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This paper investigates the motion of a Brownian particle experiencing both a friction (biased) force
and a randomly fluctuating force with a long-time-correlation function C f(t)~t’B, 0<B<1,1<B<2,
and B=1, instead of a Dirac 8 function. The generalized Langevin equation and Fokker-Planck equa-
tion and corresponding solution are presented. It is shown that when 0 <B <1 or 1 <8 <2, the diffusion
motion of the Brownian particle is the anomalous diffusion that is related to fractal Brownian motion
(FBM). But when B=1 the diffusion motion is anomalous diffusion with no connection to FBM. The
effects of friction retardation result in a probability density function for finding the particle at displace-
ment X at time ¢ that depends on the initial value of velocity of the particle. The approach in this paper
may provide a systematic method for the study of particles diffusing in fractal media.

PACS number(s): 05.60.+w, 05.40.+j, 51.10.+y

I. INTRODUCTION

Considerable recent interest has been focused on the
attempt to understand anomalous faster and slower than
normal diffusion (superdiffusion and subdiffusion).
Several approaches have been developed to treat these
problems [1-3]. However, the dynamical mechanism of
the anomalous diffusion is poorly understood. Recently,
Wang and Lung [3] investigated the dynamical mecha-
nism from the starting point of the generalized Langevin
equation (GLE) and the Fokker-Planck equation (FPE),
and established the bridge between the long-time correla-
tion and fractional (or fractal) Brownian motion (FBM)
[4] and anomalous diffusion. Muralidhar et al. [5] ap-
plied the GLE to study the dynamics of anomalous
diffusion from the facet of the velocity autocorrelation
function (VACEF) of the Brownian particle.

From the starting point of a power law and an
oscillating-power-law VACF rather than an exponential
VACF, Muralidhar et al. [5] have shown the conditions
under which anomalous diffusion arises. Although the
frictional force (or biased force) acting on the Brownian
particle appears in the GLE of their paper, the effects of
biased force on the drift motion of the Brownian particle
were not studied, an omission also apparent in Ref. [3].
In addition, the very important quantity, the probability
density function (PDF) for finding the Brownian particle
at displacement X at time ¢ cannot be derived in Mu-
ralidhar et al.’s paper [5]. However, Wang and Lung [3]
have provided an effective FPE which does not include a
drift term, and the corresponding solution. From the fact
mentioned above, there arise two urgent questions. First,
how does one overcome the disadvantages appearing in
Refs. [3] and [5]? That is say, how does one deal with the
general case of anomalous diffusion with biased effects?
Second, how does one not only treat the biased motion
and anomalous diffusion of the Brownian particle, but
also find the PDF in the unified theoretical framework?
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The purpose of this paper is to answer these questions.

The outline of this paper is as follows. The long-time
correlation and the GLE appear in Sec. II. The associat-
ed FPE and PDF are given in Sec. III. The relationship
between the long-time-correlation effects and biased
anomalous diffusion is discussed in Sec. V. Concluding
remarks and the possible applications of this model are
presented in the last section. Details of the mathematical
derivation appear in the Appendix.

II. LONG-TIME CORRELATION
AND THE GENERALIZED LANGEVIN EQUATION

When a Brownian particle moves in a fluid medium, it
experiences two forces: one is the determinative dynami-
cal frictional force, the other the random fluctuation
force originating from the random collisions between the
Brownian particle and the particles of the surrounding
medium. If the density of the medium is much smaller
than that of the Brownian particle, it is generally thought
that the average value of the randomly fluctuating force
equals zero and its correlation function is a Dirac § func-
tion [6]. The classical Langevin equation can be written
as

MX()+MaX(t)=F(t). (2.1a)
The fluctuating force has the following properties:

(F(1))=0,

(F(0)F(1))=Dy8(t —0), (2.1b)

where M is the mass of the Brownian particle, a is the
frictional coefficient per unit mass, X (¢) is the displace-
ment of the Brownian particle at time ¢ in one-
dimensional space, and D, is the diffusion constant. The
FPE associated with Eq. (2.1) and its solution can be
found in some books on nonequilibrium statistical
mechanics [7].
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However, when the Brownian particle moves through
dense fluids or fluids with internal degrees of freedom [8],
and on the percolating cluster [9], the randomly fluctuat-
ing force correlation function behaves with a power-law
time dependence, the so-called long-time correlation, in-
stead of the Dirac 6 function. Recently, long-time-
correlation effects have also been found in the dynamics
of a growing interface [10].

Now, consider that a Brownian particle is acted upon
by a friction force and a fluctuating force with a long-
time correlation. The dynamics of the Brownian particle
in one-dimensional space is described by the following
GLE [3]:

X()=V(),

. ' 2.2)

MX+M [ alt =1V (1)dr=F()
where a(?) represents the friction retardation (or friction
memory kernel). The long-time-correlation property of
the random fluctuating force is expressed as [3]

(F(t))=0,

(2.3)
(F(0)F(1))=C(t)=F,(B)t .

