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Self-organization in an excitable reaction-diit'usion system. III. Motionless localized
versus propagating-pulse solutions
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(Received 14 February 1992)

In a series of papers, we have studied pattern dynamics in the Bonhoeffer —van der Pol type reaction-
diffusion system which is a coupled set of equations for an activator and an inhibitor and exhibits excita-
bility. We have been concerned mainly with localized motionless solutions in one dimension, which
have been shown to be stable when the diffusion constant of the inhibitor is suSciently large. In this pa-

per, we shall explore how the properties of the system change when we decrease the diffusion constant.
It is shown that a motionless localized solution turns out to be unstable in such a situation while a
propagating-pulse solution can exist stably. This crossover from the motionless to the pulse solutions
does not occur as a clear bifurcation. There is a parameter regime where the two solutions can coexist,
and rich variety of dynamical patterns is expected.

PACS number(s): 05.70.Ln, 82.20.Mj, 87.10.+e

I. INTRODUCTION

The characteristic features of nonequilibrium open sys-
tems are temporal order and existence of a stable spatial-
ly localized pattern. The former is well known and has
been discussed in many papers. On the other hand, the
relevancy of the latter, especially a motionless localized
pattern, has not been paid much attention except for a
few theoretical studies [1—3]. Experimentally, however,
such localized (periodic) patterns have recently been ob-
served in several systems [4—8] far from equilibrium.

In this series of papers [9,10] which will be referred to
as I and II, respectively, we have investigated the stability
of spatially localized pattern (domain) and the oscillatory
motion of the domains based on the Bonhoeffer —van der
Pol (BvP) type model equation in one dimension. The
model consists of a coupled set of reaction-diffusion equa-
tions for the activator u and the inhibitor v and reads

erB, u =e't)„u+f (u) —u,

t), u =eD t)„'u+Pu —yu,

(l. la)

(1.1b)

f (u)= —u+e(u —a), (1.2)

where 6(x) is the Heaviside step function. When e«D,
Eqs. (1.1) admit a spatially localized motionless solution.
The spatial variation of the solution is depicted in Fig. 1

below in Sec. II. We call the region where u is positive
(strictly speaking, the region u & a ) an excited domain
while the region where u is negative a rest domain. The
domain boundary is called an interface.

where all the parameters e, r, D, P, and y are assumed to
be positive. Note that the definition of the diffusion con-
stant for v is different from that in I and II. The function

f (u) has a cubiclike nonlinearity such that f (u)
=u (1—u)(u —a) with a constant. To make the calcula-
tion tractable, we often utilize the piecewise linear form
off (u) [11],i.e.,

In the first paper [9], we studied, by a singular pertur-
bation method [12], the Hopf bifurcation of spatially
periodic excited domains, which occurs when the param-
eter z is decreased. What we have found is that when the
width of the excited domain is neither extremely small
nor comparable to the spatial period, the periodic
domains undergo an in-phase oscillation for ~ smaller
than the critical value ~, .

In the second paper [10], we have derived the phase-
amplitude equation to study the dynamical order of in-

teracting oscillating domains behavior at postthreshold.
All these studies are restricted to the case e«D. In

this paper, we shall investigate the property of Eqs. (1.1)

by changing the ratio e/D. As is well known, Eqs. (1.1)
reduce to the FitzHugh-Nagumo equation [13]in the lim-

it D ~0 (and y =0) where a propagating-pulse solution
can exist stably. Thus our primary concern is how the
crossover from a motionless localized solution for e «D
to a propagating-pulse solution for e)&D occurs. To our
knowledge such a phenomenon has neither been studied
theoretically nor been observed experimentally. Howev-

er, it is expected that the crossover by changing D might
play an important role for information transportation in

some biological systems. Computer simulations of Eqs.
(1.1) have indeed demonstrated breakup of a motionless
domain into two pulses propagating to the opposite direc-
tions [14]. It is remarked here that the singular perturba-
tion method which assumes e «D cannot be used in the
present analysis.

