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The low-frequency intensity noise of high-quantum-efficiency lasers or light-emitting diodes
(LED’s) is dominated by the pump noise. By coupling two or more semiconductor lasers (or LED’s)
in series with a current source, the pump noise of the two lasers will be equal, and the intensity noise
of the lasers will be highly correlated. It is shown that one may generate sub-Poissonian light by
measuring the intensity fluctuations of one of the beams and feeding back (or forward) the informa-
tion to regulate the other photon beam. The generation scheme is shown to have much in common
with intensity-correlated twin beam generation from nondegenerate optical parametric oscillators.

PACS number(s): 42.50.Ar, 42.50.Dv, 42.50.Lc, 42.55.Px

I. INTRODUCTION

Intensity-correlated photon beams are useful to reduce
the influence of intensity noise and thus increase the
sensitivity of measurements involving photoabsorption,
such as absorption spectroscopy. If the correlation is
sufficiently strong, the measurement accuracy will sur-
pass that achievable with photons prepared in a coher-
ent state. Alternatively, the correlation can be used to
reduce the intensity noise in one of the beams to levels
below the standard quantum limit [1-3].

The most commonly used generation process of corre-
lated photon pairs is nondegenerate optical parametric
frequency down-conversion. With no optical feedback,
the nondegenerate parametric amplification process will
produce photon pairs highly correlated in space and in
time [4-7). However, the wide correlation bandwidth
(fundamentally about 100 GHz, but in present realiza-
tions only a few hundred MHz) is traded off against a
low average power and, in general, a poor quantum effi-
ciency of the pump process.

With optical feedback, parametric oscillation may be
accomplished. The oscillator can generate photon beams
with reasonable power, but at the cost of limited correla-
tion bandwidth. The low nonlinear coefficients in optical
crystals require relatively long and high-finesse cavities to
give reasonable oscillation threshold pump power. The
best parametric oscillators for correlated twin beam gen-
eration today have a cavity bandwidth of about 20 MHz
(3, 8].

For quite some time now it has been known that the
low-frequency intensity noise of high-quantum-efficiency
lasers and light emitting diodes (LED’s) is caused by
pump noise, whatever the pump mechanism may be [9,
10]. It has also been proposed, and demonstrated, that it
is possible to reduce the intensity noise of semiconductor
lasers and LED’s to levels below the standard quantum
limit by reducing the noise of the injection current (pump
noise) [10-13].

In this paper it is suggested that an alternative,
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probably simpler, and possibly better way to generate
intensity-correlated photon beams is to let two lasers be
subject to the same pump noise. With optically pumped
lasers this is difficult, or maybe even impossible, but with
semiconductor lasers (or LED’s) it is easy, one can sim-
ply couple them in series with the injection-current gen-
erator. As will be shown in the paper, the correlation
between the intensity noise of the lasers at frequencies
below the cold-cavity bandwidth is limited only by the
overall quantum efficiency of the system.

The paper is organized as follows. In Sec. II the equiv-
alent electrical circuits for a semiconductor laser are pre-
sented. From the electrical circuit models it is rather
easy to deduce the rate equations for the free-carrier pop-
ulation and for the photon number in the cavity mode.
The quantum noise processes in the laser are modeled
by Langevin noise sources that are included in the rate
equations. In Sec. III the intensity-correlation spectra
are calculated and the possible noise reduction is delin-
eated. In Sec. IV the correlation spectra and noise re-
duction of series-coupled LED’s are calculated. In Sec.
V we compare the suggested scheme with other noise re-
duction schemes in terms of bandwidth, ultimate noise
reduction limits and experimental realization. Finally, in
Sec. VI some of the conclusions are summarized.

II. LASER MODEL

A. Equivalent electrical circuit

The equivalent electrical circuit of a semiconductor
laser is shown in Fig. 1. The current I, is noisy; for
the moment we can assume that it can be described by
a Poisson process (shot noise). The resistors Rnr, Rsp,
Rgen represent nonradiative recombination, spontaneous
emission into nonlasing modes, and photon emission into
the lasing mode. Please note that in general the respec-
tive resistors are pump-current dependent. The resistors
are also associated with pump-current-dependent noise
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FIG. 1.

tor laser.

