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Surface perturbations of a shallow viscous fluid heated from below
and the (2+ 1)-dimensional Burgers equation
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The (2+1)-dimensional Burgers equation is obtained as the equation of motion governing the surface
perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system
satifies the condition R %30. A solution to this equation is explicitly exhibited and it is argued that it de-

scribes the nonlinear evolution of a nearly one-dimensional kink.

PACS number(s): 47.20.Bp, 47.35.+ i

The system formed by a Quid heated from below, the
so-called Benard problem, has been a standard model for
many studies in fluid dynamics [1]. In most cases, how-
ever, the main interest has been concentrated in the con-
vection phenomena. While considering the same system,
our concern here will be quite different, since we will be
interested in the study of surface waves in a shallow fluid,
and in situations for which the Rayleigh number (R) is
well below that determined by the onset of convection.
Furthermore, we shall only consider systems for which
the upper boundary is a two-dimensional surface. It is
important to remark that the shallow-fluid approxima-
tion implies that the depth of the fluid is much smaller
than the wavelength of the surface waves. However,
since we shall restrict ourselves to the study of long sur-
face waves, on whose description the slow variables [2]
play a very important role, the depth of the fluid will not
necessarily be small. As a matter of fact, we shall assume
later a deep enough fluid such that surface-tension effects
can be safely disregarded. We should still add that the
heat flux from below is essential to our problem only be-
cause we are interested in studying the constraints that
the thermal boundary conditions impose on the system.

By using the concept of a weak coordinate [3], it has
recently been shown [4] that nearly one-dimensional un-

damped waves described by the Kadomtsev-Petviashvili
equation may propagate in a shallow viscous fluid, pro-
vided the Rayleigh number of the system satisfies the
condition R =30. These solitary waves were sustained by
the adverse temperature gradient. In other words, they
are possible because at the point R =30, the amount of
energy released by buoyancy exactly compensates the
amount dissipated by viscosity [5].

Following those developments, we shall show here
that, considering a system for which the upper boundary
is a two-dimensional surface with the x-transverse coordi-
nate y assumed to be weak, and using an appropriate scal-
ing in the definition of the slow variables, a (2+1)-
dimensional Burgers equation [6] is obtained as the equa-
tion of motion of surface perturbations, provided R %30.
This equation admits a progressive wave solution, which

po
= Vp+pV v+gp

dv 2

dt

dT==gV2T
dt

(2)

(3)

(4)

where d/dt =0/0t+v-V is the convective derivative,
v=(u, v, tv) is the fluid velocity, and p is the pressure.
The viscosity p, thermal diffusivity ~, and coefficient of
thermal expansion y, are constant. To and po are the
reference temperature and density, respectively.

On the upper free surface z =d +rj(x,y, t), the bound-
ary conditions are [7]

lent

+0 7/ + U 'gy —w

will be explicitly exhibited, that describes a nearly one-
dimensional kink propagating in a viscous fluid. The ap-
proach we give here is valid for any Rayleigh number,
and so it also includes the result discussed above that is
valid strictly when R =30.

Let us then consider a Benard system consisting of a
fluid bounded below by a plane stress-free perfectly
thermally conducting medium at z =0 and temperature
T=Tb, and bounded above by a free surface which,
when at rest, lies at z =d. The depth d of the fluid is
such that the buoyancy effect is predominant when corn-
pared to the influence of the surface-tension variation
with temperature. This is the reason we will assume a
vanishing surface tension. The equations governing the
hydrodynamical flow of a viscous fluid can be simplified
considerably by using the Boussinesq approximation.
The origin of this simplification is the smallness of the
coefficient of thermal expansion y. As for most situa-
tions of practical occurrence y is indeed small, ranging
usually from 10 to 10, this approximation does not
impose severe restrictions from the physical point of
view. In this approximation, the equations that describe
the motion of a fluid are given by

V.v=0
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(p —p, )2} —IM[2u 2}„—(u, +w„)+(u +v )g ]=0, (6)

p —p, +p [(w +u, )2}„—2w, + ( w +v, )2} ]=0, (7)

F
n V'T= ——,

k
(9)

where n is the unit vector normal to the free surface,
given by

n=( —2}„,—2}~,1)/N, N=(1+2},+ri )'~

F is normal heat Qux, k is the thermal conductivity, and

p, is a constant pressure exerted on the upper free sur-
face.

