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Nucleation of Bose-Einstein condensation

H. T. C. Stoof
Department of Theoretical Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The netherlands

(Received 23 January 1992)

Using a functional formulation of the Keldysh theory we investigate the time evolution of a dilute
Bose gas through the critical point. We determine the critical region of the gas and show that if the sys-

tern is quenched inside this region, Bose-Einstein condensation is nucleated on a time scale of
0(Alk&T, ) by means of a coherent population of the one-particle ground state. We also examine the
subsequent buildup of the condensate density, taking place on a much longer time scale. However, in the
experimentally interesting case of spin-polarized atomic hydrogen or cesium it is still short compared to
the lifetime of the gas.

PACS numberis): 64.60.Qb, 67.65.+z, 32.80.Pj

I. INTRODUCTION

Perhaps the most important issue in connection with
experiments aiming at the achievement of Bose-Einstein
condensation in a gas of weakly interacting atoms is the
time scale for the appearance of the condensate. The
solution of this problem is particularly pressing since in
the most promising experiments, using magnetically
trapped atomic hydrogen [1,2] or cesium [3], the gas is
essentially isolated from its surroundings and the only
way to populate the ground state is by means of intera-
tomic collisions, which (if an electron or nuclear spin is

Hipped in the process [4]) also lead to decay of the sam-

ple. Hence, it is not immediately evident that the con-
densation takes place within the lifetime of the system.

However, in a recent publication [5] we showed that
the time scale for the onset of the phase transition, after
the system is quenched into the critical region, is short
and of O(A'/k&T, ). Therefore, the time evolution of the

system through the critical point can be divided into
three stages. In the Arst stage the gas evolves from a

highly nonequilibrium situation, that depends on the pre-
cise way in which the system is cooled experimentally, to
an equilibrium inside the critical region. This kinetic
stage of the evolution can be described by a Boltzmann
equation and has been studied analytically by Levich and
Yakhot [6] and numerically by Snoke and Wolfe [7]. As

expected they Gnd that equilibrium is reached on a scale
of O(1/n(vcr)), which in the region of interest is of
O((A, /a) fi/k&T, ). Here n is the density of the gas,
(uo } the thermal average of the relative velocity u of
two colliding atoms times their elastic cross section o. , a
the corresponding scattering length, and A, the thermal
deBroglie wavelength (2M /mkz T )

' at the critical
temperature T, . In the following coherent stage the sys-
tem needs only a short titne of O(A/k~ T, ) to develop the
instability associated with the phase transition, although
the actual buildup of the condensate density is governed
by a time scale of O((A, /a ) trt/k&T, ) as will be shown

below. In the final stage the therrnalization between con-
densate and quasiparticles takes place. This part of the

problem was analyzed by Eckern [8], who found a relax-
ation time of O((A, /a ) fi/k+T, }, which in the case of
atomic hydrogen or cesium is comparable to the lifetime
of the system.

In this paper we are mainly concerned with the
coherent stage, which for the issue at hand is the most '

important one since here the actual phase transition
occurs. In Sec. II we present a functional formulation of
the nonequilibrium theory that is needed in Sec. III to
derive a time-dependent Landau-Ginzburg theory for the
order parameter of the phase transition. In this manner
we are not only able to study the condensation time,
which we focused our attention on in Ref. 5, but also the
time evolution of the condensate density and the Anal dis-
tribution of (quasi)particles. We will, in particular, show
how the constraint of particle-number conservation is en-
forced on the system even though the symmetry that
gives rise to this conservation law is broken spontaneous-
ly. Finally, Sec. IV summarizes the conclusions of this
work.

II. NONEQUILIBRIUM THEORY

The time evolution of a Bose gas that initially is de-
scribed by the density matrix p(to), can be studied very

elegantly in the framework of the Keldysh formalism [9],
which has been reviewed by Danielewics [10] using
canonical operator methods. However, for our purposes
it is convenient to formulate this nonequilibrium theory
in a functional form, because the time-dependent
Landau-Ginzburg equation for the order parameter
( QH(x, t ) } of the phase transition can then be derived in

a physically more transparent way. Moreover, it natural-

ly leads to a (long-wavelength) effective action for the gas,
which will enable us in Sec. III to study also the influence
of the condensation on the particles with a nonzero
momentum.

