameter space certain bifurcations occur. Indeed, we
have found mixed mode solutions (S+,S ), pure mode
solutions (S2), and traveling waves (TW). Typical exam-

ples of these modes are given in Figs. 11(a) and 11(b).
The phase diagram shown in Fig. 12 summarizes the

numerical results. The thin solid curves are the neutral
stability curves for the q and the 2q mode. The bifurca-
tions o8' the steady-state solutions to other steady-state

-591

TABLE II. The Landau coefficient g for different values of k.
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0.88
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

—27.8
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—2 273
—5 476

—12 346
—28 466
—71 267

—230 152
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FIG. 11. (a) Typical shapes of the mixed modes S+ and S
and of the period-doubled cell S2. (b) Typical shapes of the
traveling-wave modes for two different wave numbers.
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FIG. 12. The phase diagram showing the numerically deter-
mined bifurcations. The thin solid lines denote the (analytical)
neutral stability curves for the q and 2q mode. The open boxes
represent the bifurcation from the S+ mode to the S& mode (to
the right of the codimension-2 point), and from the S mode to
the S2 mode (the remaining part of the curve). The open trian-
gles represent the bifurcation from the S+ mode to the TW (to
the right of the codimension-2 point) and from the S mode to
the TW (to the left of the codimension-2 point). The solid cir-
cles represent the Hopf bifurcation of the S mode. The solid
boxes are the positions of the saddle-node bifurcation of the S
branch and the solid triangles are the positions of the saddle-
node bifurcation of the TW branch (thick lines serve only as a
guide to the eye).
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solutions are represented by thick lines. In the following
we describe them by taking cuts through the phase dia-
gram at constant velocity. When comparing Fig. 12 with
Fig. 7 one has to note that the axes p, =O and p2=0 in
Fig. 7 correspond to the neutral curves in Fig. 12. Thus
Fig. 7 is rotated as compared to Fig. 12.

Figure 13 shows the amplitude of the 2q mode, Z2, as
we cut across the phase diagram at v=16.5 pm s

Note that this is below the codimension-2 point. Stable
solutions are indicated by solid lines, unstable solutions
by a dotted line, and solutions with an undetermined sta-
bility by dashed lines (in Figs. 14 and 15). We see that as
we go from right to left (high q to low q) we first en-
counter the S+ solution. This solution is stable for the
whole branch. The branch vanishes when it hits the neu-
tral stability curve. Then, as we cross the neutral stabili-
ty curve for the 2q mode, the Sz mode comes up. This
pure mode loses its stability against the mixed mode S
on the line connecting the open boxes in Fig. 12. Very
close to this point S undergoes a Hopf bifurcation,
which presumably leads to standing waves. It regains
stability at a second Hopf bifurcation. The Hopf bifurca-
tions are represented by solid circles in Fig. 12. After los-
ing stability at a saddle-node bifurcation it merges again
with the pure mode, again on the line connecting the
open boxes. The S, mode regains its stability. There is
no traveling-wave branch for this case, which is con-
sistent with the stability of the S+ branch. Note that the
period-doubled solution S2 loses its stability at small q,
which can be attributed to the higher q modes.

For a slightly larger velocity (v=17.5 @ms ), the bi-
furcation diagram is shown in Fig. 14. Again, upon de-
creasing q the S+ branch comes up, but now loses its sta-
bility to the traveling-wave branch TW (line connecting
open triangles). This instability breaks the reflection
symmetry (parity). The (unstable) S+ branch continues
until it merges with the S2 branch on the line connecting
the open boxes. The S branch starts at the neutral sta-
bility curve for the q mode, where it is still unstable, un-
dergoes a saddle-node bifurcation (solid boxes in Fig. 12)
and merges with the S2 branch (open boxes in Fig. 12).
The TW branch connects the S+ branch with the S
branch. It merges with the S branch at the line con-
necting the open triangles. We have not calculated the
stability of the TW branch. Since it bifurcates off the
stable mixed mode S+ we expect it to be stable close to
the bifurcation point. It is possible, however, that it sub-

sequently undergoes a Hopf bifurcation to modulated
waves [25].