Organization of the paper is as follows. In the next
section, we obtain a motionless localized solution by us-

ing the piecewise linear dynamics (1.2). In Sec. III, on
the other hand, we derive a propagating-pulse solution.
We focus our attention on the effect of the diffusion of the
inhibitor. In Sec. IV, we compare the profiles of the
motionless and propagating solutions by changing the pa-
rameters D and a. In Sec. V, we make some concluding
remarks. The details to derive the pulse solution in Sec.
III are summarized in the Appendix.
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II. MOTIONLESS LOCALIZED SOLUTION

e Dv,
"" e(ey+D—)v,"+P+y =0, (2.1)

A motionless localized solution of Bvp equation has
been investigated by Koga and Kuramoto [I]. In this
section, we extend their results and show that the system
does not possess a stable motionless solution as the
diffusion constant D becomes small.

Without loss of generality, we may assume that the
steady nonuniform solution of Eqs. (1.1) is symmetric
with respect to x =0, and that the excited region is
confined to the interval —R (x (R. The steady solution
is denoted by u(x, t)=u, (x) and v(x, t)=v, (x). From
Eqs. (1.1) with the piecewise linear form of f (u) given by
Eq. (1.2) and with B,u, =t), v, =0, we can eliminate u, so
that Eq. (l.lb) becomes the following differential equation
for U, :

( )
g ey+D p P+y

e2D e3D
(2.2)

Equation P(a)=0 has four roots a„a2, —a2, and —a,
(at & a2&0 or a, =a~&'. Superscript c.c. indicates com-
plex conjugate. ) Koga and Kuramoto [I] assumed that
these are real, but here we allow that the roots may be
complex.

The coefficients of the exponentials are determined by
the boundary conditions, u, =U, =0 at x =+~, and the
matching conditions of u, and v, and their first deriva-
tives at x =+R. After a straightforward calculation the
motionless localized solution is obtained as

where a prime indicates the derivative with respect to the
argument. Since Eq. (2.1) is linear in v„ the solutions u,
and v, can be obtained as a linear combination of the ex-
ponentials exp(a;x), where a; are zeros of the polynomial

u, (x)=
—a1R a2R yA»e ' cosha, x+ Az, e ' cosha2x+

p+y
—al lxl . —a2lxl—A, 2e

' sinha)R —Az, e ' sinha2R for R & ~x ~,

(2.3a)

2 d
v, (x)= e —1 u, (x)+8(R —

ix~ )
d I

for 0& x~ &R
—a1R —a&RB»e ' cosha, x +B2,e ' cosha2x+

p+y
—a1lxl . —~, l~l .

B&2e
' —sinha, R B2, e ' —sinha2R for R & ~x ~,

(2.3b)

where

y —eDa

eDa (a —a )P P

B„„=(ea„2 1)A„, —
)tt, v=1, 2 .

(2.4a)

(2.4b)

Here the half-width R of the excited region is determined
by the relation

Equation (2.5) is the definition of location of the domain
boundary and specifies the a dependence of R.

Figure 1 is an example of the motionless localized solu-
tion expressed by Eqs. (2.3). Figures 2 and 3 show the re-
lation between the parameter a and the width R graphi-
cally for several values of the diffusion constant D of the
inhibitor. Other parameters are chosen as a=0. 1, y = 3,

u, (+R)=a . (2.5) 3.0-

2.0-

0.5—

a
& o.o

1.0-
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FIG. 1. Profile of the motionless localized solution u, (solid
line) and v, (dashed line) for e'=0. 1, D =50.0, y= —', P=1.0,
and a =0.14. The width R is given by R =4.404.

FIG. 2. Domain width R as a function of a for y =
3

and for
e=0. 1 and @=1.0. The digits on each curve indicate the value
of D.
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10.0—

8.0—

6.0—

40—

2.0—

is more stable than the excited state. If a =a*, the rest
and the excited states are equally stable. Thus when the
parameter a approaches a * from above the width R, be-
comes infinite. Notice that when D is small enough (for
example, D =0.0001) no solution exists in the region
a )a *, so that a motionless localized stable solution does
not exist.

A simpler case where y=0 is shown in Fig. 3. Since
a *=0 in this case, the R

&
branch exists always for finite

values of D, although the value of R, becomes extremely
small for D ~0.

0.0-
0.0 0.1 0.2 0.3 0.4 0.5 III. PULSE SOLUTION

FIG. 3. Domain width R as a function of a for y=0 and
e= 1. Other parameters are the same as those in Fig. 2.