Our derivation of the functional form of the theory
starts with the observation that the generating functional
of all Green's functions can be written as a functional in-

tegral
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Z [J,J']=f d [g']d [tP]exp —S[g', f] .+ ~ i f dt f d x[f'( x, t )J( x t ) +J'( x, t )P( x, t }] . ,
C

where J(x, t) and J*(x,t) are c-number sources and the time integration over the Keldysh contour C runs along the
chronological branch from to to infinity and subsequently along the antichronological branch from infinity to to [10].
In addition, it should be noted that we have implicitly assumed the fields lit(x, t) and g(x, t') to be independent if the
times t and t' are located on different branches.

The action S[g*,g] consists of a part

So[/*,g]= f dt fdxg'(x, t) i' +— f(x, t),. a ~'v'
C Bt 2m

describing an ideal gas of spinless bosons with mass m, and a part due to the repulsive interaction V(x —x') between the
particles

St[/', g]= ——f dt fdx fdx'g" (x, t)g'(x', t) V(x —x')1((x', t)p(x, t) .
1

C

Because of this separation the generating functional Z[J,J'] can formally be written as

Z[J,J']=exp —St
1 5 5

i5J i5J*
.Zo [J,J'],

with Zo[J,J ] the generating functional of the noninteracting theory, using the action So[/, g]. It is given by

Zo[J,J"]=exp i f dt—fdx f dt' fdx'J'(x, t)G0(x, t;x', t')J(x', t')
C C

(5)

and the noninteracting Green's function

(GD(x, t;x t'(=(T t((t't, , I) tt(txt', t)'
=Tr p(t(i )T gt(x, t )gt(x', t')

that explicitly depends on the initial state p(to) of the system. In the last equation we denote the time-ordering operator
along the Keldysh contour by T, and the creation and annihilation operators in the interaction picture by Pt(x, t)
and Pt(x, t ), respectively. In contrast, the field operators in the Heisenberg picture have the subscript H.

Expanding the exponential in Eq. (4) we can derive the Feynman rules of the theory simply by differentiating. In par-
ticular for the one-particle connected Green s function in momentum space, which plays an important role in Sec. III,
they are schematically

V v dk. v
G,"'=r f,ad. f n

D v=1 i=i (2ir) v'=i

where the sum is over all connected and topologically distinct Feynman diagrams with V vertices and I.=2V+1 lines.
Notice that we have not performed a Fourier expansion on the time dependence, since in a nonequilibrium formalism
the n-particle Green's functions 6,' "' are only defined on the Keldysh contour, which consists of two half-infinite time
intervals. However, it is convenient to perform a transformation from coordinate space to momentum space, because
we are dealing with a homogeneous system.

To discuss Bose-Einstein condensation we need the generating functiona1 of a11 connected Green s functions
W[J,J * ]= i ln [Z [J,J—*] ] and, in particular, its Legenedre transform I [P*,P ] obtained from

I [(I(t*,g]= f dt f dx P*( t)xJ( t}x+J*(x,t)P(x, t) —IV[J,J"], (7)
C

with P(x, t ) =5 W[J,J*]/5J*(x, t ) = ( gH (x, t ) ) and the complex-conjugate expression for P*(x,t ). The functional
I [P,P], which generates all one-particle irreducible diagrams, has two possible interpretations. First, we see from Eq.
(7) that —

april [p*,p] is the effective action S[p",p] of the gas, where we should keep in mind that any quantity obtained
from this action in perturbation theory must be evaluated by using only one-particle reducible diagrams to avoid includ-
ing the same graph twice. Secondly, the time evolution of both the magnitude and the phase of the order parameter is
specified by the coupled equations

5I'[4* 4] J(„,) 5I'[4* 0] J*(„,)5$*(x,t )
'

5$(x, t )
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in the limit J,J*~O. This clearly shows the importance of I [P', P] for the topic of this paper.
We are left with the actual calculation of I [P,P] in perturbation theory, which requires the relation between the

2n-point vertex function I' "' and the connected Green's functions G,' "'. This can most easily be derived by functional
differentiation [11]. Remembering that P(x, t)=58'[J,J ]/5J (x, t), taking the derivative of this equation with
respect to P(x', t'), and using Eq. (8), we have in the limit of vanishing sources

