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Phase diagram of a modulated relaxation oscillator with a finite resetting time
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A modulated relaxation oscillator with a finite resetting time is considered. The underlying return

map, a combination of a circle map and an inverse circle map, is deduced. Two critical lines, associated
with an inflection point and a point of infinite slope in the return map, respectively, divide tQe parameter

space into four regions of qualitatively different behavior. One region is chaotic, as the return map is not
invertible. In another region, a gap exists in the return map and only periodic attractors are possible. In
a third region, the return map simultaneously is noninvertible and contains a gap, which gives rise to a

wide range of nonlinear phenomena. The critical lines are found analytically and the structure of the

phase-locked steps is studied.

PACS number(sj: 05.45.+b, 84.30.—r

I. INTRODUCTION

Relaxation oscillators and "integrate-and-fire" models
have been a topic of many recent studies. A system may
be described by an integrate-and-fire model if trajectories
are weakly attracted to a strongly repellent region in

phase space. The trajectories are then pushed away from
this region much faster than they are attracted to it.
Thus a hallmark for these systems is the existence of two
different time scales. A wide range of physical, chemical,
and biological systems is well described by these models.
Examples are charge-density-wave systems [1], the
Belousov-Zhabotinskii reaction [2,3] neuronal encoding

[4—6] the dripping faucet [7], and geysers. Furthermore,
many electronic oscillators (e.g., the neon lamp) fall into
this category [8]. Apart from the practical importance,
these systems are of theoretical interest due to the wide

range of nonlinear phenomena they exhibit. In particu-
lar, they show two types of supercritical behavior. In
some parts of phase space the phase-locked steps overlap
and chaos is encountered. In addition to this behavior,
characteristic for circle-map-like systems, other parts of
phase space are found where the phase locking stays
complete and only periodic attractors exist. These re-
gions and the transitions between them have previously
been studied [9—13].

These studies, however, have been done in the limit of
abrupt resetting, i.e., the short time scale has been
modeled by a discontinuity. Considering that most prac-
tical relaxation osciHators are only crudely described by
this simplification, we are presenting a study of a more
realistic model, composed of exponential growth and de-

cay between a sine-modulated upper threshold and a con-
stant lower threshold. In this paper we report analytical
and numerical results on critical lines, phase-locked steps
and Lyapunov exponents.

The paper is organized as follows. In Sec. II the sys-
tem is described and the return map is deduced. Section

III regards the critical lines, while in Sec. IV we treat the
Lyapunov exponents. In Sec. V the structure of the
phase-locked regions is considered and numerical results
are presented. We close the paper in Sec. VI, with a dis-
cussion of its relation to previous work.

II. THE SYSTEM

V=I V/~d . — (2)

For a suitable choice of parameters, V then decreases un-

til a lower threshold 8(t) is reached at time t„i.e.,
V(t, )=8(t& ). Again V increases, satisfying Eq. (1) until

the upper threshold is reached once more at time ~2, etc.
At times t, and ~, , i =1,2, . . . , the system is said to fire.
Both Eqs. (1) and (2) include damping in addition to the
linear term I and the constants ~„and ~d determine the
two different time scales. We note that while V is con-
tinuous, V is discontinuous as the damping constant
changes at the firing times. It is this discontinuity that
gives rise to the nonlinear phenomena, otherwise found

only in (continuous) systems of higher order. In the
present case the upper threshold is modulated
T(t) = Ao —A sin(cot ), while the lower threshold is kept

The system we want to consider is drawn from a prac-
tical thyratron relaxation oscillator, the physics of which
has been reported in detail elsewhere [14,15]. For our
present analytical studies the system can be suitably de-
scribed by the following one-dimensional integrate-and-
fire model. The "voltage" V(t), the only variable, in-

creases according to

V =I—V/~„,
until an upper threshold T(t) is reached at r„i.e.,

V(r, )=T(~, ). At this instant the time evolution of Vis
abruptly changed to
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constant Bf, t =( ) =8 Figure 1 shows the time evolution of
the system.

time scaling, al-A sea ing o1' f the system, including a time
'

g,
f enerality to write the systemene

' '
inlows us without loss o gene

'
h B =1 and co=2m. We are en

left with the five independent parameters Ap 7„,
7d-

When the fixed point V=Ir„ofEq. ( 1 is less than the
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—A of the upper threshold T(t), the system
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— in
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'
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and

Ir„—T(f (t) )f (t) =t r„ln I
—

B, —
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Ivd —Bp
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Ivd

(3)