P= 1 in Fig. 2, and as e=P=1, y =0 in Fig. 3. In Fig. 2
it is found that when D is large enough (for example,
D = l.0), two steady solutions with R =R, and R 2

(R, &
R 2 ) exist for some range of tt. Koga and Kuramo-

to [1] have shown that the R2 branch is always unstable,
while the R, branch is stable. Note that the R, branch is
in the region a &y/[2(p+y)]—:a', where the rest state

I

In this section we shall derive a solitary pulse solution
of the BvP equation which includes, as a special case, a
pulse solution of the FitzHugh-Nagumo equation [13].
We seek a propagating-pulse solution of Eqs. (1.1) with
Eq. (1.2), which travels to the right with a propagating
velocity c. The pulse solution is denoted by
u(x, t)=u, (z) and U(x, t)=v, (z), with z=x ct. He—re
the excited region is confined to 0&z&z„where the
boundaries z =0 and z =z, are defined by the conditions
(3.6}below.

First we solve the differential equation of U„which is

given from Eqs. (1.1) by

d4U, U d v~ dU
e D +e c(rD+ 1) +e(rc ey D) — —c(eye+—1) +(P+y )U,

—Pe(z)e( —z +z, ) =0 .
dz4 dz dz dz

Details to obtain the solution are given in the Appendix. Here we write the final result.

(3.1)

Q)Z Q2Z
A»e + A»e for z) 0

Q&Z Q2Z Q3Z a4z
u, (z)= A2, e + A2ze + Az3e + A24e +

+y
Q3Z Q4Z

A33e +A34e for z& &z,

for 0 &z &z) (3.2a)

Q)Z Q2Z
B))e +B»e for z )0

Q&Z Q2Z Q3Z Q4Z
U (z)= B2te +B22e +B23e +B24e +

+y
Q3Z Q4Z

B33e +B34e for z& & z

for 0&z &z) (3.2b)

c (eye+ 1) P+ y
eD gD

(3.3)

Notice that signs of all the coefficients except for that of
the a term are definite. Especially only the coefficient of
the linear term is negative. Hence we may put, without
loss of generality,

where o.&, a2, o.3, and e4 are the zeros of the polynomial

4+ c(rD+1) 3+ rc ey D- —
P ( )=a+a a + a

eD

a =A»+A»,
Q3ZI 4 Ia = A33e + A34e

(3.5a)

(3.5b)

where Re(a, } stands for the real part of a, .
The coefficients A,-- and B,. - are determined by the

boundary conditions and the matching conditions at the
domain boundaries which are the same as those given in

Sec. II. A; and B,- depend on the velocity c and the

pulse width z& as given in the Appendix. These two un-

known quantities should be determined by the relations

Re(a, ) & Re(a2) & 0 & Re(a3) & Re(a~), (3.4) Equations (3.5) come from the definition of the location
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FIG. 4. Profile of the solitary pulse solution u, (solid line)
and v, (dashed line) for e=r=P=D =1, a =0.1002, and y=0.
The width z& and the velocity c are given by z& =7.052 and
c =2.56.

of domain boundaries

0.0
0.0 10.0

Z1

20.0 30.0

FIG. 6. Relation between the pulse speed c and the width z, .
The digits on each curve indicate the value of D. The dots show
the values of c and z& at a =a, in Fig. 5.

u, (0)=u, (z, )=a . (3.6)

8.0-

6.0—

u 4.0-

Figure 4 is an example for the pulse solution of the
BvP equation given by Eqs. (3.2). Figures 5 and 6 show
the a dependence of c and the relation between c and z„
respectively. These are obtained by solving (3.5) simul-
taneously, for fixed values of D. Here we have put
e=~= 1 and y =0, because this choice of the parameters
is convenient when we compare the pulse solution ob-
tained here and that of FitzHugh-Nagumo equation ob-
tained by Rinzel and Keller [15]. They have expressed
the relation between the parameter a and the propagating
velocity c graphically as in Fig. 5, and have found that
there is a regime for a, where two pulse solutions can ex-
ist. Furthermore, they have shown by a linear stability
analysis that the slower and narrower solution is always
unstable, while the faster and wider solution is stable.