An important point is the dynamical boundary condi-
tion that is to be satisfied at the lower plane. We suppose
that the sliding resistance between two portions of the
Quid is much greater than between the fluid and the plane
[8]. Under this condition, it is reasonable to assume a
stress-free lower surface, which implies [1]

w =u, =v, =0 (10)

for z =0.
The static solution to these equations depends only on

the coordinate z and is given by

(p —p, )g —p[(v„+u )g —(v, +w )+2v 2} ]=0, (8)

and

where all quantities are dimensionless, we can obtain an
order-by-order solution to the system of equations.
Along this process, we shall take only integral powers of
e. That this is really possible can be seen in the following
way. When considering any integer order, we take every
term containing powers of e that may possibly contribute
to that order. For example, to the first order will contrib-
ute, besides terms containing e' itself, terms containing e

and e +'. To the second order will contribute terms con-
taining e, E +', E', and e +', and so on. Consequently,
depending on the value of a, the first order will also in-
clude the order e', the second order will also include
the order e, and so on. Thus, it is not necessary to
consider separately the half-integer orders, since they
have already been taken into account.

In the lowest order, the solution is given by

uo=f(g g, r), wo= zfg(g, g—,r),

'lo= f(k 0 'r) Po=~
2 f(k 0 &)

C c

with f (g, g, ~) an arbitrary function. In the next order we

get

go= ,'(z' 3z)f—~, —vo=h(g, g, r),

u, =g(g, g, r)+e2 ' (z —15z +75z }——',z f]~
R

T, = To ——(z —d), p, =po 1+ (z —d)
F yF E

3a —1

p, =p, —
gpo (z —d)+ (z —d)VF R z+e Gcrg, (+ ff~

c 2

In order to get the dimensionless form of the equations,
boundary conditions, and static solutions, we adopt d as
the unit of length, d /~ as the unit of time, pod as the
unit of mass, and Fd/k as the unit of temperature.
Furthermore, we introduce three dimensionless parame-
ters: the Prandtl number O. =p!p~, the Rayleigh num-
ber R =pogaFd /km', and the Galileo number
G —gd3 2/p2

Now comes an important point: the definition of slow
variables. We write [9]

g=& (x ct), g=—e +'~2& ~=e + t

with e a small positive parameter, and u a parameter that
assumes either the value —,

' or 1. The appropriate value
for it will be discussed later. Considering now the expan-
sions

u =e(uo+eu, +c u2+ . . ),
U =6 (UO+EUI+E U2+ ' ' },
W =E (Wo+EWI+E W2+ ' ' ),
2}=e(2}o+e'ri,+e 2}2+ . },
P Ps ~ (Po+~PI+e P2+ '

T —T, =e +'(go+e8, +e 0,+ . ),

wl = z(gg+hg)

Z3
X (z —21z + 175z )—

5040

3a—]

R Z'
~»(4+ (fgfg+ff g

)—
c 6

PI = (z —6z +5}—20 f
—e —(z —1) f~t+e' Go 2}I+ 2}o

2a —1 31 c
1008 2

(12)

with g(g, g, ~) and h(g, g, r) arbitrary functions. The
boundary condition on the upper free surface yields the
equation

c'g, ( cg(=f,+2ff~—
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At this order, there appears a solubility condition giving
2 —G 2 (13)

In the next order, we get

0 =e ' (z —10z +25z) f1 120

pz= —e ' (z —15z +75z —61)
720

were present, the same equation would be obtained, but
with

Equation (17) has a progressive wave solution of the
form

f (A)=f (A(+Bg Cr—),
whose explicit form is

+—(z —1) f (3Go.+R )(2C —c8 )

4Go.

