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We propose a statistical model of rupture as a mechanism for the occasionally observed marked in-

crease of seismic activity prior to a great earthquake. The physical ingredients of the model are those of
geometrical inhomogeneity and viscoelastic creep. We demonstrate that the observed inverse power law

for the rate of increase of seismicity before a large earthquake requires no assumptions beyond those of a
random featureless distribution of inhomogeneities and a typical power law of creep with exponent m.
On the average, the rate of energy release in earthquakes dE/dt before a large earthquake that will

occur at time t„increases with time as (t„t)e, with —p decreasing from (t+1) for m =0 to 1 as m in-

creases to infinity; in two dimensions t=1.3 is the percolation-conductance exponent. For large m,
which is appropriate for ductile-brittle-fracture laboratory measurements, the value of this exponent is in

agreement with observations of the number rate of occurrence of earthquake foreshocks. The exponent

P is independent of the amount of initial disorder within a broad interval. The power law is a conse-
quence of the many-body interactions between small cracks formed before an impending large rupture.
As a consequence of variations in the initial configuration of inhomogeneities, there are large fluctua-

tions in the rate of energy release dE/dt from system to system, a result also consistent with observa-
tions of foreshocks in nature.

PACS number(s): 64.60.Ht, 05.40.+j, 62.20.Mk, 91.30.Px

I. INTRODUCTION

Some, but not all, great shallow earthquakes are pre-
ceded by foreshock activity whose rate increases as the
time of the great event approaches. In some sense, the
behavior of foreshocks is thus the inverse of the more
commonplace observation that most great earthquakes
will trigger aftershocks whose rate decays with time after
the great event.

Aftershocks are a universal and abundant consequence
of large earthquakes and are observed to occur frequently
after intermediate-magnitude events. Their rate of oc-
currence decays according to the empirical Omori [1] law
as

n(t) = A (M)(t t„)—
with an exponent that ranges from 0.9 to 1.8 with a mean
around 1.2 [2]; Otnori's own value for the exponent was
1.0. The quantity t, is the time of occurrence of the
triggering earthquake. The prefactor A (M) decreases
monotonically with magnitude M. In general, the larger
aftershocks occur earlier in the series, the rate of energy
release varying as

E=(t t„)t', —

with an exponent about 2.0 [2].
Foreshocks are significantly less numerous antecedents

n=(t„t)— (3)

with an exponent also near 1. Efforts to fit foreshock en-
ergy rates in analogy with (2) have not been fruitful be-
cause of the erratic character of the series. Laboratory
experiments, however, show not only that the rate in-
creases, but also that the energies increase as the time of
the large earthquake approaches [6].

With regard to mechanism, the persistence of af-
tershock series for times of the order of many months

of large earthquakes. In those cases in which they have
been observed, foreshocks occur in increasing numbers
and with increasing energies as the time of the main
shock approaches. A recent example is the increase in
seismicity prior to the Lorna Prieta (M =7. 1) earthquake
of November 19, 1989 [3]; in this case the increase in
seismicity took place over a time interval of the order of
several years; it is more usual to associate foreshock ac-
tivity with shorter time scales, of the order of days, be-
fore a great earthquake. Because of its erratic character,
the statistics of an individual foreshock series is difficult
to determine. Kagan and Knopoff [4] and Jones and
Molnar [5] have superimposed many foreshock series by
assigning them a homologous time referred to that of the
subsequent great earthquakes. In this case, the rate of
occurrence of foreshocks is found to follow an inverse
Omori law
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calls for a stress-redistribution process with a time scale
intermediate between the very rapid rates of rupture for
faults and propagation of elastic waves, corresponding to
the observed duration of rapidly running earthquakes,
and the tectonic time scale of repetition of the largest
earthquakes in a given region. The latter is a time of the
order of one hundred to several hundred years in seismi-
cally active areas.

Benioff [7] recognized early that some form of general-
ized viscosity or creep was required to account for the ex-
tended time delays between the triggering and the trig-
gered events, without specifying the precise nature of the
viscous mechanism. Recently Yamashita and Knopoff
[8] and Reuschle [9] proposed that the time delays for
aftershocks are due to the agency of stress-corrosion pro-
cesses that serve to degrade the strengths of barriers be-
tween the master crack developed by the strong earth-
quake and smaller cracks in the neighborhood; the large
stress field at the edge of the master crack promotes
fusion of nearby satellite cracks with the parent in a
scenario of ever accelerating degradation of the barriers
between them.