It is remarked here that when both D and a are very

small, we have to take account of another solution. That
is, a traveling wave train turns out to be more stable than
an isolated propagating pulse. This will be discussed in
the next section.

We have confirmed that the profile of the pulse solu-
tion as well as the a-c relation of the BvP equation for
D =0.0001 and 0.1 almost agree with that for obtained
by Rinzel and Keller [15]. It is found from Fig. 5, how-
ever, that depending on the magnitude of the diffusion
constant D, the a-c relation changes drastically. When it
is extremely small, or larger than 6.0, the smaller velocity
c attains a finite value in the limit a —+0. For intermedi-
ate values of D, however, the slower branch terminates at
a finite value of a.

Figure 6 displays the relation between c and the pulse
width z1. The dot on each curve corresponds to that in
Fig. 5. It is noticed that the velocity c above the dot is al-
most linear in z, . When the diffusion constant D is in-
creased with c fixed, the width z1 increases. This is ex-
pected since, when D is large, the pulse width has to be
large otherwise it is eliminated by the inhibitor. Further-
more, we see that the velocity c and the width z& do not
depend substantially on the diffusion constant D, as both
c and z1 become larger. This is again expected since,
when the velocity is large enough, the diffusion does not
play any decisive role in the extension of v.

In order to understand the c-z, relation for small
values of c obtained in Fig. 6, we solve approximately the
following equation:

3 1 cx4z I+ A 12 c4 33'e + i4 34e (3.7)

2.0—

0.0
0.00 0.10 0.20

This is obtained by equating (3.5a) and (3.5b). First we
need to evaluate a, (i =1,2, 3,4). Let us introduce the
scaled quantities

8=Dr, a=as, c=cr, y=yre, (=Pre . (3 8)

Equation P(a) =0 with P(a) given by (3.3) can be writ-
ten as

FIG. 5. Pulse speed c as a function of a. The digits on each
curve indicate the value of D. The dots show the maximum
point a =a, of each curve. =0. (3.9)

Da +c(D+1)a +(c y D)a —c(y+1)—a+—P+y
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FIG. 7. Phhase diagram in the a-D plane for motionless and

pu se solutions. On the left side of the line 1 (2), a motionless
(pulse) solution exists.

FIG. 8. Th e values of a and D for motionless domains shown
in ig.

a2=a3=0, a;+ca; —1=0 (i =1,4) . (3.10)

We may expand a in powers of 1/D. However, the ex-
pansion should be in terms of D ' for a d . Afor a2 an a3. ter
some elementary calculations we obtain

Hereafter we omit the caret in this section. For simplici-

3.9
ty, we consider the case P=l and y=0 W 1 E .
( . ) for a large D expansion. In this limit the solutions
are found to be 1real. The lowest-order solution is given
by

ing combinations up to order 1/D:

a&+ a&= —c —c /D,

a,a4= —1+(1+c )/D .

(3.12a)

(3.12b)

Each term in Eq. (3.7) contains a factor 1 —exp( —a;z& ).
The above result implies that we may replace it by 1 for
i =I and 4 provided that z, becomes large as D is in-

creased. This is indeed the case for small values of c as
shown in Fig. 6. Substituting (3.11) and (3.12) into (3.7)
and using the above fact, we obtain in the limit c~0

a&= —a3=D ' +(1+c )D +O(D ) (3.11)
1 31+—+O(D ) =1—exp( z, D '

) —(3 13)

The 1/D term is absent because of P= l. On the other
hand, it is convenient to express a, and a4 in the follow- Equation (3.13) has a solution if 1&D &9. This corre-

(a)
~ '~

(e}
~ ~

'~

V

P ~

~ ~

I

V

(b)
J a

~ '~

~ a
~ ~

V V

~ ~
~ ~)

V

/ ~
~ ~

~ ~
lt

V

- (c)
I ~
~ ~
~ ~

(g)

FIG. 9. Profiles of the mo tionless localized domains for various values of a and D. Th
in Fig. 1.

o a an . e meanings of the lines are the same as those
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TABLE I. The values of the domain width for the motionless domains in Fig. 9.