The exponent B can be taken as 0<fB<1 or 1<f<2,
which is determined by the dynamical mechanism of the
physical process considered [3]. The proportionality
coefficient F(f3) is independent of time but dependent on
the exponent [, which means that the proportionality
coefficient depends on the physical process.

Due to the long-time correlation, the frictional
coefficient is dependent on time instead of constant. The
function a(?) can be determined by the generalized
second fluctuation-dissipation theorem [7].

Ci(t)y=MkyTal(t), (2.4)

where T is the absolute temperature of the surrounding
and kj is Boltzmann’s constant. It is straightforward to
obtain

a(t)=Fy(B)/(MkpT)t #
:aO(B)t —-B s
where

ao(ﬁ)=F0(B)/(MkBT) .

II1. FOKKER-PLANCK EQUATION
AND ITS SOLUTION

In general, the functional-calculus approach can be
used to obtain the FPE associated with the GLE (2.1)
with Eq. (2.3). But functional calculus is in general not
familiar to physicists. For the purpose of easy acceptabil-
ity and simplicity, we apply the characteristic function to
derive the FPE. The characteristic function associated
with the probability density of finding the Brownian par-
ticle at displacement X at time ¢ starting at the origin can
be defined as

®(Y,1)= exp(iXY)) = [ dX P(X,0)exp(iXY) . 3.1)

From the Laplace transform of Eq. (2.2), it is easy to
obtain the Laplace transform of the VACF k (¢)

kp(p)=[p+a,(p]7} (3.2)

where the subscript L denotes the Laplace transform.
The Laplace transform of the integral of k () can be writ-
ten as

K, (p)y={plp+ta,(l}~',

where K (¢) describes the influence of the initial velocity
of the particle on displacement [7]. From Eq. (2.2), it can
be shown that the displacement increment AX and veloci-
ty increment AV are linear functionals of the fluctuating
force F(t), given the initial values of displacement and
velocity. Therefore we have

AX=X(t)—X(0)—V(0)K (1)

(3.3)

=(1/M) ['K(t —7)f ()dT, (3.42)
0
AV=V()—V(0k (1)
=(/M) [ k(e —7)f (r)dr . (3.4b)

Since only the second-order correlation effect of the
fluctuating force is considered in Eq. (2.3), the charac-
teristic function can be expressed in term of the corre-
sponding first and second moments. Equation (3.1) can
further be changed into the form

O(Y,t)=exp(i {[X(0)+ V(0K (1)]Y — Loy ¥Y?}), (3.5
where
Txx={[X —X(0)— V(0K (6)]*) . (3.6)

By virtue of Eq. (3.4a) and after some computations, Eq.
(3.6) can explicitly be rewritten as

0 gy =k T/M) [2fO’K(T)dT—K(t)2 . (3.7)

From Egs. (3.2)-(3.7), one can derive the FPE associated
with Egs. (2.2) and (2.3)

aP(X,1) _ _ 3P (X,1)
2 kv 0 EE
2
s T/MOK (O =k (0] T2 20 (3.9

The derivation of Eq. (3.8) in detail appears in the Ap-
pendix. It should be noted that the PDF depends on the
initial value of the velocity of the particle. This feature
stems from the non-Markovian process.

In order to solve Eq. (3.8), we must know the explicit
expressions for k (¢) and K (¢). In our previous paper [3],
it has been shown that when 1<pB<2, the diffusion
motion of the Brownian particle is anomalous faster than
normal diffusion; when 0 <fB <1, it is anomalous slower
than normal diffusion. Firstly, I consider the cases when
0<pB<1 and 1<B<2. Secondly, I consider the case
when B=1, which is different from the first case.

When 0<fB< 1 and 1 <B <2, using the theorems on the
asymptotic expansion of Laplace transforms near the ori-
gin of Ref. [11], and taking the Laplace transform of Eq.
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(2.5), one can easily obtain the asymptotic form when
p—0

ay(p)~d,T(1—B)pP~!,
where d, is a positive proportional constant related to the
absolute values of ay(8), and I'(x) is the gamma function.

Inserting Eq. (3.9) into (3.2), it is straightforward to yield
to leading order

ki (p)~p'"P/[d,T(1—B)] (p—0).

(3.9)

(3.10)

An unimportant proportionality coefficient is not explic-
itly expressed. Taking the inverse Laplace transform of
Eq. (3.10) and employing the theorems of Ref. [11], we
have the following:

(i) When 1 <3 <2, the asymptotic form of k (¢) is

k(t)~tB~2/[dy|IT(1—B)|T(B—1)]
=(B—1)tF"2/[d,T(B—1)T(2—B)] . (.11

From Eq. (3.11), the VACEF k (¢) decays with a long posi-
tive tail, which means that if the Brownian particle at
this instant has a positive velocity value, it has to
“remember” to have positive velocity in future time.