The equivalent electrical circuit of a semiconduc-

currents Inr, Igp and Igen, respectively. The negative con-
ductance Gaps < 0 represents stimulated absorption and
is associated with the noise current I,,s. The charge @
over the capacitance C represents the free-carrier popu-
lation in the active medium. It is clear from Fig. 1 that
when coupling two or more lasers in series, the pump cur-
rent I, will be identical for every laser. (This follows if
we neglect circuit time delays and impedance mismatch,
but both these effects have negligible influence if the cir-
cuit is designed properly.) The rate of change for Q can
be written
aQ

@

Q _ Q _ Q _ QGabs
CRy, CR, CRge o

+Isp + Inr + Igen + Tabs -

(2.1)

The photon field of the lasing mode can be described
by a similar electrical circuit, Fig. 2. The driving current
Inet = Q/CRgen + Q@Gaps/C can be found from Fig. 1.
The resistors R,, and R; represent the laser mirror losses
and the internal losses. The associated noise sources are
inet, im, and i;, respectively. The charge @, over capac-
itor Cp, represents the photons stored in the resonator.
The rate of change of Q, can be written

W ;D D
dt ~ "™ CyRn GCyRi

+inet +im +3i - (2:2)
With these equations we are ready to express the rate
equations in more physical terms.

B. Langevin equations

The different circuit elements in the preceding section
can now be identified so as to get self-consistent semi-
classical equations for the time evolution of the free car-
riers and the cavity-photon number. We can immediately
identify Q/e and Q, /e, where e is the elementary charge,
with the free-carrier number N and the cavity-photon
number p. The different destruction and creation rates

® OO,

FIG. 2.

The circuit equivalent for the photon field.
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can be expressed as follows: The nonradiative lifetime
CR,; is denoted .. The spontaneous-emission lifetime
is denoted 7. Both these time constants will be assumed
independent of the injection current of the laser, as the
free-carrier number is clamped above threshold. The
time constant C' R, associated with spontaneous decay
into nonlasing modes can thus be expressed 75, /(1 — 3),
where the dimensionless number 3 represents the frac-
tion of the spontaneous emission that goes into the lasing
mode. In conventional lasers, 3 is a small number, on the
order of 10~5. The stimulated-emission lifetime CRgen
can be expressed as 1/[goN(p+ 1)] where g¢ is the dif-
ferential gain coefficient [14]. Similarly, the stimulated-
absorption lifetime G,ps/C can be expressed 1/(goNeep),
where Ny is the transparency free-carrier number. Us-
ing the fact that the spontaneous-emission rate into the
lasing mode can be written either SN/7y,, or goN, one
can eliminate go using the identity go = 8/7p [14].

In a similar fashion the different photon-decay rates
can be reexpressed in physical terms. 1/Cp, R, is identi-
fied as the photon-decay rate 7,, due to mirror-coupling
loss, and the internal-loss rate of the cavity 1/CpR; is
denoted ;.

The four free-carrier noise currents can be lumped into
one free-carrier fluctuation operator, Fy = (Isp + Inr +
Igen + Iabs)/e. In the same manner, the photon-circuit
noise currents can be lumped into one fluctuation op-
erator. However, for reasons of later convenience, we
will keep two fluctuation operators for the photon field,
Fp = (inet +1i)/e and Fp, = iy /e. Using these new noise
operators we can translate the circuit equations (2.1) and
(2.2) to ordinary Langevin noise-source-driven rate equa-
tions.

dN I, N N

alv ,B(N - Ntr)p +
dt e Tsp Tar Tsp

Fn  (23)

and

N
7m_7i)P+ ﬂ+Fp+Fm

sp

_‘{E _ (ﬁ(N "Ntr) _
dt

Tsp
(2.4)

The steady-state solution of these equations (neglecting
the fluctuation operators which all have a zero mean) can
readily be solved, and the solutions will be denoted Np
and pg. Please note that Ny and poy are both functions of
the injection current. Making a small-signal expansion
around the steady-state values for a given injection cur-
rent, N = Ng + AN and p = pg + Ap, and linearizing
the equations, the Fourier transform of AN and Ap can
be calculated. The expression for the Fourier transform
(denoted with a tilde) of Ap is

Fn + Dy(Fp + F)