D =10.0
D =5.0
D =1.0
D =0.1

a =0.036

(a) R =4.291
(b) R =3.135
(c) R =1.608
(d) R =0.5280

a =0.065

(e) R =3.395
(f) R =2.497
(g) R =1.226

a =0.1

(h) R =2.722
(i) R =1.991
(j) R =0.8442

a =0.15

(k) R =2.043
(1) R =1.435

sponds to the curves for intermediate values of D, such as
D =1.0 and 5.0 in Fig. 6. For instance, we obtain z&=5
for D=5 in the limit c~0. Although this value is
smaller than the numerical result by a factor of —,', Eq.
(3.13) obtained by the large D expansion is in accord
qualitatively with the behavior in Fig. 6.

IV. PROFILES OF MOTIONLESS
LOCALIZED AND PULSE SOLUTIONS

In the previous sections we have evaluated motionless
localized and pulse solutions of Eqs. (1.1). The velocity
of pulse solutions is multivalued as a function of the pa-
rameter a as in Fig. 5. Following the result of Rinzel and
Keller [15], however, we should regard these slower
pulses as unstable solutions.

In this section we shall study profiles of pulse and
motionless solutions in the stable branches by changing
the diffusion constant D and the parameter a. First we
determine the parameter regions where these two solu-
tions exist. The stability diagram is shown in Fig. 7. The
region left of the line 1 is the one for stable motionless lo-
calized domains. The boundary line 1 is obtained from
Fig. 3 by taking the maximum value a, for each value of
D. The area left of the line 2 is the region for stable pulse
solutions. The line 2 is determined from Fig. 5. In the
FitzHugh-Nagumo limit D ~0, a pulse solution can exist
up to the critical value a„N. Notice that these two lines
(1 and 2) cross each other at a,m„. Therefore the param-
eter space is divided into four subspaces, as is indicated
by I, II, III, and IV in Fig. 7.

In region I, any stable nonuniform solution does not
exist. In region II, the system has only a motionless solu-
tion. As the parameter a is decreased below aFN, a stable
pulse solution appears in region III. It is important to
note that both motionless and pulse solutions can exist in
region IV. The allowed interval of D for this coexistence
becomes wider by decreasing a.

Now we compare the spatial profiles of the solutions at
various points in the a-D space. Figure 9 shows the
profiles of the motionless localized solutions. The param-
eters for each figure are indicated by the crosses in Fig. 8.
The signs associated with Fig. 9 correspond to those in
Fig. 8. We have chosen other parameters as e =P= 1 and

y =0. The values D and a and the half-width R of these
profiles are given in Table I.

It is found from Fig. 9 that a motionless domain be-
comes narrower as D decreases or as a increases. Howev-
er, the mechanisms are quite different. When we increase
a, the rest state becomes more stable so that the excited
region shrinks. On the other hand, when we decrease D,
the inhibitor does not spread so that it suppresses the ac-

10.0-

6.0—

4.0—

2.0—

pp-—
(s) ) (~) (x)

0.0 " 0.1 0.2 0.3

FIG. 10. The values of a and D for propagating pulses shown
in Fig. 11.

tivator more efficiently and the width of the profile of u as
well as the height becomes small.

Next let us discuss the pulse solutions for the parame-
ters indicated by the crosses in Fig. 10. Figure 11 shows
their profiles where we have dropped the solutions at (n),
(o), (p), (r), and (s) because of the reason mentioned at the
end of this section. The velocity c and the width z, for
each solution are given in Table II, where we have chosen
the solutions with higher speed. One can see that as a in-
creases, the pulse becomes smaller. This tendency is
similar to that of motionless solutions. Notice that the
pulse width becomes wider when we decrease D for a
fixed value of a. This is opposite to the case of motionless
solutions.

The above property can be understood as follows.
When D is 0.0001 and 0.1, profiles of the pulse are not so
different from each other as can be seen from Figs. 5 and
6. On the other hand, in the case of large D, the inhibitor
diffuses rapidly and affects the front of the pulse so that
the pulse width has to be smaller. When D becomes still
larger, a pulse solution is unable to exist since the inhibi-
tor which spreads by diffusion suppresses completely the
growth of u at the pulse front z =z&.