The function f (t) is only implicitly g' yiven b Eq. (3). In a
su ercritical region J if (t) is multivalued. The geometry o

see Fi . 1) then tells us to choose the low estthe system (see ig. en
n "inverse cir-value or J. mf J A map of this kind is called an in

mics as the"
[ 4 10 11]. It shows the same dynamics

ma in the subcritical region of parameter prs ace,
while it is completely phase locked in e p
gion. e mapg' . Th g (t) is an ordinary circle map. The func-
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'
d 'd ration is then a combination o

dinary and an inverse circle map.
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the average number of firing
period of the modulation

277 nR= lim
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For eriodic attractors the firing numberer is rational. The
firing number is sunp y er

'
1 the reciprocal of the more com-

monly used rotation number.

III. THE CRITICAL LINES

We denote the critical hnes, where p
'~ ~ ~

either a oint with
'

n oint a pears in the return
map h (t), by l, and lz, respectively. They are bot e er-
mined by the criterion

V(t) = T(t), V(t) =T(t), V(t) = T(t), (6)

h dot indicates differentiation with respect to
e. Each critical line divides the parame p'

ical re ion. In the subcriticasubcritical and a supercritica region.
h thre ion the increasing voltage is a way passtee ert an e

of firin . However, in the supercriticalthreshold at times o ring. ow
region with respect to I, ', '

el atimet exists, w en e'-
h f the voltage tangentially meets t e

u er threshold. In the supercritical region the re
f the threshold and the existencethe shadowing of parts o e

Th a

The mechanism responsible for t e gap is
h L16,. A similar geometrical interpretation

can be given for the other critical line l2. From Eq .
(2), and (6) we get, after some algebra,

Ird = Ao —A [1+(rdco) ] (l2) .

In the ( A, I) space the critical curves are straight hnes.
ct in ( A, I } and divide the parameterThe lines intersect in

h 't'
1 linesFi ure 2 shows the critica ines

in (A, I) space for AD=1. 5, r„=5,and rd=0. an
names the regions I, II, III, and IV.

3( ) shows the return map s;+ iFigure a
=h(s;}mo m. co od(2m. /co) for a set of parameters in region

nd the attrac-this region e rth eturn map is one to one and e a
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FIG. 1. Time evolution of the relaxatioion oscillation described
b ~. (1) and (2). The upper curve is T(t) and the lower curveby ~. an
is V(t). The parameters are I=O. , A = .
Ap = 1.5 Bp = 1, and co=2m..
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FIG. 2. The critical lines I& and 12 andnd the different regions
w =5 s =0.5, Ap=1. 5,in (A, I) space. The parameters are ~„—,

Bp=1, and co=2m. .
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FIG. 3. Return maps in the different regions of parameter space: (a) in region I with A =0.1 and I=1.9; (b) in region III with
A =0.033 and I=0.47; (c) in region II with A =0.25 and I=1.9; and (d) in region IV with A =0.3 and I=1.9. The other parame-
ters are ~„=57 d =0.5 Ap = 1.5 Bp = 1, and co=2m. In (c) and (d) the gap is indicated by a dashed line.

tors are either periodic or quasiperiodic. By increasing
the amplitude A and thereby the nonlinearity, two
different transitions are possible. If I is less than I, the
critical line l, will be crossed and a gap will appear in the
return map as we enter region II [Fig 3(c)]. In this region
the return map is invertible but discontinuous and we
have complete phase locking (CPL). If on the other hand
I is greater than I, the line l2 will be crossed and a nonin-
vertibility appears in the return map as we enter region
III. In this region the return map is continuous but
noninvertible [Fig. 3(b)] and the phase-locked steps, com-
plete on lz, will start to overlap, creating chaos in the
way well known from circle-map studies.

Increasing 3 further, region IV is reached either via l &,

generating a gap in the noninvertible map, or via l2, gen-
erating a noninvertibility in the discontinuous map. In
region IV the return map is then both noninvertible and
contains a gap [Fig. 3(d)], having the potential for both
CPL and chaos. We will show elsewhere how the type of
attractors in this region depends on the exact choice of
parameters. In Sec. V we give a more detailed discussion
of the structure of the phase-locked steps in the four re-
gions of parameter space.