In the crack-fusion model, Yamashita and Knopoff
[10] (hereafter called YK) assumed that the stress corro-
sion process proposed for aftershocks could be extended
to foreshocks as well, the principal differences being that
fusions among cracks were allowed to take place under
the agency of stress corrosion as before, but without the
overwhelming influence of the stress field due to the mas-
ter fracture of the triggering earthquake. In their model,
a set of two-dimensional (2D) coplanar cracks is imbed-
ded in a 3D elastic medium; the crack sizes are taken
from a power-law distribution, as are the spacings be-
tween the cracks. The system is subjected to a plane-
strain shear stress cr at infinity. The coordinate x of the
tip of each crack is allowed to grow under the generalized
creep law

(4)

where E is the stress intensity factor at the tip and m is a
large exponent, experimentally determined to be of the
order of 10 to 170 [11]. The stress intensity factor at the
ith crack tip is

K, =(7L f(g )

where L; is the length of the ith crack and f (g; )is a di-.
mensionless interaction function of the geometry, i.e., of
the lengths and positions of all the cracks in the system
relative to the ith crack tip. As the crack tips extend ac-
cording to (4), the gaps between them become smaller
and the stress intensity factor increases. Because of the
large value of the exponent m, the rate of growth of the
cracks accelerates; when the stress intensity factor
reaches a critical preassigned value for the particular gap,
a transition from quasistatic growth to an unstable radia-
tive phase takes place, and fusion with the neighbor re-
sults. The critical stress intensity factors are randomly
selected from a square distribution. This model leads to a
simulation of the inverse Omori law for foreshocks with a
significant rate of increase of fusion events prior to the

last event in which all cracks have fused into one master
crack. The exponent a-1 from numerical simulations.
Other models for foreshocks have appeared in the litera-
ture (see YK for references), but none has the quantita-
tive appeal that the crack fusion model has. This model
forms the basis for our further discussion.

Model YK has two basic ingredients: (i) a set of preex-
isting cracks with a given spatial and length distribution
and (ii) a creep rheology to provide for time delay and
memory effects before ultimate rupture. In this paper,
our goal is to demonstrate that the inverse Omori law for
foreshocks can emerge naturally from the temporal struc-
ture of crack interaction without having to specify the
geometry, the spatial distribution, or the crack size distri-
butions. In some sense, a prespecification of a power-law
distribution of crack sizes might seem to predispose the
result to a power law of foreshock rates, although the
precise route is not clear. In this paper, we show that the
hyperbolic inverse Omori law is the result of a dynamical
evolution of crack growth starting from an initial feature-
less distribution of inhomogeneities.

In recent years, a vast class of models has been studied
with a view toward understanding those features of
universality that arise in problems of rupture in random
media. In this endeavor, we attempt to recognize a self-

organizing principle that has been widely observed in
other nonlinear many-body systems with complex in-

teractions. We assume that a complex inhomogeneous
system can be decomposed into many simple interactive
elements with describable individual responses. The
complexity of the global system results from the coopera-
tive behavior of all the elements; the cooperative interac-
tions lead, not to complete randomness on the global
scale, but to large-scale features such as fractal structures
and, in this case, power-law time dependence. Using this
strategy, a partial classification of some of the possible re-
gimes of rupture has emerged [12,13]. Such an approach
is attractive in order to be able to attack the important
difhculties underlying this field that arise from the pres-
ence of many interacting defects, from the long-range na-
ture of the elastic Green's functions and from the irrever-
sible evolution of ruptures, for example. In practice, the
execution of this program has taken place on quasistatic
lattice models. The evolutionary sequence is obtained by
solving the elasticity equations; the first bond that
satisfies the rupture criterion is singled out and broken.
The process is iterated until a macroscopic fracture ap-
pears. In the quasistatic models, dynamics, which yields
a time scale, is absent. The process is in the spirit of
growth models such as diffusion-limited aggregation
which describe the quasistatic, irreversible evolution of
complex interfaces [14].