At yet higher velocity, v= 19 pm s, we have the bi-
furcation diagram as in Fig. 15. There is no saddle-node
bifurcation anymore in the S branch, but there is a new
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FIG. 13. The bifurcation diagram for a cut through Fig. 12
at v= 16.5. Stable branches are denoted by solid lines, unstable

by dotted lines, and branches with an undetermined stability by
a dashed line (in Figs. 14 and 15). One stable regime of S is
limited by the saddle-node bifurcation and a Hopf bifurcation,
whereas the other regime is limited by a second Hopf bifurca-
tion and the merging with S2.
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FIG. 14. As Fig. 13 but now for v= 17.5.
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rameter values. This shows clearly that this mode in-
teraction lies at the origin of both bifurcations and thus
also explains the experimentally observed transitions to
traveling inclusions and period-doubled states [1]. In ad-
dition, we find a Hopf bifurcation to (presumably) unsta-
ble standing waves, which may explain similar amplitude
oscillations arising in the experiments [1]. Thus the
phase diagram which we put forward in a previous publi-
cation [16] is confirmed, and seemingly unrelated transi-
tions are found to be due to the same origin.

There are still some questions which need to be
resolved. The present analysis does not address the sta-
bility of any of the solutions in large-aspect ratio systems,
i.e., with respect to long-wavelength perturbations. Such
perturbations could destabilize the S+ mode before the
bifurcations of interest are reached. In fact, close to the
codimension-2 point this is to be expected, since the Eck-
haus instability usually destabilizes the patterns well be-
fore the neutral curve —and therefore also before the
codimension-2 point —is reached. Farther away, howev-
er, this need not be the case. In fact, in Taylor vortex
flow the corresponding period-doubling bifurcation is
reached stably for sufticiently large Reynolds numbers
[22]. This question of stability can be addressed within
the present solidification model.

The present understanding of the experiments [1,2] re-
quires both the parity-breaking and the period-doubling
bifurcation to be subcritical in order to account for the
localized inclusions and the (apparent) stability of the
period-doubled state, respectively. The present calcula-
tion shows that both of them are, however, supercritical
for all parameter values considered. This suggests that
additional physical phenomena have to be taken into ac-
count [27]. Whereas the experiments are performed in

I

very thin layers with strong three-dimensional effects, the
present model assumes a perfectly two-dimensional situa-
tion. The three-dimensional effects, the present model as-
sumes a perfectly two-dimensional situation. The three-
dirnensional nature of the experiments will not only in-
duce a meniscus but also lead to effects which are
specifically due to the physics of the liquid crystal and
would require a significant extension of the present mod-
el. Since the thickness is known to have a strong
influence on the observed phenomena, this may well be
the main reason for the discrepancies.

Note added. Meanwhile it has become clear that local-
ized, stable traveling-wave inclusions can also be obtained
even if the parity-breaking bifurcation is supercritical
[28], as it was found in the present investigation. Thus
the standard solidification model used here describes this
transition adequately even in the liquid-crystal experi-
ments.
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APPENDIX: CALCULATION
OF THE COEFFICIENTS

Here the coefticients for the coupled amplitude equa-
tions (30) are calculated. A similar calculation has been
performed independently by Haug [12]. We start froin
Eqs. (23)—(26) and expand the concentration field u as
well as the interface position g,

tl = tl p +COSqX [7/u i i + 71 ( u i2yy +u t3 )+ 7/ ( tl i 3 +yu i 3y +y tl i 3yy ) ]82 3 A, p

+cos2qx [7/u2, +7/ (u22 y+u32)+7/ (y u23 y+yyu33 +yu23)]e2 3 2 A,2p

+g p 42cos4qzp +g p 32cos3q&e +g Qp2e +
g= gp+ COSqX ( 7/Z i i +7/ Z i2 + 7/ Z i3 ) +COS2qX (7/Z2i + 7/ Z23 + 7/ Z23 ) +COS4qX (7/ Z42 + 7/ Z43 )