IV. THE LYAPUNOV EXPONENT

One of the major tools in the theoretical and experi-
mental study of non-Hamiltonian dynamic systems is the
spectrum of Lyapunov exponents. It allows one to
discriminate between periodic, quasiperiodic, and chaotic
attractors and gives an estimate of the fractal dimension
of the attractor. Each exponent expresses the average
divergence of nearby trajectories along a principal axis
and the sum of the exponents equals the average damping
on the attractor. In the simple one-dimensional case,
only three qualitatively different possibilities exist: the
single Lyapunov exponent is negative, zero, or positive,
corresponding to a periodic, quasiperiodic, or chaotic at-
tractor, respectively. As the average damping is positive
in the chaotic case, the term attractor is not used here in
the usual meaning of an attracting region of zero volume
in phase space. The one-dimensional phase space does
not support the distinction between volume and length.

In the present case the Lyapunov number L is deter-
mined by

lg —+ oo ~
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where L, is the Lyapunov number in the interval

[t, —1, t; ]. The number L; can be written as a product of
four factors L; =L,-'L; L; L,-, where L,-' and L; originate
from the increasing and decreasing parts of V, respective-
ly. These contributions to the Lyapunov exponent
A, = ln

~
L

~
[17] are always negative, owing to the damping

terms. From Eqs. (1) and (2) we get

Ir„—T(r; )
L,' =exp[ (r—, t, ——1)/r„]=

+u 0
(9)

and

I~d —B0
L, =exp[ —(t, —r;)/r„]=

Ird T(r; —
)

(10)

The remaining terms L; and L; arise from the discon-
tinuous firing processes. To find L; we consider a firing
on the upper threshold at time r;. Let 5V& and 5V, be
the infinitesimal differences between two trajectories im-
mediately before and immediately after the firing (see Fig.
4). The two trajectories fire with an infinitesimal dispari-
ty 5t in time. We now linearize V and T about ~;. Then
the slope of V is S&=I T(r;)/—r„before the firing,

S, =I T(r; )/—rd after the firing, and the slope of T is
simply T(r, ). From Fig. 4 we find

We now have

5V, S, —T(r;)

Si, —T(r; )
(13)

Analogously we find, by considering a firing on the lower
threshold,

FIG. 4. Trajectories initially separated by a distance 5Vb
will, after a firing, be separated by 5 V, . The difference in firing
time is 5t.

and

5'+ T(r, )5t =Ss5t.

5V, +T(r, )5t=S,5t .

I Bo/r„—
L; = I Bo/rd—

(12) Equation (8) now reads
I

(14)

1 —T(r, )/S, ~ [Ir„—T(r; )][Ird —T(r; ) rd T(r; —)]
~;=i 1 —T(r;)/St, ~ ~;=i [Ird —T(r;)][Is„—T(r;) r„T(r;)]— (15)

The positive contributions to the Lyapunov number
come from both types of firings. But while L; is a con-
stant, L; depends on the time of the firing. In particular,
this contribution will be important if the increasing volt-
age and the threshold T are close to parallel when the
system fires. In the next section we present figures based
on formula (15).

V. THE PHASE-LOCKED STEPS

In this section we consider the phase-locked steps in
parameter space. In particular, we will study their posi-
tions and shapes in the ( A, I) subspace, keeping r„,rd,
A0, B0, and co fixed. To this end we first consider the ful-
ly solvable case when the modulation is absent, A =0.
We first note from Eq. (15) that ~L~ =1, so all attractors
are quasiperiodic. From Eqs. (3) and (4) h (t) is found to
be linear with the unit slope and the firing number is then
easily determined by its definition [Eq. (5)]

I~„—B0R= ln
co I~„—A0

u A Iv
—1

0 d

B0—I~d
(16)

(17)

This equation expresses the periodicity of the attractor.

We note that the firing number becomes zero when I
reaches the edges Ap/'T and Bo/rd of the nonfiring re-
gions, as should be expected. Close to the edges of the
nonfiring regions, Eq. (16) takes the
form R = —(2m. /co)[r„ln(I—Ao/r„)] ' and R = —(2m/
co)[rdln(Bp/rd I)], respectively. This gives a verti-
cal slope dR/dI at the edges. Figure 5 shows R as a
function of I. The firing number has a maximum R
for I=I,„,and is asymmetrical with its steepest part for
I )I,„(asr„)rd ).

When modulated, the system develops phase-locked
steps. The criterion for an attractor to be phase locked
on the P /Q step is
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FIG. 5. The firing number R as a function of I when modula-
tion is absent, A =0. The other parameters are ~„=5,7d =0.5,
Ap= 1.5 Bp= 1, and co=2m.

FIG. 6. The firing number R as function of I. The amplitude
of the modulation is A =0.1. The other parameters are the
same as in Fig. 5.