Ap(Q) = D, (2.5)
where

Dy = [1+4 (1 =B+ jQ7p)/B(po + 1)] (2.6)
and
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D, = [7:' + Ym — ﬁ(NO - Ntr)/'rsp +JQ]D1
+B(No — Nir)/7ep - (2.7)

However, we are not interested in the correlation between
the cavity-photon number of the series-coupled lasers,
but in the correlation between the photon flux (inten-
sity) of the respective lasers. The relation between the
cavity-photon number and the photon flux I is

I=vyu,p—Fp, . (2.8)

It is convenient to define the mean and fluctuation of I
too. It can be expressed I = Iy + AI, where I = 4,,po.

III. LASER CORRELATION
AND NOISE SPECTRA

A. Intensity-noise spectra

In this section the Langevin equations derived in Sec.
IIB are used to calculate the spectral density of the in-
tensity noise and the correlation between the intensity
noise of two (or more) lasers connected in series. We de-
fine the general cross spectral density S4 p(2) between
two fluctuating operators A(t) and B(¢) by

Sa,B(Q) E/

(o)

(A@)B(t + 7))e iV dr | (3.1)

where () denotes ensemble average. Using this definition,
the spectral density of operator A is S4 4 () which will
be abbreviated S4(€2). We also define the normalized
cross spectral density C4 p(2) between two operators A
and B

Sa,B(R) '
[Sa()Se(Q)]"?

Ca,B(Q) = (3.2)

,),2
Sar(2) =22
AI( ) |D2 12

Tsp

(%+No(1—ﬂ)

The cross spectral density is in general a complex func-
tion which always satisfies | C4, () |< 1.

To calculate the intensity-noise spectra and the corre-
lation spectra between the lasers we use (2.5) and (2.8).

We also need the correlation functions of Fx and Fj.
They are [10]

I, No Ny
(FN(t)FN(u)) = 2( ? + ;_; + —

+.B(N0 + Ntr)po
Tep

)6U—u), (3.3)

BNo + B(No + Nir)po

sp Tsp

(Fp(t)Fp(u)) = 2(

+’m70> 6(t—u), (3.4)

and
(Frn(t)Frn(u)) = 27mpob(t — u) . (3.5)

Due to the fact that the current It in the photon circuit
stems from the current through the resistor Rge, and
the negative conductance Gy in the free-carrier circuit,
there exists a cross correlation between Iaps + Igen and
inet, and hence between Fiy and Fj,. It can be expressed

(FNn(t)Fp(u)) = (Fp(t)Fn (u))
—_9 (ﬂNo + B(No + Nir)po

Tsp Tsp

)5a—uy
(3.6)

Using (2.5), (2.8), (3.1), (3.3)-(3.6), and Wiener-
Khintchin’s theorem, the final expression for the
intensity-noise spectral density is

N
+ T_0+ | Dy |2 YiPot | Dy, — Dy /vm |2 TYmPo
nr

+ |
Tep

The six distinct noise contributions on the right-hand
side (RHS) of this equation stem from (left to right)
injection-current noise, spontaneous emission into non-
lasing modes, nonradiative recombination, cavity inter-
nal losses, mirror losses, and finally, stimulated emis-
sion, absorption, and spontaneous emission into the las-
ing mode. In the low-frequency region, Q < 7,, +7;, and
at pumprates several times the threshold pumping, (3.7)
can be substantially simplified. First it can be noted that
when these two conditions are satisfied, we have D; — 1
and Dy — v,, + 7;. As D; — 1, the contribution to the
spectral density from stimulated emission and absorption

|~ py 2 Bomo+ 1) + anol) _ 3.7)

fluctuations will become negligible. Furthermore, if in
addition, an electrical and an optical quantum efficiency
is defined, it is possible to express (3.7) in a particularly
simple manner. Inspecting (2.3), the electrical quantum
efficiency can be expressed

ﬁ[NO(pO + 1) - NtrpO]/'rsp

e = , 3.8
7 NO/Tsp+ NO/an‘*‘,B(NO - Ntr)pO/Tsp ( )
and the optical quantum efficiency is

np = —1m (3.9)

—'Ym+7p ’
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Using these relations, the low-frequency intensity-noise
spectral density at high pump levels reduces to
Sar lagym= %”- (7 + none(1 =mo) +1—1n.] . (3.10)
The three terms on the RHS of this equation stem
from injection-current noise, internal and external cavity
losses, and finally, nonradiative recombination and spon-
taneous emission into nonlasing modes, processes which
do not contribute energy to the lasing mode.

