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A possibility of the occurrence of transient multimodality during a decay of an unstable state is ana-
lyzed. For the two discussed classes of systems it is found that the appearance of this phenomenon de-
pends only on the sign of the second nonvanishing derivative of the potential at the unstable point. Thus
here the transient multimodality is not a noise-induced phenomenon like that for the evolution from an
arbitrary state. A scheme of the classification of dynamical systems based on their transient properties is

proposed.

PACS number(s): 05.40.+]

INTRODUCTION

A deterministic approach is usually sufficient for study-
ing an evolution of dynamical systems. The presence of
noise acts only as a little disturbance that does not modi-
fy the results qualitatively. However, there are some crit-
ical situations when the role of fluctuations is very impor-
tant or even essential for the occurrence of some phenom-
ena, for instance, relaxation from unstable [1-3] or mar-
ginal [4] states, noise-induced transitions [5], or the tran-
sient bimodality [6-17]. The latter manifests itself as a
coexistence of two peaks of the probability distribution
for a sizable interval of time, although the initial and final
forms of the probability distribution are one peak only.
It occurs for systems whose behavior is determined by a
potential U (x) with a sufficiently flat plateau. In such a
case a long lethargic stage, recognized as a critical slow-
ing down, appears during the deterministic evolution,
and consequently the fluctuations become important. If
they are strong enough two maxima of the probability
distribution located in the region of potential plateau and
potential minimum may appear. But, if the fluctuations
are too strong, the system is not affected by the potential
plateau and its evolution is similar to a case with a poten-
tial with a steep slope. The transient bimodality is thus
an effect of a delicate balance between critical slowing
down and noise.

This phenomenon was first reported in explosive chem-
ical reactions and combustion [6-8]. Later it was
identified both experimentally and numerically in optical
bistability [9—13], in electronic systems [12], and in a laser
with a saturable absorber [13,14].

Almost all the papers mentioned above deal with the
evolution from an arbitrary state, for which the transient
multimodality arises as a noise-induced phenomenon
[9,10]. In the present paper we consider a problem of
transient multimodality and a decay of unstable states. It
was already discussed in [13] and [14], and it was con-
cluded there that the potential, which possesses a para-
bolic maximum in such a case, is not flat enough for the
occurrence of transient multimodality. There is only the
boundary region between the unstable state and the long
lethargic state situations, namely, in the vicinity of the
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marginal stability, where the phenomenon of transient
multimodality might appear.

In the following we show that the transient multimo-
dality can appear during a decay of the unstable state
even for a quite nonflat potential. As the fluctuations are
needed for the initiation of the evolution, the problem
must be treated as a stochastic one from the very begin-
ning. The Fokker-Planck equation formalism [18] is very
useful here. It allows one to obtain some analytical con-
ditions [19] for the occurrence of transient multimodali-
ty. As an illustrative example the evolution in a sym-
metric sixth-order-polynomial potential is treated numer-
ically. The mechanism of the occurrence of transient
multimodality during the decay of an unstable state is
discussed, and finally, a classification scheme for systems
with a sixth-order-polynomial potential based on their
transient properties is presented.

To avoid any misunderstanding, some comments on
terminology must be made. Considering stochastic sys-
tems one associates the word “multimodality’” with the
number of maxima (peaks) of the probability distribution,
i.e., with the number of the solutions x of the equation
W'(x)=0 with W"(x) <0 (see, e.g., [5]) (let us call these
analytic maxima). However, this does not include all the
possibilities. First, if the potential U(x) governing the
dynamics of the system is not smooth enough the proba-
bility distribution function W (x) may have no analytic
maxima, nevertheless it is related to a deterministic state
(mode) of the system, e.g., for U(x)=|x| the stationary
probability distribution W(x)~exp(—|x|/q) (g is a
diffusion constant) attains its maximal value at x =0
where W’'(x) does not exist. Second, if the domain of
states x of a system is bounded W (x) may attain its local-
ly maximal values at the boundaries, while W'(x)#0
there, e.g., x €[0, ) and W(x)~exp(—x/q). For both
examples we can say that the system is in a monomodal
(monostable) state despite that there is no solution of
W'(x)=0 with W'(x)<0. Thus, in the following, a
mode of a system is meant as a point with a locally maxi-
mal value of the probability distribution (locally the
most-probable state) and the multiplicity of the multimo-
dality is defined by the number of the probability distri-
bution humps.
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THEORY

The existence of an unstable state means that there is a
local maximum of the potential U(x) describing the sys-
tem. Localizing the initial state at the maximum one
cases that the initial probability distribution (Dirac’s &
function) possesses its peak at this point too. When time
increases this peak may broaden and/or move away from
the unstable point. From among all the possibilities we
choose two classes of potentials, which guarantee the
knowledge of the position of this peak during the whole
time of its existence.