In this way we can understand the D dependence of the
pulse profile qualitatively. To summarize, if D is very
small, a pulse propagates stably with larger height and
high velocity, whereas if D becomes large, its existence is
unfavorable. As a result we see that diffusion of the inhi-
bitor plays an opposite role for the stability of a motion-
less solution and a solitary pulse solution.

For comparison, we have plotted the motionless and
the pulse solutions for the same parameters in Figs. 9 and
11. Especially, (b), (c), and (d) in Fig. 9 and (m) in Fig. 11
are the solutions for a =0.036. Thus one can see how the
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FIG. 11. Profiles of the solitary pulse solutions for various values of a and D. The meanings of the lines are the same as those in
Fig. 4.

profiles change in the coexistence region depending on
the diffusion constant.

An isolated propagating pulse is expected to be unsta-
ble for the parameters indicated by (n), (o), (p), (r), and (s)
in Fig. 10. Note that a pulse has a tail where the value of
u becomes positive. If the maximum of u at the tail re-
gion is larger than a, the activator is expected to grow, so
that a pulse is unstable. This situation violates the condi-
tion (3.6) for pulse width since it assumes that u exceeds a
only at two points z =0 and z&. What actually happens is
an emergence of traveling wave trains [15]. This is
indeed the case for the parameters (n), (o), (p), (r), and (s).

V. DISCUSSIONS

We have shown that depending on the magnitude D of
the diffusion constant of the inhibitor, there are two lo-
calized solutions in the excitable reaction-diffusion equa-
tion (1.1). One is a propagating pulse which appears for

small values of D. The other is a motionless localized
solution for large values of D. Although each of these
solutions had been studied in detail previously, the cross-
over from one to the other changing the diffusion con-
stant has not been investigated. One of our main con-
clusions in this paper is that these two solutions can coex-
ist in some parameter regime.

It is remarked here that although we have dealt with
only motionless localized and propagating pulse solu-
tions, the behavior of the system in the crossover region
is actually more complicated. Not only an isolated pulse
but also bound states of propagating pulses are expected
to exist. We have some evidence for this by computer
simulations of (1.1) [16].

In part II of this series of papers, we have shown that
in-phase and antiphase breathing motions can exist in
periodic excited domains described by (1.1). This togeth-
er with the present results about the coexistence of
different types of dynamical solutions leads us to a notion

TABLE II. The values of the pulse width and the speed for the pulse solutions in Fig. 11.

a =0.036 a =0.065 a =0. 1 a =0.15

D =5.0

D =1.0

D =0. 1

D =0.0001

(m) a =0.03600
zi = 13.89
c =3.87

(q) a =0.06490
zi = 10.50
c =3.42

(t) a =0.100 19
z, =6.563
c =2.37

(u) a =0.10019
z, =7.052
c =2.56

(v) a =0.10015
z 1

=7.082
c =2.57

(w) a =0.15013
z, =3.785
c =1.68

(x) a =0.149 76
z, =3.918
c =1.72
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of dynamical bistability [17]. In thermodynamic equilib-
rium where a system is variational, bistability is a basic
concept to understand phase transitions and phase equili-
bria. In a nonvariational system far from equilibrium, on
the other hand, various types of active order or pattern
can emerge as a stationary state, which may coexist. A
transition from one active state to another would also be
possible by, e.g., external disturbance or noise. Although
this type of dynamical bistability seems not to have been
observed experimentally so far, it is our belief that inter-
play between different active states has an important irn-

plication for self-organization in biological systems.
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their first derivatives are continuous at the interface, i.e.,

u, (+0)=u, ( —0), u, (z&+0)=u, (z&
—0),

v, (+0)=v, ( —0), v, (z&+0)=v, (z, —0),
(A4a)

(A4b)

du, du, du, du,

dz +o dz 0 dz z, +o dz z —0
(A4c)

dv, dv, dv, dU,

dz +o dz 0' dz z, +0 dz z, —0
(A4d)

Rinzel and Keller [15] utilized the jump condition for
second derivatives of u when they solved the FitzHugh-
Nagumo equation. It is readily found that the matching
condition of first derivative of the inhibitor U is equivalent
to it.