The attractor is stable when

(18)

I~„Bo
I~„—Ao+ A

(19)

where the Lyapunov number can be written
L =gP=,L,'~ as a consequence of the periodicity. The
edges of a step are determined by a breakdown of one of
these conditions. In the subcritical region of parameter
space, the periodic attractor becomes unstable (~L~ =1)
on the edge of a step, while in other parts of the parame-
ter space the edges may be due to some sort of catas-
trophe or crisis. In Fig. 2 some of the dominant steps,
obtained numerically by Eqs. (17) and (18), are shown in
( A, I) space. We notice that two steps with an identical
firing number can exist if R &R,„.For our particular
choice of parameters the two I/I steps merge at a critical
value of I, while steps with R ) 1 have not been observed
in the subcritical region of parameter space.

For the 1/Q steps, Eq. (17) and the marginal stability
condition L~=1 can be solved analytically. The lower
edge is given by

Ao —A —Izd Q

=exp Q80 —I7d N

where, while for bigger values of I (region I) both period-
ic (A, &0) and quasiperiodic attractors (A, =O) exist.

We emphasize that in the subcritical region I and on
the critical lines the system is equivalent to a circle map
of order 3, and hence has the same scaling properties
[18]. In particular, the steps open with size hI- A for
small A, and develop a complete devil's staircase with
fractal dimension D =0.87 along the critical lines.

As the phase locking is already complete on I, , the size
of the steps cannot continue to grow in the complete
phase locked region II. A knee [12] appears for A = A

at the "upper" edge of the step, i.e., the edge closest toI,„,and the size of the step starts to decrease. While
both edges for A & A are determined by loss of stability
~L

~

=1, this is for A ) As only true for the lower edge,
while the upper edge is given by a breakdown of Eq. (17).
After the appearance of the knee, the step size continues
to decrease until the step vanishes for ( A, I)

( Ap Bp BOIT ). Everywhere in region II the steps

0.2

00—

I~„—80
I~ —A —A

Q 0

and the upper edge by

I~ —A —Ad 0

80 —I7.d
=exp

CO

(20)

-02—

-0.6—

We note that in the limits I~( Ao —A )/r„and
I~Bolr„the denominator Q goes to infinity as expect-
ed.

The size of the steps increases in the subcritical region
I, until the phase locking becomes complete on 1& for
I(I, and on lz for I)I,. Figures 6 and 7 show the
firing number and the Lyapunov exponents, respectively,
as functions of I for A =0.1. For small values of I (re-
gion II) the phase locking is complete and A, &0 every-

-1.0—

I I I

0.25 0.50 0.75
I I I I I

1.00 1.25 150 1.75 200 2.25
I

FIG. 7. The Lyapunov exponent A, as a function of I for the
same parameters as in Fig. 6. In region II (I (0.93) all attrac-
tors are periodic, while in region I (I)0.93) both periodic and

quasiperiodic attractors exist.
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FIG. 8. The firing number R as a function of I. The ampli-

tude of the modulation is A =0.22. The other parameters are
again the same as in Fig. 5.
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FIG. 9. The Lyapunov exponent k as a function of I for the
same parameters as in Fig. 8. In region II (I (1.55) all attrac-
tors are periodic, while in region III (I) 1.68) both periodic
and chaotic attractors exist.

form a complete devil's staircase, but now with dimen-
sion D =0 [12].

For I)I, the steps start to overlap when l2 is crossed
and region III is entered. Figures 8 and 9 show the firing
number and the Lyapunov exponent as functions of I for
A =0.22. We note the positive Lyapunov exponent in re-
gion III (1.68&I &2). Figure 10 shows in this region
s; =t;mod(2m. /to) as function of I Both ch. aotic attrac-
tors, created by period-doubling cascades, and periodic
windows are seen.

Increasing the amplitude A even further, region IV is
entered. Due to the existence of both a gap and a nonin-
vertibility in the return map, this region has a very com-
plex structure. Depending on the exact position in pa-
rarneter space, the gap may shadow the noninvertibility,
and the CPL of region II is recovered. Elsewhere in re-
gion IV the period-doubling cascade caused by the nonin-

FIG. 10. The variable s; = t;mod(2m /co), i =501,
502, . . . , 1500 as a function of I for the same parameters as in

Fig. 8. The first 500 iterations have been discarded to avoid the
transients. The usual scenario of periodic attractors borne by
an inverse tangent bifurcation and destroyed by a cascade of
period doublings is observed.

vertibility may be interrupted as a result of the presence
of the gap. Also several forms of crisis and intermittency
are observed in this region. We will discuss these phe-
nomena in detail elsewhere.