First, let us consider a problem on the positive
semiaxis. It may represent, for instance, the evolution of

light intensity in a quantum-optical system. The
Fokker-Planck equation describing this case reads
Wt 18 i+ lwn,

ot ox dx Ox

where g is a noise strength. We assume that the drift
function U'(x) possesses two zeros corresponding to the
steady states of the deterministic case: x, =0 the unsta-
ble state and x, > O the stable one. The instability of x,, is
guaranteed by a negative value of the first derivative of
the drift function at x,, i.e., U"'(0) <O0.

We are interested in the evolution of the probability
distribution W (x,t) given by the half of Dirac’s 8§ func-
tion at the initial moment ¢ =0. Thus, the probability
distribution W (x,t) evolves from the initial one-hump (at
x =0) form to the final one-hump (at x =x;) form as
well. Let us suppose that a one-hump form is conserved
during the whole evolution. Hence, for the initial time
stage the most probable value of W (x,t) is located at
x =0, from which it breaks off at a time ¢ =t and then
tends toward x;. For a close examination of this moment
let us differentiate the Fokker-Planck equation (1) with
respect to x at the point x =0. Thus we have

W'=U"W+2U"W' +2qW" . (2)

The dot indicates time differentiation, prime x
differentiation, and all the functions are taken at x =0.
Besides, for ¢t =t we have

W'=0, (3)

due to the appearance of an analytical extremum at
x =0,

w'>0, 4)

because the slope of the distribution function becomes
positive for ¢t > ¢,

w"=0, (5)

since the maximal value of W is still located at x =0,
which is because W is a convex function there. Setting
(3)—(5) into (2) one easily concludes that the relation

U'”(0)=0 (6)

is required for the departure of the maximum of W (x,t)
from x =0 at t =¢,. If (6) is not fulfilled, i.e., if
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U'”0)<o, (7)

we have the following situation. Since the stationary
probability distribution W(x, ) has a local minimal
value at x =0 there exists a time ¢#; when this minimum
appears. At this moment the relations like (3) and (4) are
to be fulfilled. So the only possibility for the relation (2)
and (7) not to be in a contradiction is

wW'>0. (8)

This means nothing but that there already exists a max-
imum at a point x >0 for ¢t <t,. Since for t <t there is
also a locally maximal value at x =0, there is a range of
time within which the probability distribution W(x,¢)
possesses two humps. And this is just the transient bimo-
dality.

The second class of systems is defined on the whole x
axis and is described by a symmetric potential U (x) with
one maximum at x =0 and two minima at x ==*x,. The
Fokker-Planck equation for this case reads

W (x,t) _
ot

3 &

ax U (x)+q§ Wi(x,t) . 9)

As before, the initial probability distribution W(x,0) is
the Dirac’s 8 function at x =0 which is an unstable point
as well, so the probability distribution evolves toward its
stationary form with two maxima at the points x =*x;
and a minimum at x =0.

The whole consideration pertaining to the previous
class of potentials may be now repeated, but with two re-
marks which follow from the symmetry properties of
U(x) and W (x,0) with respect to x. First, the probabili-
ty distribution W (x,?) must be a symmetric function of x
during the whole evolution, too. Thus all its odd x
derivatives are equal to zero at x =0 [as the odd deriva-
tives of U(x)]. Hence, instead of a relation like (2), now
one ought to analyze the second derivative of (9) at x =0,
ie.,

W”=U””W+3U”W”+qW”” X (10)

Second, at ¢ =t the two maxima move away from x =0
symmetrically. Similarly to (3)—(5) at t =¢, one has

W'"=0 (11

because the convex function W (x,t) becomes concave as
the maximum turns into the minimum,

W">0 (12)
(due to the same reasons as above),

W' SO , (13)

because near x =0 one has Wi(x,t,)=WI(0,z,)
+(1/4)W""(0,t5)x* and at x =0 there is still a max-
imum of W (x,t). Setting (11)-(13) into (10) we conclude
as before that in order that the maxima of W(x,t)
separate from x =0 at the time ¢, one needs that

Uu”0)z0. (14)

If not, i.e., if
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FIG. 1. Time evolution of the probability distribution for the
potential (16) for 4 =—3, B=—1, ¢ =0.02, and the initial
Gaussian distribution centered at x,=0 and with the variance
o =0.002.