From (3.10), several known features from laser noise
theory can be derived. First, in an ideal laser, stimulated
emission will become the dominant recombination pro-
cess at high pumping, so that n. — 1. Hence, Sar |lagvynm
can be simplified to 2I,mo/e (single sided spectrum). At
the same time the output photon flux is given by I,no/e.
This means that the intensity noise is at the standard
quantum limit (Poissonian photon-counting statistics).
This is to be expected since a shot-noise-limited injection
current was assumed. If, on the other hand, the pump
noise is negligible, that is, the first term on the RHS of
(3.10) can be neglected, the output intensity-noise spec-
tral density will be 2I,70(1 — n9)/e. That is, the output
intensity noise will be a factor 1 — 7y below the standard
quantum limit. This is the pump-noise-suppressed laser.
It is well known that the noise suppression is limited by
the optical quantum efficiency of the device.

If the optical quantum efficiency can be increased to
unity, and the pump noise still could be made negligible,
then the term 1 —7, can no longer be neglected in (3.10).
The intensity-noise spectral density in this case is given
by 2I,(1 —7n.)/e. Since 1 —1n. o« 1/po, the intensity noise
can be very low at high pumping.

The intensity-noise reduction in this case is limited
only by nonradiative recombination and spontaneous
emission into nonlasing modes. In an ideal microcavity
laser with 7, — oo and 4 = 1 [14, 15], these detrimental
effects can be overcome, so there would be no intensity-
noise floor, and at frequencies near zero the light inten-
sity (photon flux) would be perfectly regular. Examples
of intensity-noise spectra for these driving conditions are
given in Fig. 3. All intensity-noise spectra in this paper
are normalized so that a spectral density of onehalf cor-
responds to the standard quantum limit. The following
parameters have been assumed for the laser: 75, = 1 ns,
Tor = 1 ps, B = 1073, n,. = 10'® cm~3, active volume
V =60 pm®, 3; = 101 51, 9, = 9 x 10! 571,

Before concluding this subsection, a few words should
be added on the role of the electrical quantum efficiency.
In the proposed laser model, the nonradiative recombi-
nation has been modeled simply by a recombination con-
stant 7. If, as has been implicitly assumed above, 7

J
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FIG. 3. The normalized intensity-noise spectral density as
a function of frequency. The curves are drawn at an injection
current 2, 5, 20, and 100 times the threshold current. The
solid lines represent a pump current with full shot noise, the
dashed lines represent a noiseless pump current. The dash-
dotted line represents a laser with no pump noise and with
v, = 0, and ym = 102 s7! yielding g0 = 1. The internal-
photon number at this injection-current level is = 15.5 million
and the overall quantum efficiency is slightly below 99%.

is independent of the pumping level, then 7. will be a
monotonous function of I, and as the injection current is
increased, 7. — 1. However, in real, nonideal lasers it is
often found that due to leakage effects, it is often difficult
to get the electrical quantum efficiency above, say, 90%.
Therefore we will keep the electrical quantum efficiency
as a parameter in our following equations instead of re-
placing it with a monotonous function of the injection
current.

Finally, in a recent paper Richardson and Yamamoto
have claimed that splitting a current between two parallel
resistors need not introduce any additional noise [16]. (In
contrast, splitting a light beam into two will introduce
additional noise.) If Richardson and Yamamoto’s claim
is correct, then the intensity-noise correlation between
two lasers will be even better than is predicted below.
However, this possibility will not be considered in this

paper.
B. Correlation spectra

The intensity-noise correlation from two series-coupled
lasers (denoted 1 and 2) can readily be obtained from
(3.7) by noting that only the first noise component, the
injection-current noise, is correlated in the two lasers.
Assuming that the two lasers are identical, the normal-
ized correlation spectrum becomes

I/e

Can,an(f2) = L N M

Tsp Tnr

—e-+——+-—+|D1 12 vipo+ | D1 — D2/¥m |2 Ympo+ | 1 — D1 |2(

B[No(po + 1) + NtrPo]) '
Tsp

(3.11)