(ii) When 0<fB <1, the asymptotic form (z— ) k(?)
can be written

k(t)~(B—1)tF[d,T(1—B)[(2—B)]
=(B—1)tP72/[d,T(|IB—1)T(2—B)]. (3.12)

It is easy to see that when 0 << 1, the VACF k(¢) de-
cays with a long negative tail. That implies that, if the
particle moves in the positive X direction at this instant,
it is more likely to move in the negative direction in the
next instant. The negative correlation implies a “whip-
back” effect [5]. Combining Eqgs. (3.11) and (3.12), the
asymptotic behavior of k (¢) can be expressed in a unified
manner as
k(t)~(B—1)tP"2/[d,T(|1-B))T(2—B)]
(0<B<1 or 1<B<2). (3.13)

According to the relationship between k (¢) and K (1)
[Eq. (3.3)], one can obtain the asymptotic form (¢ — o0 )
of K (¢) when [k (t)dt#E (0<E < w)

t
K= [ k@t
~tB~1/1d, T (|1-BT(2—B)]
(0<B<1 or 1<B<2), (3.14a)

where the use of Eq. (3.13a) is made.
When [ “k(1)dt=E (0<E < ), it means that

K (t)=const=E . (3.14b)

Combining Egs. (3.13) and (3.14a) with Eq. (3.8), the
Fokker-Planck equation (3.8) can be rewritten as

OP(X,t) _ p—20P(X,1)
Y a, V(o 3xX
kgT *P(X,T)
+ B—1(1—4B—2yY9 1 4,71/
b, u ! (1—12P72) ax? (3.15)

where

(3.16)
b,=by/[d,T(|1-BT(2—B)] .

The symbols a, and b, are the positive proportional
coefficients of Egs. (3.12) and (3.14), respectively. Our in-
terest is focused on the asymptotic behavior, when
t—>o. Whent—o,0<B8<1or1<B<2,and t# 2«1,
Eq. (3.15) can further be written as

oP(X,t) p—20P(X,1)
o = a, V(o) Tax
kgT .,  3*P(X,t)

B-1 AL 3.17

+b, T ox (3.17)

The PDF depends not only on the displacement and
time, but also on the initial value of velocity of the parti-
cle. It is the essential feature of a non-Markovian pro-
cess. We now turn to the solution for the Fokker-Planck
equation with the initial condition, P (X,0)=6(X). Using
Fourier’s transform of the integral, it is easy to obtain the
normalization solution.

P(X,t)=(4wDt?)~2exp[ — (X +at?~")? /(4DtP)] ,
(3.18a)

where
D =b1kBT/(MB)>O ’
a=a,V(0)/(f—1).

(3.18b)

Now, consider the case when f o k(t)dt=E
(0<E < ). Combining Egs. (3.14a) and (3.13) with Eq.
(3.8), Eq. (3.8) is changed into the following form:

OP(X,1) _ P(Xx,t)  ksTE ?P(X,t)
ot 90X M ax?
(3.19)

—a,V(O)tB_Za

Its normalization solution with P(X,0)=§8(X) can easily
be obtained,

P(X,t)(=(47wD't)”2exp[— (X +at?~1)2/(4D't)] ,
(3.20a)
D'=kzTE/M>0,
a=a,V(0)/(B—1).
In the case =1, if the VACF can be assumed to be [4]

(3.20b)

k(~t7t, (3.21)
then
K@= ['k(n)dt~1nt . (3.22)
0

Combining Eqgs. (3.22) and (3.23) with Eq. (3.8), we have

a, V(0)
t

oP(X,t) _
ot

dP(X,t)
dx

kpTh 2
L X8 zlma P(X,t)
M ax?

, (3.23)
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where a, and b, are the proportionality coefficients of
Egs. (3.21) and (3.22), respectively.

By virtue of Fourier’s integral transform, we can ob-
tain the normalization solution of Eq. (3.23) with the ini-
tial condition P (X,0)=58(X) as

P(X,t)=[47D,t(Int —1)]"'2

—[X +a,V(0)Int)?
[4D,t(Int —1)] ’

Xexp (3.24a)

where

D,=kyTh,/M >0 . (3.24b)

IV. RELATIONSHIP
BETWEEN LONG-TIME-CORRELATION EFFECTS
AND BIASED ANOMALOUS DIFFUSION

When 0<f<1 or 1 <f<2, from Eq. (3.18) it is easily
shown that the mean displacement and mean-square dis-
placement of a particle starting at the origin are, respec-
tively,

(X)=—atP™ 1,
(X —(X))?)y=2Dt% .