After straightforward but very tedious calculation, we
obtain the pulse solution of the BvP equation as (3.2)
where the coefficients are given by

APPENDIX

We derive the pulse solution of the BvP equation, i.e.,
u, and v„ in the moving coordinate z =x —ct. Equation
(1.1) with Eq. (1.2) can be written in terms of u, and v, as

h(a, )

a,P'(a, )

h(a2)
a2P'(az)

(A5a)

(A5b)

dQ d Q—ceT =e u +8(u )—v
C C C

dU d U—c =ED +Pu, —yv, .
dz dz2

(Ala)

(A1b)

A 21

A 22

h (a, )

a, (P'(a, )

h (az)
a~P'(a2)

(A5c)

(A5d)

Eliminating u„we obtain the following differential equa-
tion of v, :

d Vc Vc d vc
E D +e c(~D+1) +e(rc —ey D) 2—

dz4 dz3 dz2

dU
=c(ty1 + 1) +(P+y)v, —P8(z)8( —z +z& )=0 .

(A2)

Here we have assumed that the excited region is confined
to the interval 0(z (z, . Equation (A2) is linear in v, so
that u, and v, are expressed as a linear combination of
the exponentials exp(a;z), respectively, for both the ex-
cited and the rest domains. Here a; (i =1,2, 3,4) are
roots of the equation P(a)=0 given by Eq. (3.3). Equa-
tion (3.3) with c =0 reduces to the characteristic equation
(2.2) for a motionless localized solution.

The coefficients of the exponentials in Eq. (3.2) are
determined by the boundary conditions at z =+ ao, i.e.,

h(a3)
A23 =—

a3P'(a3)

h (a4)
A24=-

a4P'(a4)

h (a3)
a3P'(a3)

h (a4)
a4P'(a4)

A ~ ~ th(a )

with

i =1,2, 3, j=1,2, 3,4, h (a)=EDa +ca y, —
dP( )

de

(A5e)

(A5f)

(A5g)

(A5h)

u, (+ oo ) =v, (+ oo )=0 (A3)

and the matching conditions such that u, and U, and

We have verified that Eq. (3.2) with these coefficients
agrees with that obtained by Rinzel and Keller [15] in the
limit D =y=0.

[1]S. Koga and Y. Kuramoto, Prog. Theor. Phys. 63, 106
(1980).

[2] T. Ohta, R. Kobayashi, and M. Mimura, Physica D 34,
115 (1989).

[3]O. Thual and S. Fauve, J. Phys. 49, 1829 (1988).
[4] A. Joets and R. Ribotta, Phys. Rev. Lett. 60, 2164 (1988).
[5] K. Toko, M. Nosaka, T. Fujiyoshi, K. Yamafuji, and K.

Ogata, Bull. Math. Biol. 50, 225 (1988).



8382 AYA ITO AND TAKAO OHTA 45

[6] H. G. Purwins, Ch. Radehaus, T. Dirksmeyer, R. Doh-
men, R. Schmeling, and H. Willebrand, Phys. Lett. A 136,
480 (1989) and the earlier references cited therein.

[7] Q. Quyang and H. L. Swinney, Nature (London) 352, 610
(1991).

[8] U. Rau, K. M. Mayer, J. Parisi, J. Peinke, W. Clauss, and
R. P. Huebener, Solid-State Electron. 32, 136S (1989).

[9] T. Ohta, A. Ito and A. Tetsuka, Phys. Rev. A 42, 3225
(1990).

[10]T. Ohta and H. Nakazawa, Phys. Rev. A 45, 5504 (1992).
[11]H. P. McKean, Adv. Math. 4, 209 {1979).

[12]P. C. Fife, SIAM (Soc. Ind. Appl. Math. )-AMS {Am.
Math. Soc.) Proc. 10, 23 (1976).

[13]R. FitzHugh, Biophys. J. 1, 445 {1961);J. Nagumo, S. Ari-
moto, and S. Yoshizawa, Proc. IRE SO, 2061 (1962).

[14] M. Mimura (unpublished).
[15]J. Rinzel and J. B. Keller, Biophys. J 13, 1313 (1973).
[16]R. Kobayashi, A. Ito, and T. Ohta (unpublished).
[17]The concept of dynamical bistability has been introduced

in a slightly different context by Mikhailov et al. See Ch.
Zulicke, A. S. Mikhailov, and L. Schimansky-Geier, Phy-
sica A 163, SS9 (1990).


