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The diamagnetic Kepler problem, or quadratic Zeeman e8ect in hydrogen, is converted into an asym-
metric top via a transformation to Lissajous action-angle variables. These variables are especially suit-
able for uniform semiclassical quantization of the system for arbitrary values of the azimuthal quantum
number m.
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is the modified Runge-Lenz vector and Ho is the unper-
turbed energy. If the azimuthal quantum number m =0,
A takes values in the range ( —n, 4n ), where n is the
principal quantum number. Depending upon the sign of
A the classical motion falls into one of two categories:
for negative values of A it is vibrational, while if A is pos-
itive the dynamics is rotational. A separatrix between the
two kinds of motion occurs when A=O. Extreme posi-
tive values of A correspond to the ridge states of Fano [5]
and it is this motion, localized in the x-y plane, that gives
rise to the famous quasi-Landau spacings [6]. Despite
much study an outstanding problem in the theory of the
QZE is the semiclassical quantization of A. Most of the
proposed semiclassical quantization formulas are singular
at the separatrix between the two kinds of dynamics. To
skirt this problem a variety of piecewise quantization

The connection between the hydrogen atom and the
harmonic oscillator is well known and is related to the ex-
istence of the Runge-Lenz vector as an extra conserved
quantity [1]. When an external field is applied to the sys-
tem the basic zero-order symmetry is broken, but approx-
imately conserved quantities might persist. In the di-
amagnetic Kepler problem [quadratic Zeeman effect
(QZE)], an approximate constant of motion was found in-
dependently by Solov'ev [2] and Herrick [3] (see also
Reinhardt and Farrelly [4]). This constant, usually
denoted A, is given explicitly by

A=4A —5A

rules has been developed (for reviews see Hasegawa, Rob-
nik, and Wunner [7]), but only recently has a uniform
semiclassical quantization procedure been developed
based on the conversion of the QZE Hamiltonian into a
perturbed four-dimensional anisotropic oscillator [8,9].
Alongside attempts to develop semiclassical quantization
rules there has also been an effort to understand the un-
derlying symmetry of the QZE [10,11]. Uzer [10] has
shown that for the m =0 case the problem can be
mapped onto an asymmetric top by using classical per-
turbation theory and the SU(2) symmetry of the harmon-
ic oscillator.

In this Brief Report a canonical transformation to a set
of action-angle variables is made that is especially ap-
propriate to the application of uniform semiclassical
quantization methods [8,9,12]. This provides an alterna-
tive route to, and an independent check of, the more
complicated analyses contained in Refs. [8] and [9]. The
approach described also has the merit of providing a
direct path to the asymmetric top mapping developed by
Uzer [10].

In atomic units the QZE Hamiltonian is the following:

H=E= ,'(P„+P +P, ) —+——y(x +y ), —2 & & z

T
(3)

x=uv cos8, y=uv sin8, z= —,'(u —v ), (4)

which converts the Hamiltonian into the following:

where y is the magnetic-field strength and the paramag-
netic term has been transformed away [4]. The axial
symmetry preserves m as a good quantum number and
thus the problem may be reduced to two dimensions.
This can be achieved by a transformation to the
"squared" parabolic coordinates,
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2(u+v ) u v

(5)

u2= [1—acos(2$)], v = [1—Pcos(2$)],
2co 2co

(12)

which allows the Hamiltonian E to be written in the form
Multiplication by (u +v )—in essence a classical regu-
larization [13]—leads to the Hamiltonian K=2=2co(4+iP)+ ,'y—H,(m;4, P, %,g) . (13)