In our model, which is a modification of the thermal
fuse model of Sornette and Vanneste [15],we extend pre-
vious studies on the statistical physics of rupture by in-

corporating time dynamics with a scale imposed by the
addition of creep processes into the rheology.

II. THE STATISTICAL MODEL

For simplicity, we restrict our study to antiplane defor-
mations of a 2D square lattice, which have the virtue of
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having scalar behavior. In this case, the strain field has a
scalar potential and the problem is fully equivalent to
probleins in electrostatics [16,17,15]. We consider a lat-
tice of unit mesh oriented at 45' with respect to the edges;
the edges are a distance L/2' apart; periodic boundary
conditions apply at the edge of the lattice. Each element
is characterized by an elastic constant g which is a ran-
dom variable with a probability distribution Ps(g),
chosen in these computations to be uniform in the inter-
val [1—hg/2, 1+ kg/2] with hg varying from 0.1 to 1.6.
When a macroscopic antiplane stress S is applied to the
network, the antiplane strain field becomes inhomogene-
ous as a consequence of the inhomogeneity of the elastic
constants of the elementary bonds; therefore the small-
scale stress field also becomes inhomogeneous.

In the present model we assume that the total strain e
can be written as the sum of elastic e(,)

and plastic 6(p)
components. The elastic displacement m(, )

in the direc-
tion normal to the lattice plane is given by the solution to

V.[g(x,y)Vw~, ~(x,y)] =0

together with Hooke's law

(6)

de(~)/dt = rs

which is close to the model (4). Here the rate of creep de-
formation de~&~/dt accelerates with applied stress. The
coefficient r is a function of temperature through the
Boltzmann factor exp[ Q/RT], wh—ere Q is the activa-
tion energy for ductile flow. From (7) and (8), we see that
the two components of the deformation are coupled.

If the exponent m = 1, (8}yields the Newtonian law for
liquids; patently, the viscosity of the Quid in this case is
thermally activated [18]. In the ductile regime of the
earth, the exponent m is about 3 or 4, as a consequence of
high-temperature creep in the earth's interior. At the
lower temperatures in the seismogenic zone closer to the
earth's surface, subcritical crack growth is.once again
governed by (8},but this time with much larger exponents
that range from 10 to 170 as remarked above, and corre-
spond to the brittle regime of deformation regulated by
accelerated but unstable crack growth. The nonlinear
character of (8) favors the growth of localized strain de-
formations. In our model, we neglect the temperature
dependence of the coefficients m and r and assume that
they are fixed and uniform for all elements of the lattice.

A bond element breaks down irreversibly when its total
strain e is sufficiently large. In our model, we assume
that rupture occurs when the plastic deformation reaches
a given threshold e(,), which is a constant for all elements.
Beyond the plane of already formed cracks, which are re-
gions of large elastic deformation, plastic deformation is

s =gE'(e) .

Then e~,~„=Bw~,~/Bx and e~, ~
=Bw~, ~/By for lattice ele-

ments that point in the x or y directions. The elastic
shear constant is g =r '. To obtain the plastic or ductile
deformation e( ), we assume that an element of the lattice
under a stress s will undergo accelerated creep deforma-
tion e(p) which obeys

indeed preferentially localized in the vicinity of crack
tips. The extension and deformation of the plastic region,
which regulates the growth of the crack, is controlled by
the value of the elastic stress according to (8). After the
breakdown of a bond, we assume that the stress distribu-
tion in the remaining intact elements adjusts itself instan-
taneously, i.e., the spatiotemporal evolution is solely con-
trolled by the creep deformation; questions of dynamic
overshoot are not considered in this approximation.

This model differs from that of YK as follows: here we
assume homogeneity of critical strains and inhomogenei-
ty of elastic constants, whereas in YK they are reversed.
We do not expect that this feature will change the results
[12]. In this paper we solve a problem of antiplane strain
while in YK the problem is one of plane strain. In this
paper we solve for the evolution of fractures in a 2D fault
plane, whereas in YK a 1D problem was solved. Most
important, there is no assumption of an initial distribu-
tion of broken elements or cracks in our case.