(4.1a)
(4.1b)

Equation (4.1a) has demonstrated that the mean dis-
placement of the Brownian particle is proportional to
tA71. From Egs. (4.1a), (4.1b), and (3.18b), it can be seen
that the initial value of the velocity only influences the
drift motion, but does not influence the diffusion motion.
Equation (4.1b) implies that the particle experiences an
anomalous faster (1<B<2) and slower (0<B8<1)
diffusion than regular diffusion. Therefore the Brownian
particle “experiences” not only the drift motion but also
the anomalous-diffusion motion.

In order to exploit the self-affinity of the PDF, one can
take the following scaling transformation in Eq. (3.18):

X—(X)=bPUx—(X)),

(4.2)
t=bt .
After simple computation, we have
PIX' —{(X)=bP'H X —(X)),t'=bt]
=b F2P(X —(X),1). 4.3)

Equation (4.3) demonstrates that the PDF P(X —(X ),?)
has the self-affinity [12]. According to the definition of
FBM [4], and Ref. [3], we know the diffusion motion
above the mean displacement is FBM.

However, when 0 <3< 1, there is an exception. When
[ &k(t)dt =E (0<E < ), the diffusion motion is nor-
mal diffusion, which can be derived from Eq. (3.20a). But
the drift motion is the same as that of the corresponding
anomalous diffusion.

When =1, by virtue of Eq. (3.24), the first and second
moments of the displacement can be expressed as

(X)=—a,V(0)Int ,
(X —(X))?)=2D,t(Int —1) .

(4.4a)
(4.4b)

When t — «, Int >>1, Eq. (4.4b) can be rewritten as

(X —(X)?)=2D,tInt~tInt . (4.4¢)

It is a good agreement with the proposition 2d of Ref. [5].
In Ref. [5], the mean displacement was not given.

From Eq. (3.24), it is easy to find the PDF in the case
B=1 does not have self-affinity. In this case, the diffusion
motion of the Brownian particle is not FBM, but is an
anomalous diffusion. It further demonstrates that FBM
corresponds to anomalous diffusion only when 0<f<1
or 1<B<2.

V. CONCLUDING REMARKS

The detailed understanding of transport of particles in
disordered systems has been a problem of prime interest
recently [1-3,5]. It has been visualized from different
points of view and with many approaches [1-3,5]. The
method in this paper, which includes both GLE and
FPE, has advantages over that of Ref. [5], and over scal-
ing theory [1,2], which cannot give the PDF analytically.
However, the approach in this paper can analytically
solve the FPE and naturally obtain the PDF and statisti-
cal average values. This approach is very suitable to treat
dynamics of anomalous diffusion.

It is worth mentioning that in Refs. [3] and [5], the
frictional (biased) term had appeared in the GLE, but nei-
ther paper gives the influence of bias on the Brownian
motion. This paper gives a natural way to treat the bias
effects. Our previous result in Ref. [3] can be thought of
as a special result of this paper when k(#)V(0)—0,
t >>t,, where t, is a characteristic time.

It is shown that the long-time correlation of fluctuating
force is the physical origin of the anomalous diffusion.
The frictional (biased) effect contributes only to drift
motion of the Brownian particle, but results in a PDF
that depends on the initial velocity of the particle. This is
nothing other than the signature of a non-Markovian
process.

It is proved that when 0<B<1 or 1<fB<2, the PDF
for finding the particle at displacement X at time ¢ has
self-affinity. It implies that the anomalous diffusion is as-
sociated with FBM [3]. However, when =1, the proba-
bility of displacement is not self-affinite. Also the mean
displacement and mean square of displacement is related
to logarithmic time rather than a power law of time.
That means that this type of anomalous diffusion is not
directly related to FBM. To our knowledge, this is the
initial recognition of this point.

It must be noted that when 0<B<1, [Fk(t)dt=E
(0<E < ). The diffusion is normal rather than anoma-
lous diffusion. A well-known example has been reported
by Alder and Wainright [13] from molecular-dynamics
studies.

I strongly believe that the method described in this pa-
per has potential application to diffusion on fractal media
[14]. This approach can serve as a general formalism for
the study of long-time-correlation effects.
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APPENDIX

The Fokker-Planck equation (3.8) is derived as follows.
Through use of Eq. (3.1), we have

do
ALY _ iyv ok (n— 1 y222X%

3 2 ar d(Y,1) .

(A1)

By virtue of Eq. (3.7), one obtains

ii%:LA;TK(t) [1—11%]
= 2kBTK<t)[1—k(z)] : (A2)
M
Combining Eq. (A2) with Eq. (A1), we have
%ﬁml: iYV(0)k (1) —Y? k;{TK(t)[l—k(t)] D(Y,1) .
(A3)

Taking the inverse Fourier transform of Eq. (A3), one
can easily obtain the Fokker-Planck equation (3.8).
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