Although it cannot be seen explicitly from this equation, the correlation is lost for frequencies higher than the inverse
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of the longer of the carrier lifetime and the cavity lifetime. The former goes to zero at sufficiently high pumping, so
the fundamental correlation-bandwidth limit is the cavity bandwidth, which for a typical semiconductor laser is on
the order of 50 GHz. In practice, however, at moderate pump levels the carrier lifetime in a laser is often on the order
of 100 ps, yielding a correlation bandwidth of perhaps 10 GHz. Examples of the normalized correlation spectrum
given by (3.11) are shown in Fig. 4.

It is straightforward to generalize (3.11) to the case where the lasers have different characteristics. Using 7.; and
noi, where ¢ = 1,2, and looking only in the low-frequency limit, (3.11) can be reexpressed

To1702
{[nd) + n01me1(1 — mo1) + 1 = neal[mds + mo2me2(1 — mo2) + 1 — nea]}1/2

Can an, lagyn= (3.12)

High above threshold, when 7.; and ., — 1, the nor-
malized correlation is simplified to

Can,an lagym= Vo17oz -

This result is of course expected, since under this driv-
ing condition, the only significant uncorrelated noise pro-
cesses between the two lasers are the respective cavity
internal losses. If the cavity internal losses are low, and
consequently the optical quantum efficiencies are high,
the two lasers will exhibit near-unity intensity-fluctuation
correlation.

If the optical quantum efficiencies of both lasers are
unity, then the correlation will be given by

(3.13)

CAIlyAIQ |n<‘1m = [(2 - 7]&1)(2 - "'Ie2)]_-1/2 (314)

~ (nel + 77e2)/2 .

As both 7.; and 7.2 approach unity as po/(1 + po), the
correlation will also approach unity just as rapidly.

C. Intensity-noise reduction

Measuring the intensity fluctuations of a single semi-
conductor laser, and feeding back the obtained signal to
regulate the current generator, Fig. 5, both the current
through the laser, and the intensity fluctuations from

°© o o
E - )

Nommalized correlation
o
[\ )

0 | 1
1072 107! 1 10 102 103

Frequency (GHz)

FIG. 4. The normalized intensity-noise-correlation spec-
tral density as a function of frequency. Since the lasers have
been assumed to be identical, the spectra are real. The pa-
rameters for the simulated lasers are the same as for the pre-
ceding figure. The injection current has been assumed to have
full shot noise. The dash-dotted line represents a laser with
v =0, and ym = 102 5! so that 0 = 1.

the laser, can be stabilized to fluctuation levels below
the standard quantum limit. However, if one tries to
extract the sub-Poissonian light from the circuit by split-
ting off a portion with a semitransparent beam split-
ter, the sub-Poissonian characteristics of the light are
quickly lost, and, in fact, the light-beam split off will
be super-Poissonian due to the anticorrelation imposed
by the beam splitter between the intensity fluctuations
of the transmitted (measured by the feedback loop) and
the reflected light [17]. Since, as shown above, the low-
frequency intensity noise of a high-quantum-efficiency
laser is essentially a replica of the current noise in the
driving circuit, a better strategy for feedback noise sup-
pression now emerges. Using two lasers in series, the first
can be used to measure the current noise in the circuit.
This information can be fed back to stabilize the current
fluctuations to a level below the standard quantum limit.
The output intensity of the second laser will subsequently
have fluctuations at a level below the standard quantum
limit. In Fig. 6 an alternative strategy for noise reduc-
tion is shown. Here, the correlation information is used
to reduce the signal intensity noise directly.