In models such as those of Yamashita and Knopoff
[8,10], Reuschle [9] and that of this paper, cracks once
formed are not permitted to heal. This is in contrast to
the opposite extreme of stick-slip lattice models of
Burridge-Knopoff [19] type (see also Carlson and Langer
[20], Bak and Tang [21], and others). The absence of
healing is appropriate to the description of intermediate-
time clustering phenomena that takes place on a time
scale that is short compared with the recurrence times of
the largest events, and is useful for the description of aft-
ershocks and a variety of precursory clustering phenome-
na including foreshocks. On the other hand, healing in
the stick-slip lattice models is taken to be instantaneous
after completion of a rupture event, and these latter mod-
els are therefore more appropriate to the long-time scale
evolution of seismicity since the recovery of strength is a
prerequisite for the restoring of deformational energy on
the scale of energies and times of the largest earthquakes.

The computation of the evolution of the sequence of
ruptures is carried out as follows. At time t =0, a uni-
form macroscopic stress S is suddenly applied at two
edges of the lattice. The stress per bond is S/L in the ab-
sence of disordered elastic constants. The elastic stress
and strain fields have infinitely short response and are
given by (6) and (7). We have used a conjugate gradient
technique to solve the equation of elasticity (6), using an
error criterion e ~ 10 . Once the stress in each bond is
known, it is substituted in Eq. (8), which gives the time
evolution of the creep of the nth element e~„~(t).The first
rupture occurs at t = t

&
on that bond which first reaches

the plastic deformation threshold e(„,chosen to be equal
to unity for all bonds. After the first fracture, the elastic
constant on the fractured element is set equal to zero, and
the stresses s(„)in all rexnaining bonds are calculated
again from the equations of elasticity. This new set of
stresses [s~„~(t,)] is again substituted into the creep equa-
tion (8) with a new set of deformations [ e~„~(t,) ]. Iterat-
ing the procedure after each rupture, noting the time t, at
which the ith rupture event occurs, and resetting the
values of [s~„~(t;)]and [e~„~(t,. )], which are the corre-
sponding sets of bond stresses and plastic deformations
on all remaining bonds, we obtain the following general
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time-dependent plastic deformation expression for the
nth bond.

for t, ~t ~t;+, if e(„)(t)~1. (9)

III. TIME RATE OF FORESHOCK ENERGIES

The present model contains two well-studied statistical
models of rupture as natural limits, namely the quasistat-
ic random fuse model [22] for m ~+ ao and the bond
percolation model [23] for m ~0.

There is a well-defined ordering 0 & t
& t2 . - ~ t,

~t, +&& . &t„ofthe times at which the successive
ruptures take place, ending with the time of the last rup-
ture t, at which there is a complete disconnection of the
network into at least two pieces.

The simplicity of the model stems from the separation
of the time evolution of the elastic and plastic deforma-
tion fields: the elastic deformation distribution changes
instantaneously when the plastic rupture of a new bond
occurs and the creep deformation field changes continu-
ously under the fixed elastic stress distribution until the
new rupture occurs. This feature simplifies the analysis
and the numerical computations. The simplicity of this
formulation captures the essential physics of the rupture
processes that occur before large impending earthquakes,
namely the importance of initial quenched disorder and
creep deformations.

formations which occurred when the bond was more than
one lattice interval from the crack tip. This assumption
becomes all the more valid in the terminal stage of rup-
ture when the macroscopic crack becomes so large that
the rupture process accelerates drastically. In this limit
an element far from the tip is subject to relatively small
stress and the plastic deformation does not have the time
to increase markedly. Thus the approximate time t'
needed to break the element at the tip of a macroscopic
crack of length b is proportional to b . During this
time, the crack grows by one lattice-mesh interval.
Therefore we can write

db
dt

1
b m/2 (10)

Upon integration for m & 2, we find
b (t)=(t„t)—' ' with r„=[2/(m —2)]b
where b;„is the initial size of the crack. In an infinite
system, the elastic energy reduction due to crack forma-
tion is proportional to b, and the rate of energy release is
its time derivative. Thus, finally, dE/dt —(t„t)~, w—ith
P=(m+2)/(m —2). In the limit m~+ oo, where this
computation is valid, the exponent is exactly P= l. We
do not expect this estimate to remain valid for finite
values of m due to the fact that the rupture process be-
comes more complex and our "tip" approximation may
be unwarranted. We find below that the value of P for
finite values of m is significantly smaller than given by
( m +2 ) /( m —2). If a is independent of magnitude,

A. The quasistatic random-fuse limit (m ~+ 00 )

When m is very large, the creep deformation rate rs
of the bond with the largest stress is much larger than
those of all other bonds. In this limit, only the bond with
the largest stress is significantly deformed compared to
the others, and reaches the plastic rupture threshold e~„~
first. Since this is true at all times, the limit m ~+ ~ al-
ways involves a breakdown of the bond with the largest
stress. Thus we recover the quasistatic random-fuse mod-
el [22] in this limit.