5(x —x')5(t, t') = dt" dx"
5J(x, t)5J*(x",t") 5$(x",t")5$*(x',t')

dt" d x"I ' ' x', t'; x",t" 6,' ' x",t";x, t (9)
C

where the 5 function on the Keldysh contour is defined by f cdt'5(t, t') = l. Using a representation independent nota-

tion we thus find I' '= —(G,' ') ' or equivalently iG,' '=(iG,' ')iI' '(iG,' '). In a similar way we can show that the
four-point vertex function obeys i G,' '= —(iG,~ ') iI' '(iG,' ') . This proves the one-particle irreducible nature of I' '

and I' ', which is a property of all vertex functions I' "' as mentioned previously. Although the general proof is not
difficult, we will not present it here, since only I' ' and I' ' are needed for an accurate discussion of a dilute gas.

III. NUCLEATION

A weakly interacting Bose gas is characterized by na « 1. Physically this means that it is very unlikely for three (or
more) particles to interact with each other simultaneously. Hence, only two-body processes are of importance and it
suffices to evaluate the effective action within the T-matrix (or ladder) approximation, which is summarized diagram-
matically in Fig. 1, Introducing the self-energy X by the Dyson equation G =Go+ GoXG ' this corresponds in

momentum space to

I (k;t, t')= —— i'—— 5(t, t') —fiX(k;t, t') .
,

1 . 8 15k
Bt 2m

(10a)

I' '(k, k', K;t, t')= —T(k, k', K;t, t')+T( —k, k', K;t, t')1 (10b)

O for n~3 (10c)

where the self-energy is given by

(k, i dk' k —k' k —k', , k —k' k —k'

(2~)3 2 2 ' ' '
2 2

G, (k', t', t),

and the T matrix, which describes the scattering of two particles with momenta A'( —,'K+k') and fi( —,'K —k') to the mo-

menta A'( —,'K+k) and A'( —,'K —k), obeys

II

T(k, k', K;t, t')= V(k —k')5(t, t')+ —f dt" f V(k —k")Go —+k";t,t"
c (2m)' 2

XG, —k", t, t" T(k",k', K;t",t'} .K (12)

Equations (10)—(12) summarize the procedure for the evaluation of the effective action in lowest order of the gas pa-

rameter na . However, before following this procedure, we notice that Eq. (12) is actually a complicated set of coupled

equations since a function F(t, t ) on the Keldysh contour can be decomposed into its analytic pieces by means of

F(t, t') =Fs(t )5(t, t')+F —(t, t')6(t, t')+F (t, t')6(t', t ),
and the Heaviside function on the contour e(t, t') [10,12]. Introducing the retarded and advanced quantities

F' '(t, t') =Fs(t )5(t —t')+8(+(t t'))(F (t, —t') —F—(t, t') ),

(13)

(14)

defined on the real axis, we find from Eq. (12) that T' —'(k, k', K;t, t') depends only on the time difference t —t' and that

the Fourier-transformed function T' —+'(k, k', K;E) obeys the (bosonic} Bethe-Salpeter equation

II
T' —~(k, k', K;E ) = V(k —k') +f, V(k —k" )

(2vr )'

1+N —+k" +S —k"
2 2

E+iO —e(k",K)
T' —'(k",k', K;E),
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using e(k",K)=(A' /m)(k" + —,'K ) for the total kinetic energy of the relative and center-of-mass motion and

N(k) = iGO (k; t, t ) for the average number of particles with momentum Rk at t = to. In addition, we find that

II

T (k, k', K;t, t')= —f dr'f dr"f, T(+)(k, k", K;t, r')
l0 f0 (2ir )

XG; —+k" - G" ——k";r', r- T(-)(k",k', K;r",t ),
L

(16)

which completes the discussion of Eq. (12) and explicitly shows that in contrast with T'*', T and T depend on t and
t' separately and not only on their difference. This will be of some importance in the following sections.