+cos3qx(7/ z32+7/ Z33)+7/ ZQ2+7/ ZQ3+ (A2)

1

kp+nki
' (A3a)

(A3b)

with g «1. The field w is expanded similarly with k; re-
placed by A, . Note that for periodic boundary conditions
(in x) one should allow complex amplitudes and expand
in exponentials rather than a pure cosine series. Due to
the reflection symmetry of the system, however, the
coefficients in (30) are real and can easily be derived from
those obtained in the present expansion, which involves
less algebra [see (A16) below]. Thus, eventually no
reflection symmetry is imposed on the solutions. We also
expand the (control) parameters,

q =qp+gq&, (A3c)

A,„=—1 —[I+(nqp) ]

A„=—a '+[a +(nqp) ]'

(A4a)

(A4b)

At higher order similar expressions will be obtained for
A,34 and /t34. The boundary conditions (25) and (26)

and introduce slow time scales T& =gt and T2 =q t.
These expansions are now inserted into the diffusion

equations (23) and the boundary conditions (24)—(26).
Since the resulting algebra is very involved we used
MACSYMA for these expansions and will only sketch the
relevant steps [29]. At 0 (7/) the diffusion equations yield
the decay lengths A, » and A, 2,
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tz21 =P2Z21

with

(Asb)

p„=[akA„—A,„+2(k—1)](go+yon qo)

—2 (A,„+2), (A6)

determine at this order u», u2, , v», and v2, . The
remaining boundary condition (24) yields

(A5a)

tute the relevant amplitude equations later (see below)
[30]. The codimension-2 point in question is given by the
simultaneous requirement p1=0=p2.

At O(y) ) the diffusion equations yield the coefficients

u12z u22z v12z and v22, while the different Fourier corn-

ponents of boundary conditions (25) and (26) give the
remaining coefficients in the expansions for u and v.

Boundary condition (24) yields

aT zll =Plz12+(Pl pl+Pl r 1+Pl ql)z

—2(k —1)/k —
go

—yon qo~„=—(k —1)/k +
2A.„+1

+C12»Z21

r2B2 z21 =p2z22 + (P2,$1+&2, r 1+92 q 1 )z21

(Aga)

+ go+yon'qoak
2(aA„+1) (A7)

These equations determine the onset of the instability
(P; =0), since we require that the amplitudes do not de-

pend on the fast time scale t. Writing the onset condi-
tions in this (uncomlnon) way makes it easier to reconsti-

+C2Z» . (A8b)

Here p; &
denotes the derivative of P, with respect to g

and similarly for P; and P; . These terms give therefore
the first-order corrections to the zeroth-order growth
rates [which vanish due to (A5)]. The quadratic
coefficients are given by

2c1=2(El+2)(A2+2)(k —1)/k —2(ak —1)qll((0+yoqo )+ [2(ak —1)qo —k (aA1+2)A2+(A 1+2)A2](gll+4yoqo),

(A9)

2c2 = [2(A1+ 1)(A2+2)—4q0 ](k —1)/k+ (go+ yoq0 )[2qll(ak —1)—A 1(A2a+2)k +A 1(A 2+2) ] . (A10)

Similarly, proceeding to third order one obtains the coefficients u»„u»„. . . from the diffusion equations and the
remaining coefficients from boundary conditions (25) and (26). Again the dynamical equations are obtained from
boundary condition (24),

'r BT z +T BT z12+(r g + ' ' ' )B z —p z13+(pl gl+1M1 r 1+pl ql )z12+(pl g glq1 +pl r lq1 +pl q 1 )z

+ l c12Z2Z1+ l clZl 22Z+ lZl 2Z1(& gkl+ crlrl+ )+fla'Tlzll +glzllaTlz21

+g,z„a,z„+z„(e,z2, +S,z', , ) (Al 1)

and

, =T+rgb, +r, y, + (A12)

