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Ubiquitous neutral stability of splay-phase states
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We find that the dynamics of certain dc-driven Josephson-junction arrays is peculiarly weak. The neu-

tral stability of splay-phase states is far more common than previously suspected, even if the junctions
are not identical. This has significant consequences for applications of these arrays.

PACS number(s): 05.45.+b, 02.90.+p, 85.25.Cp

I. INTRODUCTION

Soon after the discovery of the Josephson effect [1],
researchers realized the potential importance of large ar-
rays of Josephson junctions for a variety of technological
applications [2—5]. Of particular interest is the ability of
these nonlinear oscillators to mutually phase lock or syn-
chronize their oscillations [6]. While their technological
interest has been the primary motivation over the past
two decades, Josephson-junction arrays more recently
have become an archetype in the field of dynamical sys-
tems theory, particularly in the study of many-degree-of-
freedom systems [7—16].

One important class of Josephson-junction arrays-
and the class that concerns us here —is the case of glo-
bally coupled junctions. This coupling, in which each
element is coupled to all other elements with equal
strength, arises quite naturally in many circuit
configurations. Simulations of such arrays have un-

covered peculiar periodic states called splay-phase states
(originally termed "antiphase states" by Hadley and
Beasley [8]). In this state, each junction has voltage oscil-
lations with precisely the same wave form V(t), but the
oscillators are mutually phase shifted:

Vk(t) = Vo(t +kT/N),

where all permutations of the relative phases are possible.
Splay-phase states can exist for arrays of N oscillators,

for N arbitrarily large. This has significant consequences,
since the existence of a single splay-phase state necessari-
ly implies the coexistence of (N —I)! symmetry-related
states [given by all permutations of the indices in Eq. (1)].
This can lead to a phenomenon known as attractor
crowding [17],where the array becomes increasingly sen-
sitive to noise as N grows [10]. On the other hand, the
coexistence of many attractors could be exploited as a
memory element, provided one could reliably switch be-
tween attractors [18].

In addition to numerical evidence for splay-phase
states [7,8,10], Aronson, Golubitsky, and Mallet-Paret
[13] and Mirollo [19]have proven their existence for two
particular array configurations. Splay-phase states have
also been reported in other physical systems [19—25]:
Experimental evidence of splay-phase states has been re-
ported in a Nd: YAG (where YAG denotes yttrium-
aluminum garnet) laser for N=3 modes [20,21], and in an

II. SYSTEM AND EQUATIONS OF MOTION

All of the circuit configurations we consider are of the
general class shown in Fig. 1. A constant bias current
drives a series array of N Josephson junctions, which are
coupled together by virtue of a parallel load. The equa-
tions of motion are [9]

ppk+pk+sinpk+Q =Itt, (2a)

electrical circuit with three oscillators [22]; theoretically,
splay-phase states have been found both in models of
multimode lasers (for N=5) [18,21] and arrays of solid-
state lasers (for any N) [23].

Quite recently, this subject took an unexpected turn,
when new discoveries surfaced showing that certain "typ-
ical" Josephson circuit have decidedly atypical dynamics
[11,15]. Ordinarily, a given dynamical state is either
stable or unstable: only for special parameter values will
a state be at the crossover case of neutral stability. How-
ever, for Josephson arrays with pure resistive load and
point-contact (zero-capacitance) junctions, it was argued
that splay-phase states are always neutrally stable, in all
N phase-space directions [11]. Such nongeneric behavior
requires a deep underlying structure to the dynamics, and
was argued [11] to be the result of a reversibility symme-
try of the governing equations. However, Tsang and
Schwartz then reported numerical evidence that if the
resistive load was replaced by an inductor-capacitor
load —which removes the reversibility symmetry —that
again the splay-phase states were neutrally stable, though
in "only" N —2 directions [15]. No explanation has been
forwarded as to why this should be so, and it is an open
question whether there might be a single explanation that
would cover both types of array.