In the limit of large exponent m, we can derive an esti-
mate of the inverse Omori exponent as follows. In this
case in 2D, the rupture proceeds by formation of essen-
tially linear cracks of fractal dimension very close to 1

[24]. Consider the growth of a linear macroscopic crack
obeying the creep growth law (8) and the corresponding
plastic rupture criterion. Except for transients connected
with the initial stages of the growth of the crack, one can
ignore the inhuence of the initial disorder on the later
stages of the evolution of a very large macroscopic crack,
since the rupture dynamics will be controlled by the
stress enhancement at its tips. According to Eq. (8), the
time needed to break an element subjected to a stress s is
of the order of t =r 's ™.When the macroscopic crack
length is b, the stress applied to the element at the tip is
proportional to b' due to stress enhancement. We can
reasonably assume that the time to break the element at
the crack tip is essentially controlled by the large local
stress and is only secondarily sensitive to the plastic de-

B. The bond-percolation limit (m =0)

In the limit m ~0, the plastic deformation rates are in-

dependent of the stress field; the plastic deformation field
only depends on the distribution of the elastic constants.
Since the elastic constants are independent random vari-
ables, the plastic deformation of each bond develops in-
dependently. Therefore the successive bond breakdowns
are independent random events, solely controlled by the
distribution and spatial position of the elastic elements.
When a continuous path of ruptured elements appears,
the rupture process stops since the elastic modules of the
global network becomes zero. At this point, the distribu-
tion and position of ruptured bonds is exactly given by
the bond percolation model at its critical point p =p, .
The rupture dynamics is spontaneously attracted to the
critical state of the bond percolation model [23]. The
corresponding fraction q = 1 —p of broken bonds at time t
is the fraction of bonds that have reached the rupture
threshold e(„)=1, namely q =fP,(e, t)de, where P, (e, t)
is the distribution of the plastic deformations at time t in
the network. P, (e, t) is obtained by performing the
change of variable g ~a(g, t), where e(g, t) is given by Eq.
(6) with g =r ', in the distribution of elastic constants
P„(r),namely P,(e, t)=t 'P„(e/t). Global rupture is
reached when q attains the bond percolation threshold

q, = 1 —p, ( =—,
' for a square lattice in 2D).

In this case, the inverse Omori law can be derived
analytically as follows. For rn =0, Eq. (9) simplifies into
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e~„]=r„t.The time needed for the nth element to reach
the rupture threshold e~„]=1is exactly r„'.The number
of rupture events n (t)dt during the infinitesimal time in-
terval dt is thus simply n (t) =P„(r)~dr/dt~ with t =r
Thus n(t)=t P„(t '). The fraction p(t) of unbroken
bonds at time t is simply p(t)=1 —f n(t)dt T.he global
elastic constant 6 of the network is proportional to the
global conductance of an equivalent network of resis-
tances. From percolation theory, 6 goes to zero as p goes
to p, according to the power law G = (p —p, )' with a crit-
ical exponent t =1.300 in 2D and 2.0 in 3D. The elastic
energy dE/dt released per unit time during the rupture

process is given by the time derivative of the elastic ener-

gy stored within the elastic network. Since the system is
subject to a constant stress, the global elastic energy is
simply proportional to the inverse 6 ' of the global elas-
tic constant. Therefore the rate of release of elastic ener-