A. Effective action

According to the principle of causality we expect the effective action of the gas to depend only on the retarded part of
I' "', which we denote by I'i+„). Formally, this comes about because ( PH(x, t ) ) is independent of the branch on which

the time t is located. The action S[P',P] then acquires the explicitly causal form

S[y', y]= f "dt f dt'. f ",y'(k, t)r(,+)(k;t, t )(('(k, t )
'0 '0 (2ir )

1 f dK f dk f dk' ~, K, K
(2!) (2ir) (2ir)3 (2ir)3 2 2

Xr(+)(k,k, K;t, )y +k, t y +k, t (17)

A further simplification is possible because for a Bose gas we are especially interested in momenta Rk (fi(/na, which
are much smaller than the thermal rnomenta of O(fi/A) due to the smallness of the parameter (i /A at the low tempera-
tures envisaged in magnetic trap experiments. [In the critical region we have n A =O(1) and thus na A ((1.] We are
therefore justified in neglecting the momentum dependence of I 2+' and I 4+', leading to

I' '(k;t, t')= —— iR — —5(t —t') —))iX (0;t, t') . ,
1 . () fik, (+)
i)i Bt 2m

(18a)

I'+'(k, k', K; t, t') =—T'+'(0, 0,0;0)5(t —t'), (18b)

where the. retarded part of the self-energy is found from Eq. (11)and equals
r

'(0;t, t')= — T —, ,k;t, t' +T———,—,k;t, t'+ I i dk ~+ ] k k, (+ ) k k

(2ir )
2'2' '' 2'2' '' G,' (k;t', t )

+ T , ,k t, t' +T ——,, k t, t' —G—o —(k t', t) (19)

Physically, the first term is due to the possibility of decay of a zero-momentum particle into two particles and one
hole whereas the second term corresponds to the production of zero-momentum particles by means of the time-reversed
process. This interpretation shows that the imaginary part of X'+' describes the rate of change of the condensate densi-
ty caused by incoherent scattering processes, which cannot nucleate the condensation [5]. These processes are only of
importance on a time scale that is much longer than the one we are interested in and will thus be neglected in the fol-
lowing. Furthermore, Eq. (19) shows that the non-Markovian character of the self-energy leads only to a very small,
and typically of O(naA ), renormalization of the time-derivative term in the effective action. Hence, memory effects
can also be neglected and we only have to deal with the quantity

S'+'(0;t):—iri dt'Re X'+'(0;t, t') (20)
0

Combining Eqs. (17), (18), and (20) we see that the long-wavelength action for a dilute Bose gas corresponds to a time-
dependent Landau-Ginzburg theory for a second-order phase transition [13]

g2 T(+) OOOOS[$*,$]=f dt f d Px*( tx) i' +V' —S'+'(0;t) —— ' ' '
~(()(x, t)~ P(x, t), .

Bt 2m
'

2
(21)

with complex order parameter. Clearly, when S'+ '(0;t ) becomes negative, the global U(1) gauge symmetry is broken
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spontaneously and the system develops an instability, which will be removed by the formation of a condensate.
To evaluate S'+'(0;t) we note that in the momentum integral of Eq. (19) the main contribution comes from thermal

momenta. Therefore, we can neglect the dependence of T' —'(k, k', K;E) on the relative momenta irik and haik', but not its
dependence on the center of mass momentum A'K, which is a consequence of the fact that the particles scatter inside a
medium and not in a vacuum. The T matrix is thus well approximated by the on-shell quantity T' '(O, O, K;iii K /4m).
Using the Bethe-Salpeter equation it can easily be shown that in terms of the genuine two-body T-matrix T' —'(k, k';E)
we have

dk"T'*'(0 0 K'A' K /4m ) = T' +—'(0, 0;0)— T' +—'(O, k"'0)
(2ir )

K „KN —+k" +N ——k"
2 2

Ak" /m

X T' +'(k-",0, K X'K'/4m ) (22)

In the latter integral the relative momentum dependence can again be neglected and we obtain the convenient formula

(+)
T'*'(0 0 K'i}'i K /4m ) = 1+T' —'(0, 0;0):-(K)

with T' —'(0, 0;0)=4M a /m and

(23)

dk"
:-(K)= „N —+k" +N —k"

(2ir) i}i k" 2 2
(24)