In practice it may not always be desirable to use the
correlation information to produce a nonclassical photon
state. When coding information onto a light beam by
using intensity modulation, the signal-to-noise ratio is
inversely proportional to the intensity noise. To increase
the sensitivity of the detector readout for a given signal
power, the noise in the signal beam should be minimized.
This could be achieved with feedforward or feedback ma-
nipulation described above. To use the correlation infor-

Feedback filter

Detection

Extracted light

FIG. 5. An intensity-noise-suppressing feedback loop. As
long as the loop is closed (no beamsplitter) the photon-
counting statistics of the laser light is sub-Poissonian. How-
ever, opening the closed loop by inserting a beam splitter
(dashed) while still operating the feedback loop with the
transmitted light, results in the extracted light being super-
Poissonian.
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FIG. 6. An intensity-noise suppression scheme. Instead
of regulating the signal beam by feedforward as shown, the
information could be fed back to regulate the injection cur-
rent. Thus, effectively, the second laser performs a quantum
nondemolition measurement of the current in the circuit.

mation fully to reduce the optical noise, either a high-gain
feedback loop is needed, or some nonlinear feedforward
manipulation of the photon beam. However, the correla-
tion information may equally well be used to subtract the
noise after detection of the (modulated but noisy) signal
in some systems. This would probably be simpler in prac-
tice, since it involves only linear electrical subtraction.
The requirement that the overall generation-to-detection
conversion efficiency is high remains the same in both
cases.

To show how much can be gained by using the correla-
tion information, we will calculate the resulting intensity-
noise spectrum assuming that ideal, wideband, noise-
less feedforward control of the laser light is employed.
(The “noiseless” condition requires nonlinear manipula-
tion of the beam intensity. However, it can be shown
[18] that the noise added by a linear device, e.g., a vari-
able attenuator, is negligible if the optical power is high.)
It can rather easily be demonstrated that the resulting
intensity-noise spectral density from such an ideal circuit
is given by [3,19]

GUNNAR BJORK 45
2 10* T T T T
g 10° -1
S
2
= 10 1
=]
3 10 i
o
@ ‘
8 1 F1=51 5 A —
B L - “Standard quantum limit
s 10— — 77— 1=1001 .
2 RS e
@ 102—//(1"/,6’ P -
g NN N .
Sé 1 ] IS I/ Z 1 ! Il
= 102 107! 1 10 102 103
Frequency (GHz)
FIG. 7. Normalized intensity-noise spectral density vs fre-

quency, for a laser whose intensity is regulated by using cor-
relation information from a second, identical laser coupled in
series. The dashed line represents the intensity noise of an
identical solitary laser driven by a noiseless current source at
100 times the threshold current. The dash-dotted lines rep-
resent the intensity noise of an ideal microcavity laser with
B = 1 and negligible nonradiative recombination after feed-
forward noise reduction using an identical laser.

when the overall transfer function H(S) (the Fourier
transform of the impulse response) is given by

San,an(®)

H() = Sar ()

(3.16)

where the asterisk denotes complex conjugation. An ex-
ample of noise-reduction spectra are shown in Fig. 7.

It is easy to compute the limit for noise reduction at
low frequencies using (3.10), (3.12), and (3.15). The re-

San min(Q) = San(Q)[1- | Can,an(®) 7, (3-15)  sultis
N
_ _ 2L, ([n8, + m017mer(1 — 01) + 1 = nea][m32 + mo2ne2(1 — mo2) + 1 — 7ea] — m3173, 1
SAIl,mm QLYm — D) . (3 7)
€ o2 + 770277e2(1 - 7702) + 1 =172

Assuming that the lasers are identical, so that we can
suppress indices 1 and 2, and assuming that the lasers
are driven several times above threshold so that 7, =~ 1,
(3.17) is reduced to

2Ipn0
e

Sar, min lagyn= (1 —=mn0)(1 +no) - (3.18)
This should be compared with the standard quantum-
limit spectral density at this power, 2I,7m0/e, and the
spectral density for a pump-noise-suppressed laser de-
rived in Sec. IITA, 2I,mo(1 — no)/e. When g — 0
the three spectral densities tend to the same value. In
this case the intensity noise is dominated by the cav-
ity internal-loss fluctuations and not by injection-current

fluctuations. Thus the intensity fluctuations of the two

r

lasers are uncorrelated and reduction of the pump noise
has no effect.

