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Dynamical spatial-pattern memory in globally coupled lasers
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The chaotic dynamics found in globally coupled modulated laser systems have been switched into

stable orbits, including antiphase periodic states and clustered states, by an injection-seeding method.

Direct assignment to desired factorial periodic orbits has been demonstrated. Self-induced switching

among destabilized clustered states (chaotic itinerancy) in the transition process from clustered states to

global chaos has also been found.

PACS number{s): 42.50.Lc, 02.90.+p, 05.45.+b
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k =1,2, . . . ,N, (3)

where t = T/r is the normalized time (r is population life-
time), wo is the normalized bias-pump power, rn is the
modulation depth, ~ is the modulation frequency, no is
the dc component of the population density, nk is the

Recently, applicability of high-dimensional complex
dynamics to information storage (memory) has been in-

vestigated in nonlinear optical systems. Firth argued a
fundamental relationship between spatial chaos and stan-
dard memory capacity in a simple model of cross-talking
bistable optical pixels [1]. Rewritable spatial chaos
memory has been proposed in a coupled optical bistable
chain model by Otsuka and Ikeda [2]. Aida and Davis
demonstrated experimentally that coexisting stable
periodic temporal solutions due to complex bifurcation
just before chaos in the optical bistable system with delay
can be applied to ultrahigh-capacity dynamic memory
[3]. On the other hand, Otsuka predicted numerically
that m, =(X—1)! coexisting dynamical spatial patterns,
i.e., antiphase periodic motions, can be selectively excited
by applying seed signals to the modulated multimode
lasers, where X is the number of oscillating modes, and
succeeded in assignments to the antiphase dynamic spa-
tial patterns up to i!i= 5 (m, =24) [4]. In this paper, we

discuss the effect of the spontaneous-emission coefficient
(noise) on stabilizing antiphase states in modulated mul-

timode lasers. Also, the assignment to clustered states by
"key pattern" injections and self-induced switching
among destabilized clustered states (chaotic itinerancy
[5]) are reported.

The governing equations for modulated multimode
lasers with spatial hole burning are expressed as [4]

dno E
=wo[1+m cos(re t)]—no —g (no n&/2)s—&,

1=1

erst-order Fourier component of population density, sk is
the normalized photon density, E=w/~z (~z is photon
lifetime), ek is the spontaneous-emission coefficient for
the kth mode, and s; k is an injection-seed signal. Here,
we assume uniform efFective gain for lasing modes for
brevity. In this model, longitudinal modes are coupled
globally through cross-saturation of population density
resulting from the spatial hole burning.

From linear stability analysis, an S-mode free-running
laser is found to be always stable in time, and the relaxa-
tion oscillation at co„=[(w —I )/rr~ ]' is damped out. If
the modulation depth increases to where the pump power
drops below the threshold during part of the pump
modulation cycle, the total output behaves just like a
single-mode laser and exhibits spiking-mode oscillations
at co, (co„while each emitter exhibits X-alternative spik-

ing pulsations at e, /S, resulting from winner-takes-all
dynamics based on the cross-saturation mechanism. This
is manifested as the antiphase states in modulated mul-

timode lasers [4]. For small i!i, the antiphase states are
globally attracting and are obtained after short transients
for arbitrary initial conditions. There coexist
m, =(i!i 1)! antiph—ase stable periodic attractors in the

phase space in such a case.
%hen X increases, the basin of attraction of antiphase

states shrinks very rapidly and antiphase attractors tend
to coexist with chaotic orbits in the phase space. In addi-
tion, p-clustered states appear, where oscillating modes
are divided into p groups that exhibit di6'erent synchro-
nized motions. There coexist at least m, =¹!/
X&!%2! X ! clustered states in the phase space, where

X, is the number of modes belonging to the ith cluster.
The bifurcation diagram for a 6ve-mode laser is shown in

Fig. 1(a) as a function of modulation frequency, where
no=2. 7, I =0.74, %=1000, and @k=1.2X10 are as-

sumed. In the high-modulation-frequency side near co„,
synchronized relaxation oscillations are realized. When
the modulation frequency is decreased, clustered states
like those in Fig. 1(b) appear. Figure 1(b) shows a two-
cluster state [(1,2,3),(4,5)], where the amplitudes of the
five modes (k =1,2, 3,4, 5) are drawn in the figures in in-

creasing order from bottom to top hereafter. It is in-

teresting to note that the total output exhibits the alter-
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FIG. 1. (a) Bifurcation diagram for a five-mode laser. See the
text for parameters. (b) Two-cluster state; ~co =35; (c) chaotic
itinerancy; ~co = 19.5.