An important first conclusion that can immediately be drawn from this result is that the scattering length a should be
positive for the Landau-Ginzburg theory derived above to be stable and thus useful. In the opposite case a &0, we ex-

pect instead of a Bose-Einstein condensation a phase transition of the BCS type and the pair wave function
( QH(x, t )1(H(x, t ) ) as the order parameter [14]. A more detailed discussion of this interesting case, for which there is

strong evidence that it is relevant to the experiments with atomic. cesium [15],is deferred to a following paper. Here we

will consider only the (repulsive) case with a & 0.
Secondly, Eq. (24) shows that for thermal momenta T'+'(0, 0;0):-(K) is of 0(naA ) and negligible. Therefore, the

contribution of the T'+'G term to S'+'(0;t) is well approximated by the time-independent (Hartree-Fock) result
2nT'+'(0, 0;0). The contribution of the T G' ' term is, however, more difficult. Introducing the integration variables
p= —,'k+k" and p'= —,'k —k", and neglecting the dependence of the many-body T matrix on the relative momenta as ex-

plained above we find first of all the result

dP dP (+) i. 2 i 2 2
1 —cos(ihip p'(t to )/m )—

2 f — f ~
T +'(0,0,p+p';A' (p+p') /4m )

~

N(p)N(p') z(2ir) (2ir )
A' p p'/m

Note that if we neglect also the center of mass dependence of T'—' this contribution vanishes and a phase transition
cannot occur. Therefore, we consider T' —'(0, 0;0):"(p+p') as a small quantity and expand the above expression up to
first nonvanishing order. In this manner we obtain finally

S'+'(0;t ) =2nT'+'(0, 0;0)—4[T'+'(0, 0;0)]

dp dp 1 —cos(A'p p'(r t )/m )—
3 3 p N p 2

0 p+p
(2ir ) (2ir ) iri p p'/m

in agreement with Ref. 5 if we take to =0.

(25)

B. Critical region

Before we discuss the dynamics of the phase transition it is usefu1 to consider first the equilibrium situation and cal-

culate the critical temperature T, of the gas. In our rea1-time formalism this can be accomplished by taking the limit

taboo and using the Bose distribution N(k)=[/ exp[PE(k)] —1I ', with chemical potential p, e(k)=Pi k /2m and

the fugacity g defined by g—:exp(Pp). The critical temperature is then determined by S'+'(0; oo ) =0, since in that case

the correlation length (=iri[2mS'+'(0; oo )] '~ diverges.
For temperatures large compared to the critical temperature To of the ideal (noninteracting) Bose gas the second

term in the right-hand side of Eq. (25) is a factor of 0((a /A) ) smaller than the first term and cannot lead to a zero re-

sult for S'+'(0; oo ). However, for temperatures very close to To this argument does not hold any longer because the

various momentum integrations diverge if T&TO or similarly gg l. Therefore, we are especially interested in the

asymptotic behavior of the function
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d1(g)—:f f N(p)N(p') [=(0):-(p+p')]
(2m) (2m. ) App'

in this limit. Considering =(K) first we find, due to the properties of the Bose functions g„(z) [16],that

(26)

a m'" 1 a (KA)4— for EA«~I —
g

(1 g)1/2 4 1/2A (1 g)3/2

T'+'(0, 0;0):-(K}— 8m-' — for &I —g(&KA(&1,
A I(A

a 1
32ng3/2(g) — for 1«EA

A (KA)

T'+'(0, 0;0):"(p+p')=8n.'—
A g(1 —g)'/+ ip+p'iA

The term g~i —
g in the denominator provides the

correct low-momentum cutoff, which is required to regu-
late the resulting expression. Ultimately, we take the lim-
it g —+0. In this manner the asymptotic behavior of I(g)
can be extracted and results in

I(g)—
gg1 277

2
1

1 —
g

' (27}

the density being equal to g3/2(g)/A. The condition
S'+'(0; oo) =0 is thus equivalent to ~I (=4~m—(a/A)
and gives a critical temperature that is slightly higher
than the value for the ideal Bose gas, i.e.,

Tc TO '1+ (28)
3g3/2(1) A11

with g3/2(1) =g(3/2) =2.612.
It is of interest to point out that this result implies that

at the critical temperature ~T'+'(0, 0;0)~:-(0)=4(a/
A)g1/2(g) = 1, which is identical to the Thouless criterion
[17] for the onset of superconductivity if a &0 [cf. Eq.
(23)] and, more importantly, shows that indeed
T'*'(0,0;0):-(p+p')«1 for the relevant momenta
A'~p+p' »%~1—g/A. Hence, our procedure for calcu-
lating S'+'(0;t) turns out to be self-consistent. In addi-

which leads to the conclusion that the main contribution
to I(g) comes from the region where u'I —g/A« ~p+p'~ & O(1/A) and we can use the approximation