We now consider the region I(I,
„

for the amplitude
A close to the maximum A p Bp ~ In the limit
A ~A p Bp we must demand for R & 1 the slope of the
voltage to vanish just after a firing on the lower thresh-
old, i.e., V(t,+)=0 .or I=80/r„. This is necessary in or-
der for V to pass the narrow channel between the upper
and the lower threshold at t= /cr2. From Eq. (19) we
find the slope dI/d A = [r„(exp(2crQ/toe„)—1)]

' of the
lower edge of the 1/Q step. The upper edge is given by a
breakdown of Eq. (17) due to the collision of the voltage
V and the lower part of the modulated upper threshold.
From this criterion we find the slope
dI/dA =(r„[exp[2cr(Q—1)/cur„]—1]) ' of the upper
edge of the 1/Q step (QA1). Hence, the size of the 1/Q
steps disappears linearly in d A = A —A p+Bp. All other
steps with R =P /Q & 1 are squeezed between the upper
edge of the 1/Q+ step and the lower edge of the 1/Q
step, where Q+ is the lowest integer larger than Q/P and

Q is the largest integer less than Q/P. The size of these
steps will therefore vanish faster than linear in dA. Nu-
rnerical work for R & 1 shows that the same is true for
steps with Q ) 1 and P )Q.

In the hatched region of Fig. 2 new harmonic steps are
born. When A approaches Ap —Bp, higher harmonics
are created successively and the firing number goes to
infinity. Thus, for I CI,„,the parameter space will be
dominated by the harmonic steps for A close to A p

—Bp.
For the region I&I,„,conclusions analogous to the

above cannot be drawn due to the possibility of overlap-
ping steps. However, numerically it is observed that for
A close to A p

—Bp the harmonic steps are strongly dom-
inant in this region too.
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VI. SUMMARY AND DISCUSSION

We have analytically and numerically explored the pa-
rameter space of a relaxation oscillator with a finite reset-
ting time. Two critical lines divide the parameter space
into four regions of qualitatively different behavior. In
the subcritical region, i.e., for weak nonlinearity, the at-
tractors are either periodic or quasiperiodic. Increasing
the nonlinear parameter A, either a region of complete
phase locking or a chaotic region is encountered, depend-
ing on the exact values of the parameters. While the re-
turn map is one-to-one in the subcritical region it is mul-
tivalued (with one branch hidden by the gap) or noninver-
tible in the supercritical regions. Increasing the ampli-
tude further, the second critical line is crossed and the re-
turn map becomes both multivalued and noninvertible.
In this region both complete phase locking and chaos ex-
ist.

In the weak nonlinear region A «1, the dominant
phase-locked regions are the 1/g steps. As the non-
linearity grows, new steps are born and the maximum
value of the rotation number R increases. The size of the
steps with R &1 decreases to vanish for A =Ao Bo,
where the harmonic steps now dominate.

We close the paper with a comparison against related
models. In Ref. [12] the same model was studied with
zero resetting time (rd =0). The dominant contrast is the
absence of a chaotic region. Only one critical line exists,
leaving the phase locking complete for sufficiently strong
nonlinearity. This difference is due to the fact that with
the abrupt resetting the return map is an inverse circle
map. It is the finite slope of the resetting voltage that
creates a noninvertibility in the return map, and hence
makes the chaotic attractors possible. We notice that if
the resetting time is finite, a chaotic region III can always

be found for A close to Ao —Bo and for I close to Bol~d,
although the area of this region vanishes as ~d goes to
zero. However, the existence of region IV requires

& A o Bo and consequently that ~d exceed a positive
threshold.

A model with the potential for both complete phase
locking and chaos was considered in Ref. [13]. Here
modulation was introduced on the upper and lower
thresholds while the abrupt resetting was retained. Al-
though both a region of complete phase locking arid a
chaotic region exist in parameter space, a region where
these behaviors coexist is not found. The reason for this
is revealed by considering the return map: the gap asso-
ciated with the complete phase locking will cover the
eventual noninvertibility and kill any attempt at chaotic
behavior.

Thus the present model is an integrate-and-fire system
that shows simultaneously a gap and a noninvertibility in
the underlying return map. This complexity gives rise to
some interesting forms of intermittent behavior and of
sudden changes (crises) in the structure of the attractors.
The details of these phenomena will be reported else-
where.
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