where

&„+P,+4' (u +v )+ +

z+—y (u +v )(u v2),
8

26) = —E2 (7)
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Aside from the centrifugal terms, the Hamiltonian resem-
bles two nonlinearly coupled harmonic oscillators. When
m =0 the QZE reduces to a single two-dimensional har-
monic oscillator with a quartic coupling term. This ver-
sion of the QZE has been widely studied theoretically be-
cause of the simple form of the Hamiltonian
[4,8 —10,14—16]. For nonzero m the centrifugal terms
complicate any transformation to action-angle variables
and hinder the application of classical perturbation
theory. Consequently, for nonzero m most studies using
classical perturbation theory have been in terms of the
Delaunay elements [17—19]. Unfortunately these vari-
ables turn out to be unsuited to uniform semiclassical
quantization of motion in the propinquity of the separa-
trix [7—9]. These problems are avoided by a transforma-
tion from the parabolic coordinates and momenta to a
new set of action-angle variables (Deprit's "Lissajous"
elements) (4,P) and (%,f) [18,19]. This is accomplished
by means of the generating function W= Wi(u, @)
+ W2(v, ql), which is of the I'2 type. W satisfie

The functional form of H, will not be given here but is

readily obtained by direct substitution of Eq. (12) into Eq.
(6). At this point all of the transformations are exact and

Eq. (13) represents the QZE Hamiltonian in terms of
harmonic-oscillator-like action-angle variables. Averag-
ing the perturbation in these variables is straightforward
and avoids the use of involved classical perturbation
methods like Birkhoff-Gustavson normal form theory
[4,8 —10,20,21]. More importantly it leads to a Hamil-
tonian expressed in terms of a set of actions especially
useful for quantization. Contemplation of Eq. (7) reveals
that not all of the states of the oscillator match up with

QZE states [8,9]. Those that do satisfy,

4+4 =2n . (14)

In light of this a further canonical transformation is in-

troduced,

4=n+ j„p=,'(p„+p,—),

%=n —j„g=—,'(p„—p, ),
(15)

(16)

where p„ is the angle conjugate to the principal Kepler
action n. This is the angle to be averaged over. Doing so
[22] gives the following expression for H, :

H, = (A+m +n ),
8N

(17)

where the term in A has been singled out for convenient
comparison with the results of Robnik and Schriifer [20]
and Kuwata, Harada, and Hasegawa [21]. In terms of
the new action-angle variables,

A=2[[(n+j, ) —m ][(n —j, ) m]]' —cos2$,
The generating function Wi(u, 4) is obtained from the
Hamilton-Jacobi equation

—3j —2m +2n (18)

2
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(9)

with a similar equation for W2(v, +). Solving for
W, (u, @)gives

1/2

W, (u, @)=f "du 4'@—4''u'—
Ql Q

(10)

where u 1
is the positive root of the radicand [and similar-

ly for W2( v, 4 ) ]. Defining the quantities

(@2 2)1/2 (q12 2)1/2
a(e,m)=, P(q, m)=

J, =j, /2, 8, =2/, . (19)

with
~j, ~

~ )(n —
~m ~ ) ). This expression agrees to this or-

der of perturbation theory with that obtained in Refs. [8]
and [9]. Level curves of A(m; j„{(1)resemble those of a
twofold hindered rotor when m =0. In the rotor picture
the localized vibrational states of the QZE correspond to
the localized rotational states of the rotor, which approxi-
mately conserve j,. Analysis of Eq. (18) reveals that as m

is progressively increased, the vibrational states start to
disappear until at the point where m /n = 1/v 5 they
have vanished altogether [17,18] and A takes only posi-

tive values.
The problem can also be mapped onto a generalized

angular momentum J(J„,J,J, ) by means of the follow-

ing transformation [23]:

and using Eq. (7) gives
In terms of the new variables the other components of J
are defined as follows:
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J (J2 J2)1/2slng, J (J2 J2)1/2cosg (20)

with

4

In the limit m =0 the problem is thus equivalent to an
asymmetric top, as discussed by Uzer [10].

In conclusion, Eq. (18) is in an especially tractable
form for the application of uniform semiclassical quanti-
zation procedures using hindered-rotor-like quantization
formulas [24,25] because the action j, is uniformly valid
through the separatrix.
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