tion, Eq. (28) can essentially also be obtained by the fol-
lowing simple argument: Calculating the average num-
ber of particles in the zero-momentum state ~k=0), us-

ing second-order perturbation theory for a system in a
finite volume V, we find

(N )
1 2 T'+'(0, 0;0}

g, 11—
g V' «, A'k k'/m

'2

X[NgN~ N1+1'] —',

Summing all orders of perturbation theory, we then con-
clude that

(No)— 1 1

1 —4C(Q/A) g 1/2(g)

which diverges for T, =TO[1+0(a/A)], in agreement
with the more rigorous result found before. Finally, we
note that Eq. (28) disagrees with the estimate
T, =To[1+0((a/A) / )] found in Ref. [5]. In that pa-
per we concentrated on the condensation time and used
an approximation for =(p+p') that, although brings out
the essential physics of the condensation process, is not
adequate for the calculation of the critical temperature.

which formally diverges, due to the integration over the
angle between k and k'. However, this is an artifact since
the terms with k k'=0 in the above sum should be treat-
ed by degenerate perturbation theory and are expected to
be unimportant in the thermodynamic limit. Therefore,
we can replace the angular integration by some constant
C of O(1}. Neglecting inside the curly brackets the term
involving N~+z, because it remains finite if gg 1, we per-
form the momentum integrations and obtain

'2

(No) '1+4C g 1/2(g)+O((a/A) )g. l 1 A

C. Bose-Einstein condensation

T + T

FIG. 1. Diagrammatic representation of the T matrix or
ladder approximation. The wavy line corresponds to the in-
teraction V and the straight line to the propagator Gp.

We now turn to the full time-dependent problem and
assume that during the kinetic state of the phase transi-
tion the system is quenched into the critical region
To& T & T„where S'+'(0; ~ }&0. Our previous discus-
sion shows that in this case S'+'(0;t), starting from the
positive value 2nT'+'(0, 0;0) at t =to, passes through
zero at
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a A'

t —= t, =to+0
A, ki)(T, —T)

implying that the typical time scale for the onset of the
instability is generally of O(iri/ks T, ) except for tempera-
tures very close to the critical temperature, where
(T, —T)/T, «a/A, .

To calculate the condensate density po(t) we must
solve the equations of motion 5S[(()',P]/5$'
=5S[P',(()]/5/=0 for the order parameter. Introducing
a time-dependent chemical potential p(t ) by means of

(QH(x, i)):"(/p—o(t)exp jingo
——f dt'p(t') . , (29)

0

they lead to go=0 and

) 0(r)=
—S'+'(0;t)+p, (t )

T'+'(O, O, O;O)
(31)

describing the buildup of the condensate.
For the determination of the chemical potential also

the fluctuations around po(t) need to be considered. In
Nambu-space their effect is determined by the Green's
function

Qp, (i ) I)M(t ) —S'+ '(0; i ) —T'+ '(0, 0,0;0)p,(t ) ] =0,
(30)

which for r & t, has only the trivial solution po(t)= 0.
However, for t ) t, this solution becomes metastable and
we find in addition

A'G '( x, t; x', t '
) =

iA—+ V +p —AX))
fi

Bt 2m

f2 5(x—x')5(t t'),—
iA —+ —V +p fiX22-

Bt 2m

(32a)

and the self-energy matrix

S'+'(0; t )+2po(t )T'+'(0, 0,0;0)

I,(r )T'+'(O, O, O;O)

po(r ) T'+ '(0, 0,0;0)

S'+'(0;i)+2po(r )T'+'(0, 0,0;0) (32b)

In terms of the normal and anomalous self-energies Eq. (31) can thus be written as p(t )
—iriX»(t )+iriX, 2(t ) =0, which is

just our nonequilibrium version of the celebrated Hugenholtz-Pines theorem [18]. Performing the integration over the
fluctuations P'(x, t ):—exp[i