On the other hand, if o — 1, the intensity noise
of both the series-coupled laser scheme and the pump-
noise-suppressed laser will go below the standard quan-
tum limit. The residual noise of the series-coupled laser
scheme will essentially be twice as large as that of an
identical pump-noise-suppressed laser. This is easily ex-
plained by the fact that in subtracting the correlated
noise of the measured laser, one simultaneously is adding
the uncorrelated noise of the laser. Thus the final noise
level after pump-noise subtraction is twice the residual
noise of a solitary, pump-noise-suppressed laser. In Fig. 7
one can see that high above threshold pumping, the noise
of the pump-noise-suppressed laser (dashed) is at a level
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one tenth of the standard quantum limit since the opti-
cal quantum efficiency of the modeled laser is 90%. The
ultimate residual noise level of the feedforward scheme
(solid) is twice as large.

If the optical quantum efficiency of both the lasers is
unity, then

=2

San,min lagym= = (

(2 = 1e1)(2 = me2) — 1)
2 - Ne2 '
(3.19)

At high pumping when 7. — 1, and assuming that the
lasers are identical, the residual noise spectral density
can be written 4I,(1 — n.)/e. This is once again twice
the noise level achievable with a pump-noise-suppressed
laser, for the same reason as stated above. We can note
that using two ideal microcavity lasers, with unity quan-
tum efficiency, the intensity-noise correlation is perfect at
frequencies near zero, irrespective of the pumping level
(the residual noise after correction is proportional to Q2
in Fig. 7).

Before leaving the noise-reduction issue, one may ask
if the residual intensity noise of a series-coupled feedback
scheme cannot be smaller that roughly twice the noise
level of an identical, solitary, noise-suppressed laser. The
answer is that it can. The residual intensity noise af-
ter, e.g., feedforward correction can be arbitrarily close
to the noise level of the pump-noise-suppressed laser if
one is willing to pay the price of increasing circuit com-
plexity. Assume that M + 1 identical lasers are cou-
pled in series with a current source, and the lasers are
driven high above threshold. Then, the light intensi-
ties of M of the lasers are detected, and the information
from each laser is fed forward to regulate the intensity
of the last laser beam. Using the nonideal transfer func-
tion H(Q2) = —1/M for each laser (it can be shown that
when M — oo this is the ideal transfer function in the
low-frequency limit), the residual intensity noise will be
2I,m0(1 — no)(M + 1)/(eM). This noise level is a factor
1+41/M above the residual noise of an identical, solitary,
pump-noise-suppressed laser. The reason the noise level
approaches that of a pump-noise-suppressed laser is that
when measuring the uncorrelated noise processes of M
lasers and taking the ensemble average, the average will
be proportional to 1/M. As M gets large, the residual
noise of the laser subject to feedforward manipulation is
simply its own residual intensity noise which is uncorre-
lated to all noise processes in the other M lasers.

IV. LIGHT-EMITTING DIODES

Most of the reasoning and the arguments for intensity
noise correlation and reduction pertaining to laser diodes
can also be applied to light-emitting diodes. There are
only two significant differences between the two devices.
First of all, the emission from an ordinary LED is emitted
into many modes. This makes the exact analysis difficult,
but here we will not deal with the individual modes, but
only with the total detected photon flux. Second, there
is very little optical feedback (ideally none) in a LED,
so stimulated emission and absorption processes can be
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neglected. The fact that stimulated emission is negligible
in a LED unfortunately means that contrary to an ideal
laser, where 7. — 1 as the injection current is increased
above the threshold, 7, in a LED is almost independent
of the injection current. It is simply given by the ratio

_ 1/7ep
T rep+ 1/

between the spontaneous-emission lifetime and the non-
radiative lifetime, both of which remain relatively con-
stant with increasing injection current. Of course, the
intensity correlation is degraded by a nonunity 7.

We will start the analysis with the rate equation for
the free carriers. Neglecting the stimulated emission and
absorption terms, Eq. (2.3) reads

dN I, N N

—_— =t — 4+ FN.
dt e Tap -r,,,+ N

e (4.1)

(4.2)

The steady-state solution to this equation is trivially
found to be Ng = I,/[e(1/7sp + 1/Tnr)]. The correlation
function for Fix in this case (when the stimulated pro-
cesses and their corresponding noise sources are absent)
can be written

(Fn(t)Fn(u)) = 2 (%” + —iv—: + iv—") St—u).  (4.3)