gy dE/dt scales as [p(t) p, ]
—' ' with

p (t)= 1 —f t P„(t ')dt. For concreteness, consider the

case of a uniform distribution of elastic constants
P (g) = 1/hg in the interval [1 bg /2—, 1+bg /2]. Then
P„(r)=r /bg and n(t)=t P„(t ')=b,g is a constant.
Thus p(t)=1 tbg — and dE/dt-d(G ')/dt-(t„t)'—' with t„=l/2'. We thus obtain a power
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FIG. 1. Crack patterns at three times of the rupture history of the same system for m =2, hg =0.2, on a square lattice of size
180' 180 tilted at 45 to the applied stress. (a) Fracture pattern at t/t„=0.9912; 50% of the elements needed for global fracture have
ruptured. One observes mainly isolated, independent breakdown events plus the existence of a few relatively large clusters of broken
elements. The former contribute to the increasing damage of the system and the latter tend to dominate the further revolution of the
process. The damage occurs late in the process: the first element breaks down at t/t„=0.886, the second at t/t, =0.895. (b) Frac-
ture pattern at t/t„=0.9982; 80% of the elements have ruptured. Many large cracks are competing. It is difficult to predict the path
of the ultimate global rupture. (c) System at global failure; t/t, = 1. A small change in the initial disorder may change the final rup-
ture pattern drastically.
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law of the form of the inverse Omori law with an ex-
ponent P=t+1=2.3 in 2D. We have verified that the
scaling law with the exponent P=t+1 will hold for a
very broad class of distributions of elastic constants.
Note that the limit m =0 shows that n(t) can be con-
stant, i.e., dn /dt is zero, whereas dE/dt need not be zero.
We remind the reader that it is the distribution of
dn (t)Idt that is usually observed, while that for dEIdt is
not.

C. The general case (0 & m (+ 00 )

The exponent P for the rate of energy increase in
foreshocks depends on the value of the creep exponent m,
and should decrease from Pa=2. 3 in the percolation limit
m =0 to P„=lin the quasistatic "random fuse" limit
m~+00. We present results from computer simula-
tions on more general cases 0~ m & 00 that show that P
does indeed decrease continuously as m increases. For
m =2 for instance, we find P= 1.3. For each value of m
(0.1,0.5,1.2,4,8) typically 25 different configurations have
been computed for each value of the disorder parameter
hg in networks of size 80 X 80, a procedure similar to that
used in YK.

Figure 1 exhibits a typical example for the time evolu-
tion of the rupture process in a random 180X180 net-
work with a uniform distribution of bond elastic con-
stants, with Ag =0.2 and m =2. Rupture occurs in two
main steps. At the beginning of the process, the progres-
sive deterioration of bonds is similar to a random bond
dilution in which the initial quenched disorder of the ele-
mentary elastic constants dominates the dynamics. At
large regimes, the dilution process is followed by a regime
characterized by correlated cluster growth and fusion
events between extended cracks. In this regime, stress
enhancement and screening effects become important.
The relative importance of these two steps depends upon
the disorder Ag and on the creep exponent. Increasing
the disorder and decreasing m favors the uncorrelated
random dilution regime. For a given configuration of dis-
order of elastic constants, it can be proved [25] that the
ordered sequence of bond rupture and therefore the final
crack pattern at the end of rupture remain invariant as
the global applied stress is changed. The dynamical se-
quence, such as the time ordering of the breakdown of
different elements is invariant. Only a global rescaling of
the time scale by the factor S™takes place. In other
words, the time needed to observe a macroscopic rupture
scales with the externally applied stress S as S™.

Sornette and Vanneste [15] have studied in some detail
the self-similar structure of the cracks that are formed
spontaneously during the dynamical rupture process.
For systems of size 80X 80, the "capacity" fractal dimen-
sion has been estimated to be D =1.11+0.02 for m =2
and does not seem to depend on this disorder Ag. Prelim-
inary calculations for m (2 indicate an increase of the
fractal dimension with decreasing m as follows:
D =1.3+0. 1 for m =1 and D =1.5+0. 1 for m =0.5 at
m =0, we recover the value of the percolation model
D =2—gIv=129I144=1.9. For m )2, the fractal di-
rnension decreases down to D =1 for m =8. This result
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FIG. 2. Time dependence of G ', which is the cumulative

energy release rate as a function of (t„—t)/t„, where t, is the
time of macroscopic rupture of the network (log-log plot). Each
curve corresponds to a di6'erent value of the range of disorder

Ag, with the lowest for bg =0. 1 and the uppermost for
Ag =1.6. Each curve is the ensemble average over (usually) 25
realizations with same Ag. The average slope of the curves in

their linear portion is (a —1)-0.3.

is to be compared with the value of the quasistatic ran-
dom fuse model of D = 1.1+0.1 [24], which according to
Sec. III A is equivalent to the limit m ~+ ~.