/waif

dt'p(t')]P(x, t) Qpo(t) —we easily find that

S[1 ]= fdr fdx 1(r)(p,(t) n) — '—' '
p (t0) .+ Tr[lnG ],T'+'(0000) i i%

(33)

where the second term represents the usual contribution from the fluctuation determinant [14]. Making this action sta-
tionary with respect to variations in p(t ) then leads to the expected equation

n =pa(t)+ —f dx(QHt(x, t)QH(x, t)),1

V
(34)

enforcing the conservation of particle number at all times.
We are left with the task of solving Eqs. (31) and (34) for po(t) and p(t). If t , i, the solution is evidently

po(t)=p(t)=0 and we are in the symmetric phase. If t is slightly larger than t„m reoquantitatively such that
t, & t & O((a /A, ) i)i/ks T, ), we still have p(t) =0 and therefore that po(t ) = —S'+'(0;t )/T'+'(0, 0,0;0). In this inter-
val the actual nucleation of the condensation takes place by means of a coherent population of the one-particle ground
state. However, by this mechanism only a small condensate density of order O(n(a/A, ) ) is formed and a different
mechanism is needed to cause the growth of the condensate for larger times t )O((a /A, ) fi/ks T, ). The nature of the
latter is most conveniently discussed by considering the time evolution of the operator PH(x, t ). At the quadratic level

we obtain from Eq. (32)

QH(x, t)
iA—

, ij/H(x, t )

2m
V2+ T(+ ) T(+)

Po (Hxt)

&'
~2 T(+) CH(»r)

2
V PoT

(35)

For time independent po this leads of course to the Bogo-
liubov dispersion relation [19]

i)ico(k) =e(k) [1+2poT'+ '/e(k ) ]
'

which shows that the quadratic part in 1()H(x, t ) describes
a gas of noninteracting quasiparticles.

However, from the work of Lee and Yang [20] we
know that near the critical temperature the interaction
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the quasiparticles equilibrate, is not included in this
figure.

IV. CONCLUSIONS

FIG. 2. Time evolution of the condensate density during the
coherent stage of the phase transition for a dilute Bose gas.

between the quasiparticles is very important and cannot
be neglected. Taking it into account in a mean-field-like
manner gives

QH(x, t }
ifi-

t)t QH(x, t )

f2
q2 T(+)

2m QH(x, t )

T(+) ~ q2 PH(x t )

2m

(36)

Contrary to Eq. (35} the dispersion relation is now
irico(k)=[@ (k) —(poT'+') ]' and we conclude that the
modes with e(k) (poT'+) are unstable and show an ex-
ponential decay of their population, resulting in a buildup
of the condensate. Although the above set of equations
cannot be solved analytically, it is clear that the time
scale for the further increase of the condensate is of
O(A/poT'+)) or equivalently of O((fi/k+T, )(l/poaA, )),
which is much larger than the time scale for the onset of
the phase transition. Moreover, the final order of magni-
tude of the condensate density can be estimated from

«o' 4irkzdk
po= (2~)'

with the result that in the limit t —+ ae, po is of O(na /A, ).
The various estimates obtained above are summarized in
Fig. 2, which gives a complete picture of the coherent
stage of the condensation process for a weakly interacting
Bose gas. Note that the e8'ect of the subsequent kinetic
stage of the transition, during which the condensate and

We study the nucleation of the Bose-Einstein conden-
sation process, by developing a functional approach to
the Keldysh formalism. In this manner we derive a
time-dependent Landau-Ginzburg theory for the long-
wavelength dynamics of a weakly interacting Bose gas
and use this to obtain first of all the critical region and, in
particular, the critical temperature of the system.
Secondly, we consider the nonequilibrium dynamics of
the gas by concentrating on the time evolution of the con-
densate density after a quench into the critical region.
The preceding and ensuing kinetic stages of the phase
transition have been published elsewhere [6—8] and are
not treated here.

We show that the actual nucleation of the condensa-
tion takes place on a short time scale of O(A'/kit T,), in
contrast with previous claims in the literature [6], pre-
dicting that an infinite time is needed for the nucleation,
i.e., Bose-Einstein condensation will never take place in a
realistic system. Therefore, the phase transition is not
impeded by the nucleation but by the way in which the
gas is quenched into the critical region. This can be stud-
ied by a quantum Boltzmann equation and leads to the
conclusion that from an experimental point of view the
dominant time scale is set by (incoherent) elastic col-
lisions between the particles and thus of O((A, /a) fi/
kit T, }. Since this is a much shorter time than the life-
time of spin-polarized atomic hydrogen or cesium sam-
ples, due to inelastic collisions that flip a spin, there is no
fundamental reason to believe that Bose-Einstein conden-
sation cannot be obtained in these experiments.
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