In this paper, we provide numerical evidence that neu-
tral stability of splay-phase states is far more general than
previously suspected. Our main evidence is based on lo-
cal analysis of the splay-phase states. For several array
variations, we search for splay-phase states and test their
stability by computing the Floquet multipliers. We find
neutrally stable splay-phase orbits for four cases. We also
find evidence of unusual global structure of the phase-
space dynamics, again related to neutral stability. In one
case only do we find linearly stable splay-phase orbits,
namely for arrays subject to a purely capacitive load.
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FIG. 1. Circuit schematic for the current biased series
Josephson-junction array, with a parallel RLC load.

N

LQ+RQ+(1/C)Q= g pf, (2b)

where (t)k is the phase difference of the macroscopic wave
function across the kth junction, Q is the load current, Iz
is the bias current, R, L, and C are, respectively, the
resistance, inductance, and capacitance of the load, and
the overdot denotes differentiation with respect to time.
The junction parameter I3=2eIocr /A, where Io, r, and c
are, respectively, the critical current, resistance, and ca-
pacitance of each junction, A is Planck s constant divided
by 2n, and e is the electron charge. Equations (2a} and
(2b) have been rendered in dimensionless form, with time
measured in units of I/2erIO and current in units of Io.
The first of these equations is a statement of current con-
servation; the second equates the voltage across the array
to that across the load. Physically, the supercurrent
through the kth junction is given by sinpk, and its volt-
age is Pk.

In writing Eqs. (2} we have assumed that the Josephson
junctions are identical. Almost all analyses to date have
considered arrays of identical junctions, and most of what
follows will be restricted to this case. We return briefly
to this point in Sec. IV.

It is natural to divide this general class into various
subcases, defined by two properties. First, the junction
capacitance may be negligible, so that P=O: this is of
course a singular limit of Eq. (2a), which is why we con-
sider it as a case separate from PAO. Second, various of
the load elements may be missing, which entails any one
or more of the following: R =0, L=O, or C= ~.

While these equations display a rich variety of complex
behavior including chaos, our primary focus concerns the
synchronization of the elements, with each element
displaying periodic behavior. In particular, two kinds of
periodic states —in phase and splay phase —have been
most studied. In designing applications, it is desirable to
know when such time-periodic states are attracting. For
junctions having negligible capacitance (P=O), general
results have been discovered for certain circuit
configurations, which rule out attracting dynamics.
First, for a purely resistive load [see Fig. 2(a)], neither in-
phase nor splay-phase periodic orbits are attracting (in

pitk + qk +cospk09k +q 0 ~

Lq+Rq+( I /C)q = g itj. ,
J

(3a)

(3b)

where gk =pk —
pko and q =Q —Qo. This can be written

as a system of M=2N+2 first-order equations of the
form

X= A(t)X, (4)

where X is an M-dimensional vector and A(t) is an
M XM matrix with period T. A floquet solution F(t) of
Eq. (4) is defined by the property

fact, simulations suggest that there are no periodic attrac-
tors of any kind). For the in-phase state, this result has
been rigorously proven [11], and can be traced to a
dynamical reversibility symmetry of the governing equa-
tions; for the splay-phase state, the proof assumes that
the wave form has an extra symmetry, a symmetry which
is consistent with numerics. A similar lack of asymptotic
stability has been reported for splay-phase states for the
inductor-capacitor load [see Fig. 2(b)] [15]. This latter
result is based on numerical simulations, which also show
that attracting in-phase states coexist with neutrally
stable splay-phase orbits. For both kinds of load, there
are additional global features which go well beyond these
local-stability results, but such issues are not relevant to
what follows.

What is peculiar about these results is not that the
periodic splay-phase orbits are not attracting, but that
they are neutrally stable. Typically, a periodic orbit is
neutrally stable only in the tangent direction (i.e., along
the trajectory). But for the cases cited above, the splay-
phase states are neutrally stable in all N phase-space
directions (R load) or in all but four of the N+2 phase-
space directions (LC load), for N arbitrarily large.

In Sec. III, we consider five different array
configurations. For each case, the computations are car-
ried out in two steps: first, we search for a splay-phase
state; second, we compute the Floquet multipliers for this
orbit. Before turning to the results, we pause to describe
some of the details of the numerical procedures.