the system to reach the basin of attraction. However, one
can assign the system to the desired antiphase dynamics
states by injecting small light pulses [=(laser pulse
height)/60] to (N —1) modes in the desired sequences as
seeds at the time interval of 2m. /to, only during the
(N —1) modulation cycle in the region indicated in Fig.
1(a). Examples are shown in Fig. 2 for re@ =35. In Fig.
2(a) the system shows chaotic evolutions initially and is
switched to the antiphase state by the seed pulses. In the
case of Fig. 2(b) with slightly different initial conditions
from Fig. 2(a), the system is attracted by the two-cluster
state [(1,2,3,4),5] after some transients and is switched to
the antiphase states by seed pulses. These results imply
that chaotic, cluster, and antiphase attractors indeed
coexist in the phase space for vco =35, and switching
among them can be established by injection seeding. The
seeding condition for realizing antiphase states in terms
of pulse height and pulse width is not so severe when the
seed pulses are applied to modes in synchronization with
the pump maxima. Moreover, even switching from one
antiphase state to another is possible [4].

Resonant relaxation oscillations or clustered states
have larger basins of attraction than antiphase states and
generally exist independently of the system size N.
Indeed, they are found to be realized when the chaotic
orbit collides with the orbit of synchronized relaxation
oscillation or clustered state (crisis [8]) in the temporal-
evolution process. However, in the case of clustered
states, which clustered state is realized critically depends
on initial conditions. If one can assign the system to a

native spike pulses of the spiking mode and the resonant
relaxation oscillation, which was observed experimentally
in a modulated single mode LiNdP40t2 (LNP} laser [6].
Indeed, the total output wave form has been found to
coincide almost with the single-mode laser output wave
form calculated by assuming N = 1 and the same parame-
ter values [7]. This implies that dynamics of individual
modes are self-organized such that the total output
behaves just like a single-mode laser similar to antiphase
states. It should be noted that these stable synchronized
relaxation oscillations or stable clustered motions coexist
both with the chaotic attractor and antiphase states with
different basins of attraction in the phase space.

If the modulation frequency is decreased further,
clustered states are destabilized and then the system ex-
hibits self-induced switching among coexisting destabi-
lized clustered motions (chaotic itinerancy [5]) leading to
a global chaos (GC in Fig. 1). This process repeats when
the modulation frequency is decreased as shown in the
figure. Figure l(c) shows an example of chaotic itineran-
cy at ~co =19.5, where at point A, for example, the
switching from a destabilized [(1,4,5},2,3] cluster to a des-
tabilized [(1,3,4),2,5] cluster is occurring.

The basin of attraction of antiphase states for N =5 is
extremely small in this parameter range, and it is hard for
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FIG. 2. Assignment to antiphase states. Parameter values
are the same as for Fig. 1. re =35, seed pulse height = 0.2,
and pulse width = 0.06. (a) Switching from chaotic orbit to an-

tiphase state. (b) Switching from clustered state to antiphase
state.
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desired clustered state, a dynamic pattern memory with a
large capacity is expected. From the numerical simula-
tions, it is found that direct assignment to the desired
clustered states is possible when key patterns of the
desired clustered states are applied to some modes as
seeds in the first modulation cycle. Examples are shown
in Fig. 3 for ceo =25. In Fig. 3(a) the system is initially
in the chaotic attractor, and the chaotic dynamics are
switched to a three-cluster state [(1,2,3),4,5] by applying
key patterns to k =1, 2, and 3 modes, where seed pulse
height sk;(k =1,2, 3) is 0.2 and pulse width is 0.06. In
Fig. 3(b) the system is switched to a three-cluster state
[(1,4,5),2,3] by applying key patterns to k=2 and 3
modes, where seed pulse heights are s2; =0.2 and
s3;=0. 1 ~ Here, other modes are self-organized such that
the total output behaves just like a single mode and ex-
hibits alternative spike pulses similar to Fig. 1(b). In oth-
er words, the desired clustered state can be associatively
memorized by injection seeding of key patterns during
one modulation cycle. It is very likely that injection
seeds give a driving force to the system such that the tra-
jectory will fall on the basin of attraction of these period-
ic states surrounded by a chaotic sea through saddles
(homoclinic crossing). Such an assignment process can
be called seeding-assisted crisis.