U"’0)<0 (15)

the only possibility is that before the maximum at x =0
disappears there still exist two (because of the symmetry)
other maxima at some points x 0. Thus there is a tran-
sient trimodality.

In both cases discussed above the initial probability
distribution was the Dirac’s 8 function. However, the
only further needed property of this distribution was the
location of its maximal value at the unstable point x,.
One can choose quite a different one-hump function, even
a very wide one, as an initial distribution with the only
requirement that it has its most probable value at x,
(eventually it must be a symmetric one for the second
class of potentials). As none of its characteristics modify
the relations (3) and (4) or (11) and (12) the conditions for
the occurrence of the transient multimodality [(7) or (15)]
concern such a generalization of the problem too.

For an illustration a simple example of the second class
was solved numerically. The potential U(x) was chosen
as a polynomial

Ux)=ix%+1Ax*+1Bx?. (16)

One can easily check that the negativeness of B guaran-
tees the unstability of the point x =0 [a maximum of
U(x)] and the negativeness of A4 guarantees the
fulfillment of (15), when one may expect the occurrence
of the transient multimodality.

The evolution of Wi(x,t) for A=-—3, B=—1,
g =0.02 and the initial Gaussian function with a variance
0 =0.002 is shown in Fig. 1. The range of time for which
three maxima exist is clearly seen. Such a behavior was
also noticed for other negative values of 4. As A4 became
positive the “usual” evolution [1], with moving away of
the two maxima from the point x =0, was observed.

DISCUSSION

In this paper we have investigated the possibility of the
existence of transient multimodality during a decay of an
unstable state. For the two classes (1) and (9) of Fokker-
Planck equations the analytical conditions (7) and (15) for
the appearance of multiple-hump probability distribution
have been obtained. Although both conditions differ in
their mathematical form, their sense is the same. That is,
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the new maxima arise if the second nonvanishing deriva-
tive of the potential U(x) at the unstable state is nega-
tive. And this is the only condition—there is no depen-
dence on the noise level as in the case of the evolution
from an arbitrary state [9,10]. Thus the transient mul-
timodality for the decay of the unstable state is not a
noise-induced phenomenon. The fluctuations are needed
only to initiate the evolution as for the “usual” relaxation
from the unstable state [1-3]. Naturally the stochastic
factors arising in this problem influence the quantitative
relations of the evolution as, e.g., the onset time of the
multihump distribution. But the fact of the occurrence
of the transient multimodality is of the deterministic na-
ture only.

Comparing the present results with those of previous
papers [6-17] one can say that the phenomenon of tran-
sient multimodality for the decay of an unstable state is a
limiting case of the evolution from an arbitrary state. It
was noticed [9,13] that the flatter the potential, the lower
the noise level required for the appearance of transient
multimodality. And here, at the unstable state, the slope
of the potential is zero, so for each small noise level the
phenomenon of transient multimodality exists. Hence, in
this case, it is not a noise-induced phenomenon. Never-
theless there is one more difference between the two dis-
cussed cases. That is, for the occurrence of transient
multimodality during the evolution from an unstable
state a long flat part of the potential is needed. Here we
start from a top of a potential, but since the only require-
ment on U(x) is the negativeness of U''(0) and the next
nonvanishing derivative, the potential may possess an ar-
bitrary curvature at that point. Thus the flat part of the
potential reduces to one point only. Therefore, what is
the sense of the conditions (7) and (15) for the appearance
of the transient multimodality? To discuss this let us find
the velocity x of the deterministic motion in the vicinity
of the unstable state x, =0. It reads

x=—U'(x)=|U"0)|[1—aUP(0)x? ?)x , (17)

where a=[(p —1)1|U"(0)|]7! is positive and U'(0) is
the second nonvanishing at x =0 derivative of U (x). Ob-
viously the linear term in (17) is the dominant one. It
causes the velocity x to grow linearly with the distance
from the unstable state. The next term on the right-hand
side of (17) expresses the relation between the linear ap-
proximation and the real evolution. The negativeness of
U'P(0) means that the growth of the velocity % is in fact
stronger than linear. Because of the appearance of the
transient multimodality for the negative value of U?(0)
one can say that such a velocity allows a trajectory that is
just thrown out from the unstable state to leave the re-
gion of the initial probability maximum and to reach the
vicinity of the stable attractor sooner than the initial
probability peak is emptied.