Our search for a splay-phase state began with a first
guess of initial conditions; a good choice was to pick the

initially spaced at intervals of 2n /¹The equations of
motion were integrated until the first phase variable (t &

advances by 2n (The P . are angular variables and so are
defined modulo 2m. ) The Euclidean distance between this
point and the initial point vanishes if the orbit is periodic.
Somewhat remarkably, in most cases a periodic orbit was
reached simply by integrating for a very long time. (In
some cases, a scheme of successive approximations was
used to find the orbit more eSciently. ) Using this simple
technique implies that we never find repelling or saddle-
type periodic orbits. Nevertheless, there remains the pos-
sibility that the orbits are linearly neutrally stable, which
is what we tested. We will return to this point in Sec. IV.

Once a periodic orbit is found, its stability is tested by
looking at the dynamical equations linearized about this
orbit. For example, if ([pko], QO) represents the splay-
phase solution, linearization of Eq. (1) yields
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F(t + T)=pF(t),

where T is the period of the underlying orbit. The (possi-
bly complex) constant p is called a Floquet multiplier. In
general, there are M linearly independent Floquet solu-
tions: stability of the orbit requires that none of the cor-
responding multipliers lie outside the unit disk. One can
find the multipliers as follows. For the initial condition
X(0), Eq. (4) is integrated for one period and the vector
X(T) is used to form a column of a new matrix E. This
process is repeated for the M independent initial
conditions X(0)=(1,0, 0, . . . , 0), (0, 1,0, . . . ,0), . . . ,
(0,0, 0, . . . , 1). The eigenvalues of the MXM matrix E
are then the Floquet multipliers [261.

An important check for the numerics comes from

rigorously known results. Aronson, Golubitsky, and
Mallet-Paret have proven the existence of splay-phase
states for the cases P&0 and either purely capacitive or
purely resistive load. We measured how close an orbit
was to being periodic by the Euclidean distance in phase
space between successive piercings of the P, plane (i.e.,
when (t, =0). Using a fourth-order Runge-Kutta integra-
tor with fixed step size of 0.000039062 5, we found orbits
which were periodic to within +10 in the Euclidean
distance. The step size was chosen as a compromise be-
tween desired accuracy and computational expediency.
The numerical accuracy for the Floquet multipliers was
calibrated by using the fact that, for any periodic orbit,
there must be (at least) one multiplier equal to + 1, corre-
sponding to the tangent direction of the periodic orbit.

(b)

lo Ip

Ip Ip

(c)
Ip

Io Ip

(e)

Io

Ip

FIG. 2. Circuit schematics for various array configurations: (a) /3=0, R load; (b) P=O, LC load; (c) P&0, LC load; (d) P&0, C
load; (e) f3=0, RLC load.
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In all results quoted below, this multiplier was computed
to be 1.0+10

Owing to the finite resolution of our numerics, we can
never find an "exactly" periodic orbit. We cannot rule
out the possibility, therefore, that these orbits are quasi-
periodic, or even mildly chaotic. These are important
distinctions from a rigorous point of view, and resolving
this issue would require far more careful numerics than
we have done. (The task is subtle, since the orbits in-
volved are neutrally stable, or very nearly so.) From a
physical point of view these issues are less important: the
difference between a periodic orbit and one which "just
misses" by one part in 10 is negligible.

The phase-space dimension is N+2. Qualitatively, the
results here are the same as those for case I: we find
N —2 rnultipliers equal to +1,with the four others inside
the unit disk.

Case V: P& 0, RLC load. This is the case depicted in
Fig. 1. The governing equations are given by Eqs. (2).
The phase-space dimension is 2N+2 Q.ualitatively, the
results here are the same as for case II: we find N —2
multipliers equal to +1, with the other N+4 multipliers
inside the unit disk. Two of these other N+4 form a sin-

gle complex-conjugate pair lying just inside the unit cir-
cle.

IV. DISCUSSION

III. RESULTS

In each of the cases below, we tried various values of
the load parameters and bias current. We considered ar-
rays as large as N=10. Typical numerical results for the
Floquet multipliers are listed in Table I.