I 1('q ) k) +1 (Pl+Pl, pl+Pl, r 1+Pl,,ql

+P l, gq kl q 1
+ (A13)

and a similar equation for BT z2, . Again ~1
&

denotes the

g derivative of r„etc. The expressions for the third-
order coefficients &, and b; are too lengthy to display here
[29]. The amplitude equations in the form (30) are now
obtained by reconstitution [30]. To this end y) times (A5)
+ y) times (A8) + y) times (All) are added up. The re-
sulting equations can be simplified considerably by noting
that all the coefficients involving g„yl, and ql represent
corrections to the corresponding values evaluated at the
codimension-2 point. Thus their contributions can be
summed up by evaluating the coefficients for the parame-
ter values y, g, and q in question, avoiding the expansion
(A3),

cl(q r k)=rl (cl+clqkl+cl, ,,rl+cl, ,ql

+el gqglq, + ), (A14)

and similarly for the other coefficients. At the same time
one can introduce new amplitudes

Z1 ='gz» + I Z12+2 (A15a)

2
Z2 —gZ21+ g Z22+ (A15b)

which are the full amplitudes of the respective Fourier
modes of the interface deflection. To go back to the
translationally invariant system, i.e., to complex ampli-
tudes, one notes that any solution to the restricted equa-
tions with real amplitudes must also solve the full com-
plex equations. Using the definition Z1e' +c.c.
=z, cosqx and going back to the unscaled time variable
one then obtains
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1 pl 1 1 1 2 fir)t 1 gl 1 t 2

+g Z t),Z, +Z, (a, )Z I +b, IZ I'),
t),zz=Pzz2+c~zl+ f2d, zz+g3Zlt), Z,

+z, (a, /z, /'+b, /z, /'),

z, a,z*, =p, z*,z, +c,z, /z, /',

(A16a) Z, t),z 1 =plZ1+ c 1 Z2 ~

Z
1 ~

Thus one finally obtains

(A20d)

(A20e)

(A16b) Zl =plzl+clz*, zz+alzl ~zl ~ +blZ1 ~zz~, (A21a)

with

c( =2c), C2 —2C2,

Z2=p2Z2+c2zl+a2Z2)Z,
~

+b~z2)Z~)',

with

(A21b)

=2g» gz =2g2, g3 =2g3

a,. =4a;, b; =4b; .

(A18)

(A19)

These equations could now be analyzed instead of the
amplitude equations (30). Note that the second-order
time derivatives arise since the linear dispersion relation
is nonlinear in the growth rates p, , in particular, since A,
and A, depend on )M; [Eqs. (A4) are valid only on the neu-
tral curve]. Therefore the expansion leads to time deriva-
tives of arbitrarily high order. To make use of the results
of previous analyses [24,23,25] it is useful to eliminate all
higher-order time-derivative terms recursively,

l; =p;+f;p;'

c 1
=c 1 +f 1 c

1 (2p 1 +p2) +g,pz+g, pl,
c2 —co+fz z( Pl+lttz)+g

al =a 1+f1cl c2+g 1 c2

a 1 +2f2c 1
c2+g 3

b, =b, +f,c, +gzcl,

b~=b2 .

(A22a)

(A22b)

(A22c)

(A22d)

(A22e)

(A22f)

(A22g)

t),zl =plZ1+c 1(2p, +ltt2)z 1 Z2+cl c2z1 Izl l

+c',Z, iz i'

t)', Z, =P',Z, +c,(2P, +P, )Z', +2c,c,Z, ~Z, ~',

lT PZ1 ZP +c2Z1 I Zl I

(A208)

(A20b)

(A20c)

In the comparison with the numerical solutions these
equations are used with the coefBcients evaluated at the
parameter values in question. As the reconstitution
shows, the terms z, z, zz2, etc. , as well as gl, y„q, need
not be kept to obtain the final equations. This simplifies
the calculation noticeably.
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