These solutions and the remaining boundary conditions
yield the equation

—(c r),( cgr)=f,—+ 1+ ffrR

E 0' 4 f~~
2R

+e 'c( —', +,",„',R o —,",,', R )f~~g

(14)
as well as a relation between the arbitrary functions
f(g, g, r) and h((, g, r):

(15)

The requirement of compatibility of Eqs. (12), (14), and
(15) provides an evolution equation for f:

3Go+R
2G~

2C —8
4v

where A, 8, and C are constants depending on the initial
conditions. It represents a nearly one-dimensional kink,
which can be considered as a kind of bore [10]. The con-
dition v)0 reQects the fact that the system is predom-
inantly dissipative, i.e., the amount of energy released by
buoyancy is smaller than the amount dissipated by
viscosity.

Suppose now we slowly increase the heat Aux. As the
Rayleigh number approaches the point R =30, the
coefficient v approaches zero and the system becomes less
and less dissipative. At the point R =30, v vanishes, in-
dicating that the amount of energy dissipated by viscosity
is exactly compensated by the amount released by buoy-
ancy. At this point, therefore, dissipation does not play
its role and the system becomes predominantly disper-
sive. In fact, putting v=0, taking a= —,', and rescaling
conveniently g, g, and f, Eq. (16) becomes [4]

'f + ff(+fNk'f= (20)

+e 'c(6+ 63oo'R )fgg = — fg. , (16)—
where

Ro.v= 2'
15

Suppose then we consider a system such that the Ray-
leigh number is in the region R &30, which means that
the coefficient v is positive. Taking +=1 and neglecting
the term proportional to E, Eq. (16) becomes

(17)

By transforming f according to

2Go.
3Go+R

we obtain the equation

(18)

This is the (2+1)-dimensional Burgers equation [6]. In
the limiting case of a one-dimensional upper surface, no g
dependence is allowed for f and it coincides with the usu-
al (1+1)-dimensional Burgers equation. If no heat flux

which is the widely studied integrable Kadomtsev-
Petviashvili equation.

If we continue to increase the heat Aux more and more,
the Rayleigh number of system will reach the region
R )30, and consequently v will become negative. The
system will then be antidissipative, which means that the
amount of energy released by buoyancy will be greater
than the amount dissipated by viscosity. In this case, the
surface perturbations will again be governed by the
(2+1)-dimensional Burgers equation, and the solution
given be Eq. (19) will represent a nearly one-dimensional
antikink propagating in the opposite direction. It should
be noticed, however, that this solution is not valid for an
arbitrarily large R, since in this region other phenomena,
which are not considered by our approach, may take
place.

It has now become clear why we have considered both
cases, a= 1 and a= —,'. When vAO, the term containing

the second derivative in Eq. (16) is of lower order than
the term containing the third derivative, and by setting
ex=1 it gives a true contribution to the equation. When
v=O, however, we are left with only the third-derivative
term, which will contribute when a= —,'.

Finally, it is interesting to remark that the Hopf-Cole
transformation [11]
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c
(21)

That the Hopf-Cole transformation does not lead to the
(2+1)-dimensional heat equation is not surprising, since,
while the heat equation would put g and g in the same
footing, Eq. (18) considers g as a weak coordinate.

In conclusion, we have obtained in this paper a (2+ 1)-

f = —2v in',a
a

which transforms the ordinary Burgers equation into the
heat equation, in this case leads Eq. (18) to the nonlinear
equation

dimensional Burgers equation as the equation governing
the upper-surface perturbations of a shallow viscous fluid
heated from below, provided R %30. A progressive-wave
solution to this equation has been explicitly exhibited,
which represents a nearly one-dimensional kink. The
critical Rayleigh number R =30 is the point where dissi-
pation is completely compensated by the buoyancy effect
generated by the heat flux. At this point the system be-
comes dispersive and the equation governing the surface
perturbations turns out to be the Kadomtsev-Petviashvili
equation.
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