Case I: P=O, LC load. The governing equations are
[see Fig. 2(b)]

+kins(l' +kQ =I~,
LQ+(1/C)Q = g P

J

(6a)

(6b)

The dimension of the phase space is N+2. Tsang and
Schwartz have reported numerical values for the multi-
pliers [15];our numbers are consistent with those values.
In particular, there are N —2 multipliers equal to +1;
the other four multipliers lie inside the unit disk. For
N=3, the splay-phase orbit is (linearly) asymptotically
stable.

Case II: P&0, LC load. The governing equations are
[see Fig. 2(c)]

lapk+pk+ sin$k+ Q =I~, (7a)

(7b)LQ+(1/C)Q = gP~ .
J

The phase-space dimension is 2N +2. For N =3, there is
one multiplier equal to +1, and seven multipliers inside
the unit disk, so the splay-phase state is a limit cycle.
However, for N) 3, we find N —2 multiplers equal to
+1.

Case III: P&0, C load. The governing equation is [see
Fig. 2(d)]

ppk+Qk+ sinQk+C g p) =I~ .
1

(9a)

LQ+RQ+(1/C)Q = g Pi .
I

(9b)

The phase-space dimension is 2N. For N =3,4, 5, we find
just one multiplier equal to + 1, with all others inside the
unit disk. This is the only case where we found (linearly)
stable splay-phase orbits for N )3.

Case IV: P= 0, RCL load. The governing equations are
[see Fig. 2(e)]

Pk+sinPk+Q =I+,

Our numerical results show that, in all cases but one,
the splay-phase states are linearly neutrally stable for
N) 3. Moreover, the degree of neutral stability —i.e.,
the number of multipliers equal to +1—increases linear-
ly with array size N. The exceptional case is the purely
capacitive load, where we located stable splay-phase limit
cycles.

By measuring the Floquet multipliers, we have investi-
gated only local properties of the dynamics. The two pre-
vious studies which motivated the present work each in-
dicated interesting global structure as well [11,15]. In
fact, our simulations indicate that global structure may
well be present in these other array configurations. We
base this conjecture on the ease with which we were able
to locate periodic solutions. Typically, it was suScient to
let the dynamics evolve from initial conditions that were
only approximately splay phase, since the subsequent
evolution settled down to a periodic orbit. This is behav-
ior typical of attracting orbits, and must somehow be
reconciled with our Floquet analysis. One possibility is
that the splay-phase orbits are linearly neutrally stable,
but (nonlinearly) attracting. On the other hand, we were
able to start with different initial conditions, and thereby
settle down to different periodic orbits, which is con-
sistent with the existence of a higher-dimensional invari-
ant torus, foliated by a continuous family of periodic or-
bits. This echoes other recent results reported for
globally-coupled-oscillator systems [11,15,16,23 —25].
Whether or not these Josephson-junction arrays are ulti-
mately found to have special global phase-space struc-
ture, in most practical instances the local stability is just
as important, and the neutral stability of the splay-phase
states has a number of ramifications, as we now discuss.

Attractor crowding is a phenomenon wherein the num-
ber of attractors increases factorially while the phase-
space volume increases "only" exponentially with array
size N. The result is that the distance between attractors
in phase space diminishes with increasing N. As the at-
tractors are crowded ever more closely, even small levels
of noise can induce diffusive hopping of the system be-
tween attractors. This effect has been seen in studies of
discrete time dynamical systems, and in simulations of
Josephson-junction arrays [10,17]. If, however, the
splay-phase states are not attractors, the underlying pic-
ture of attractor crowding must be modified. In particu-
lar, one can expect diffusive behavior even for small
values of N. Whether or not there remain systematic
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effects as N grows large is an open question.
A second issue concerns the control of globally-

coupled-dynamical systems. It has been suggested that
the ability to select any desired splay-phase state can be

viewed as a new type of rnultistate switch, in this case a
switch having (X —1)! states. (In numerical simulations
of a multimode laser system, Otsuka [18] has shown one
way selection could work. ) If the splay-phase states are

TABLE I. Numerical values for the coquet multipliers. Asterisks denote the absolute magnitude of
multipliers with complex values.