Nonlinear dynamical systems are usually classified
with respect to the types of the steady states they may
reach. One need not know the transient behavior for this
purpose. For the one-dimensional case the stationary
states are the only steady states, so one deals with mono-,
bi-, or multistability situations. As for the stochastic
problems the distinction between the one-dimensional
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systems is connected with the number of the maxima of
the stationary probability distribution. They are usually
related to the deterministic stable steady states, but some
other maxima induced by the noise [5] may appear, too.
However, the above criterion does not exhaust all the
possible qualitative differences between the systems—in
the presence of transient bimodality the differences occur
only during the evolution. Thus one can propose a
classification scheme for the dynamical systems defined
by their transient properties. In the following we present
it for the potential (16). The possible situations are
shown in Fig. 2 depending on the values of the parame-
ters A and B. There are four kinds of regions of the
probability distribution behavior:

I. The region of one maximum during the whole evolu-
tion;

II. The region of initially one and then two maxima,

III. The region of initially one and then three maxima;

IV. The region of initially one, then three, and finally
two maxima.

As one considers the stationary situation only region I
corresponds to the monostable case, regions II and IV to
the bistable case, and region III to the tristable case. The
most interesting region of the transient trimodality (IV)
lies in the bistability region (II+IV) just by the tri-
stability (III) one. For a given negative value of 4, by
lowering the value of B we can change the stationary be-
havior of a system from tristable to bistable with a bifur-
cation point at B =0.0. However, after crossing this

bt
B
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FIG. 2. The division of the parameter space ( 4,B) of the po-
tential (16) into the regions of different transient behavior of the
probability distribution (bold lines). The marked area V means
the region of the existence of the inflection points of the one-
well potential. The bold parabola B =0.2542 is given as a con-
dition for the existence of nonzero solutions of U’(x)=0, the
thin parabola B =0.454? is given as a condition for the ex-
istence of solutions of U"'(x)=0.
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point the system is not completely unaffected by the tri-
stability. The transient trimodality is a lingering effect of
it.

Figure 2 concerns the decay of the unstable state x, =0
only. If one considers all the possible initial states x,
[W(x,0)=8(x —x,)] the parameter space must be en-
larged to a three-dimensional one with a parameter x, on
the third axis. And it is obvious that the transient trista-
bility is possible only for x in the vicinity of x,, and for
the same values of 4 and B, but for x located near x; we
have bimodality during the evolution only.

In this place it is worth noting, that for a potential (16)
a second region (V) of transient multimodality could ap-
pear. This corresponds to the transient multimodality for
the initial point at the slope of the potential (an evolution
from an arbitrary state), the case discussed previously
[6-17]. This region is included in region I and lies to the
right from the tristability region (III) (Fig. 2). It is bor-
dered by a curve B =0.45A4? given from the condition
for the existence of an inflection point, i.e., U"'(x)=0.
Obviously, in this case, the occurrence of transient mul-
timodality depends on the value of the initial state x,
[7,15,17]. As an example, in Fig. 3 an evolution of a
probability distribution is shown for 4 =—3, B=2.3,
and ¢ =0.02 and an initial distribution given by two
Gaussian functions centered at x,==x1.15 and with
widths 0=0.002. Because for such conditions U(x)
possesses two symmetrical flat regions, allowing for the
appearance of transient bimodality [8,9,13], so effectively,
in fact, one can observe the transient quadromodality.
This example shows that also after crossing the second
bifurcation curve B =0.2542 from region III, a system
still exhibits evidence that it is near this region. Howev-
er, since this transient multimodality is now a noise-
induced phenomenon [9,10], the parameter space should
be enlarged with the fourth axis of a noise intensity pa-
rameter q.

After this paper was sent for publication P. Colet, F.
de Pasquale, and M. San Miguel published a paper [20]
that deals with the relaxation from an unstable steady
state for the same (generic for the subcritical pitchfork bi-
furcation discussed in that paper) potential as in the
present example (16). They noticed the occurrence of
transient trimodality too, and investigated it quantitative-

FIG. 3. Time evolution of the probability distribution for the
potential (16) for 4 =—3, B=2.3, ¢ =0.02, and the initial dis-
tribution given by two Gaussian functions centered at
xo=1=1.15 and both with a width o =0.002.
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ly. However, we cannot agree with one ascertainment of
that article, namely, that far above the bifurcation point
(B <<0 in our notation) the decay process for the subcrit-
ical pitchfork bifurcation (4 <0) is essentially the same
as for the supercritical pitchfork bifurcation (A4 >0),
which means that for B <<0 the transient trimodality
disappears. These two types of bifurcation deal with re-
gions IV and II in Fig. 2, respectively, and the present
considerations show analytically that the phenomenon of
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transient trimodality exists always (even for B <<0) in the
whole region IV, though it may persist for a very short
time.
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