We turn to the time dependence of the rupture process,
since this is relevant to the determination of the inverse
Omori law. For each system, we have calculated the time
dependence of the global elastic constant G (t) of the net-
work. Since the system is subjected to a constant stress
S, the global elastic energy is simply proportional to the
inverse G ' for the global elastic constant. The rate of
energy release is thus simply proportional to dG '/dt.
In Fig. 2 we display the time dependence of G ' on a
log-log scale, i.e., the cumulative value of the energy
release rate for the case m =2, as a function of (t„—t)It„
where t, is the time of occurrence of a macroscopic rup-
ture in the network. Each curve corresponds to a
different value of the disorder hg, with the lowest corre-
sponding to the smallest disorder we have used Ag =0.1,
and the upper to the largest disorder Ag =1.6 Each
curve has been obtained by averaging over typically 25
different network configurations ("ensemble" average)
with the same average disorder Ag. We observe that G
indeed follows a power law as a function of (t„t)lt„—
with an exponent (P—1)=0.3 for m =2. The value of P
does not seem to depend on the strength of the disorder
Ag since all curves are approximately parallel. However,
P is sensitive to the value of the creep exponent m: for
m =0. 1, we find P=2.2, which can be compared with the
theoretical prediction P=2. 3 for the percolation limitI =0; for m = 1, P= 1.7; for m =4, P= l. 15; for m = 8,
P=1.05, which again can be compared with the predic-
tion P= 1 for the linear crack growth limit m ~ co.

Figure 3 presents the evolution of G ' as a function of(t„t)It„for 3—0 different realizations with the same aver-

age disorder Ag =0.2. The curve with index Ag =0.2 in
Fig. 2 has been obtained by averaging the 30 curves
shown in Fig. 3. Figure 3 underlines the importance of
fluctuations from system to system. It is clear that the in-
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the great rupture event; the exponent does not depend on
these features.

IV. CONCLUSIONS

-5.0

10 10 10 10 10
1.0

FIG. 3. Evolution of 6 ' as a function of (t„—t)/t„ for 30
different network configurations with the same average disorder
kg =0.8. Each curve corresponds to an individual realization
for which no averaging has been carried out.

verse Omori law holds with good precision only by
averaging over many realizations; for a specific realiza-
tion, there may be very large deviations from the average
behavior. Thus, if an inverse Omori law is valid in gen-
eral, large deviations from the mathematical expression
can be expected to be the rule rather than the exception,
due to the role of initial inhomogeneities which are
amplified by the rupture dynamics. The size of the
system-to-system fluctuations should decrease as the lat-
tice size increases, as is well known in the two limits
m =0 and m ~ 00. Therefore the quality of the observa-
tion of the foreshock rate law depends on the amount of
initial disorder, its specific configuration and the size of

Assuming random featureless inhomogeneities of the
elastic properties and a power law of creep with exponent
m, we have demonstrated the existence of a rate law for
the increase of seismic activity before an impending
great-rupture even at time t„.The exponent P is indepen-
dent of the amount of initial disorder within a broad in-
terval but varies with the exponent m of the creep law.
Our model provides a simple explanation for the ex-
istence of a hyperbolic law of elastic energy release before
rupture. The relation is a consequence of the many-body
nonlinear interactions among the elements of the net-
work. The complex correlated behavior underlined by
the power law does not result from any built-in complexi-
ty either into the spatial structure or into the rheological
laws, but rather arises from the cooperative behavior of
all the elements whose successive correlated fractures
eventually lead to the great event. The observations of
the power-law rate behavior in nature with a=1, first
made by Kagan and Knopoff [4] and Jones and Molnar
[5], suggest an exponent that is wholly consistent with a
high value of the exponent in the creep law which, in
turn, is consistent with laboratory observations of crack-
growth phenomena in the brittle-fracture regime of defor-
mation. As noted, P=a if a is independent of M. Final-
ly, our model might provide a physical basis for under-
standing other empirical relations of hyperbolic type
which give evolution rates of measurable quantities in the
terminal stages of failure of many different systems [26].
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