Case
Floquet

multipliers

IV

V

10

10

0.1

2.0

2.0

2.0

3.0

3.1

3.1

2.0

3.0

0.125

0.125

0.125

0.02

5.0

5.0

5.0

0.25

0.2

0.125

5.0

2.1

2.0

1.9

1.9

2.5

2.5

2.5

1.5

1.5

1.9

2.5

1.0

1.0

0.1

0.1

1.0

1.000000
0.987 557*
0.033 708 1*
1.000005
0.935 776*
0.028 403 6*
1.000 015
0.870 140*
0.023 514 9*
1.000 022
1.000 014
0.999 998
0.999 984
0.870 218*
0.023 513*
0.999 992
0.985 275
0.886 015
0.335 306
0.101 048*
1.000000
0.984 178*
0.885 641
0.298 201*
0.079 966*
1.000000
1.000000
0.999 998
0.999 943*
0.959 745*
0.952 550
0.287 833*
0.081 917 5*
0.078 723 1

0.078 718 8

0.078 718 5

0.999 982
0.713 993*
0.016 877 7

&10 '
1.000 00
0.966 842
0.715 857*

&10 '
&10

1.000 01
0.874 533*
0.021 229*
0.999 888
0.983 835*
0.888 256
0.285 165*
0.080 026*

1.000000
0.987 557*
0.033 708 1*
0.999 999
0.935 776*
0.028 403 6*
0.999 990
0.870 140*
0.023 514 9*
1.000014
1.000 006
0.999 992
0.999 977
0.870 218*
0.023 513
0.999 946
0.985 275"
0.335 306*
0.101 048
0.099 582 3

0.999 957
0.984 178*
0.298 201*
0.079 966*
0.078 722
1.000 000
1.000000
0.999 994
0.999 943*
0.959 745*
0.287 833*
0.081 917 5*
0.078 723 1*
0.078 719 1

0.078 718 7
0.078 718 3

0.940 388
0.713 993*

&10 '
&10

0.966 842*
0.715 857*
0.016 894 4

&10
&10

0.999 994
0.874 533*
0.021 229*
0.999 997
0.983 835*
0.285 165*
0.080 026*
0.078 699 9
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typically not attracting, however, then the dynamics
would be fundamentally altered by external noise: in par-
ticular, a given dynamical state would have a finite life-
time, destroying the reliability of the system as a memory
device.

A third point concerns the potential for analytic pro-
gress on these systems. Under ordinary circumstances,
analytic headway for nonlinear systems is notoriously
difficult, without some special properties on which to
capitalize. Since the neutral stability of orbits is decided-
ly nongeneric behavior, there must be some deep explana-
tion for it. Moreover, since it is common to many
different circuit configurations, the origin of the underly-
ing structure must be quite general, extending to still oth-
er Josephson array circuits not of the general class indi-
cated in Fig. 1. This structure, in turn, may make the
Josephson-junction arrays tractable, analogous to a Ham-
iltonian system being integrable. Some progress in this
direction has been reported in the weak-coupling limit,
based on averaging methods [25].

In addition to the work detailed in Sec. III, we have
made preliminary observations on arrays of nonidentical
junctions. In particular, we introduced a small spread of
10 in the P parameters in Eq. (9a), which serves to
break the permutation symmetry of the underlying dy-
namics. Nevertheless, the neutral stability of (nearly)
splay-phase orbits was preserved. Similar results were

found in other cases as well. Of course, such levels of
symmetry breaking are very small from the physical
point of view —present tolerances in Josephson-junction
fabrication are closer to 10%%uo —but some subtleties arise
in trying to find periodic orbits via simulations. Further
work along these lines is in progress.

Finally, one can ask whether the neutral stability of
splay-phase orbits holds in contexts other than that of
Josephson-junction arrays. Recent work on a model for
solid-state-laser arrays [23], for which the stability calcu-
lation can be done exactly, shows that the answer to this
question is yes. Similar results have been reported in a
certain class of globally-coupled phase oscillators [24].
This supports the intriguing conjecture that neutral sta-
bility of splay-phase states rests on some fairly general-
and possibly simple —property of the underlying equa-
tions.
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