The basin of attraction of antiphase states depends on
the spontaneous emission coefficient ek. In general, if ek
is decreased, the basin of attraction increases as a result
of the reduction of fluctuations due to the ekno term in
Eq. (3). For eh ~ 5X10, antiphase attractors are des-
troyed for X ~ 6. In the case of N =6, antiphase attrac-

tors are divided into %=5 antiphase motions and the
chaotic motion. However, the sequential playback of the
forced X =6 antiphase motions, which do not exist previ-
ously in the phase space, can be accomplished by apply-
ing clock optical pulses to the first firing mode in addition
to the injection seeds. The result is shown in Fig. 4(a),
where the antiphase is destroyed into %=5 antiphase
motions and chaotic motion when the clock pulse is cut.
%hen the spontaneous emission coefficient ek is de-
creased, the basin of attraction of antiphase states in-
creases; the %=6 antiphase states (m, =120) have a
finite basin of attraction for ek & 5 X 10,and one can as-

sign the system to these antiphase states without applying
clock pulses, as shown in Fig. 4(b), where ek =1.2 X 10
If ek is decreased further to 1.2X10, for example,
which is an attainable value in solid-state lasers [6],
sequential playback like that in Fig. 4(a) is possible even
for X =7 (i.e., m, =720). (Modification of the
spontaneous-emission coefficient has been reported in a
semiconductor material device [9]). The seeded-
assignment method in the present system is attractive in
terms of application to a memory of factorial dynamica1
spatial patterns resulting from automatic parallel pro-
cessing among oscillating modes with cross-saturation.
The memory capacity in the present system is expressed
by C, =log(N —I )!/log2 for antiphase states and
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FIG. 3. Assignment to clustered states. Parameter values
are the same as for Fig. 1; ~co =25. (a) Seed pulses
sk;(k=1, 2, 3)=0.2 and pulse width = 0.06. (b) Seed pulses

s2; =0.2,s3; =0.1 and pulse width = 0.06.

FIG. 4. (a) Sequential playback to forced antiphase states for
%=6 with ek =1.2X10 by clock pulses. ma=4. 2, I=0.76,
and ~~ =51. Seed pulse height = 0.2 and pulse width = 0.02.
Clock pulse height = 0.2 and pulse width = 0.05. (b) Assign-

ment to X=6 antiphase states for a decreased h k of 1.2 X 10
where other parameter values are the same as (a).
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de k =wo k [1+m cos(co ) ]

N

nk I—+sk+(y/N) g st(t tt)—
1=1

(4)

C, =log(N! /N &!N2! . N~! ) /log2 for p-cluster states.
This implies that the memory capacity per mode exceeds
ordinary one-bit binary memory.

Finally, the globally coupled laser array (GCLA),
which exhibits exactly the same dynamics described so
far for multimode lasers, is proposed as another example.
In the conceptual model of the GCLA shown in Fig. 5,
the output from single-model laser emitters oscillating in
the linear polarization (such as laser diodes, anisotropic
lasers [6], and a laser with an intracavity Brewster plate)
are passed through a traveling-wave amplifier and are
combined by a multiport fiber coupler. The total output
from the fiber is retrore6ected into emitters through the
Faraday rotator, analyzer, and mirror. In this scheme,
the feedback light is polarized perpendicular with respect
to the oscillating beam. Therefore, a11 the emitters are
globally coupled by incoherent feedback [10]. In other
words, the rejected beam acts as a cross-saturation beam
for the population density in each emitter similar to mul-
timode lasers. The amplifier is introduced to control the
degree of cross-saturation. The dynamical equations are
similar to Eqs. (1)—(3),

Laser

I I

I I

I I

TWA

0

I I I

Mirror

FIG. 5. Conceptual model of globally coupled laser arrays.
TWA, traveling-wave amplifier; R, Faraday rotator; A,
analyzer.

dsJ
+[(nk 1)sk+eknk+sik]

k =1,2, .. ,N, . (5)

where y is the feedback coefBcient which expresses the
degree of cross-saturation. For a short delay, i.e., tI &&1,
exactly the same dynamics as described before for mul-
timode lasers take place resulting from the common
cross-saturation mechanism.

In conclusion, the direct assignment to antiphase as
well as clustered states based on the injection-seeding
method was demonstrated theoretically for deeply modu-
lated multimode lasers. The sequential playback of previ-
ously nonexistent periodic orbits by clock pulses and the
efFect of the spontaneous-emission coeScient on the as-
signment procedure were discussed. Chaotic itinerancy
among destabilized clustered states was found in the tran-
sition process from clustered states to global chaos.
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