We will not write any corresponding rate equations for
the photons. The reason is that in order to have a
good intensity-noise-correlation between two LED’s, the
overall detection efficiency of the emitted photons must
be high. This effectively means that the photodetector
must measure the added power of many modes, each one
weakly coupled to every other via (4.2). Such a multi-
mode analysis goes beyond the scope of this paper. How-
ever, it is well known that the photon-counting statistics
of each of the individual modes satisfies a thermal (expo-
nential) distribution. It is also known that the photon-
counting statistics of a superposition of these modes ap-
proaches the statistics of the injection-current noise when
the overall generation-to-detection efficiency approaches
unity, and when the photon-counting time is much longer
than the free-carrier decay time [13]. This is a conse-
quence of energy conservation. Thus we will assume that
the low-frequency intensity noise of a LED driven by a
shot-noise limited current source is

Sar lagi/r,= 2Ipneno/e , (4.4)

where 7 is the overall detection quantum efficiency of the
generated photons. The detected intensity is In.m0/e.

Inspecting (4.2) and (4.3), and taking the optical quan-
tum efficiency into account, it can be deduced that the
pump noise contributes a fraction 2I,72nZ/e to the to-
tal output noise. The low-frequency intensity-noise-
correlation spectrum of two LED’s, 1 and 2, can therefore
be written

San,arn; lagr,= 2Ipneinoine2noz/e - (4.5)

It is clear from (4.2) that the correlation is rapidly de-
graded for frequencies higher than Q > 1/7p + 1/m =
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1/7spne. For a typical LED, this bandwidth is in the
order of 1 GHz.

The normalized intensity-noise-correlation spectral
density is found from (4.4) and (4.5)

Can,arn, lagrn,= VNe1M01Me2M02 - (4.6)

This somewhat heuristic result seems plausible, since for
a LED, which is a linear device, both the electrical and
the optical quantum efficiencies should enter the correla-
tion equations on equal footing. It should be noted that
since (4.6) is partly derived from energy conservation ar-
guments it holds only when 7.1m01 & 7e2702 = 1. This is
not a serious limitation since only when this condition is
satisfied can significant correlation be observed.

When using the information about the injection-
current noise obtained from one LED and feeding the
information forward to regulate the second LED’s inten-
sity, the minimum residual intensity noise of a shot-noise-
driven LED can be found from (3.15), (4.4), and (4.6).
The result is

21,
€

Sary,min o€y = —e1mM01(1 = Ne17017e2702) - (4.7)

This is to be compared with the minimum residual noise
from an injection-current-noise-suppressed LED which
can be obtained simply by subtracting 2I,nZn/e from
(4.4), due to the fact that the pump noise is uncorrelated
with every other noise process in the LED. The minimum
noise spectral density in a noise-suppressed LED is

SAI, ,min |Q<'y,,.: 2Ip7’e770(1 - T)eTIO)/e . (48)

If the LED’s are identical and have a high overall quan-
tum efficiency, then (4.7) gives a residual noise level
about twice that of (4.8). In analogy with the semicon-
ductor laser, by coupling a large number of LED’s in
series, the residual noise of the manipulated LED can be
made to come arbitrarily close to that of an equivalent,
solitary, injection-current-noise-suppressed LED.

V. DISCUSSION

In the previous two sections it has been shown that
the intensity-noise correlation between two semiconduc-
tor lasers, or LED’s, coupled in series is sufficiently strong
to produce nonclassical intensity-noise reduction. It has
also been demonstrated that the residual noise after feed-
back or feedforward manipulation of one of the beams
will always be roughly twice as large as if the laser
injection-current noise was suppressed. Thus it is clear
that injection-current noise suppression, easily achieved
in practice by adding a large source resistance to the
circuit, will always be more effective than using the cor-
relation information for noise suppression. What should
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be noticed, however, is that a laser effectively monitors
the current in a circuit in a nondestructive manner. This
could potentially find applications.

It has also been demonstrated that the twin beams
from two semiconductor lasers can have near-unity in-
tensity correlation over a bandwidth of about 10 GHz.
The fundamental bandwidth limit is almost an order of
magnitude higher. Even LED’s can have high correlation
over a bandwidth of roughly 1 GHz. This is in sharp con-
trast to optical parametric oscillators which up to date
have been the most commonly used generators of corre-
lated twin beams. Due to weak optical nonlinearities in
crystals, oscillators used for correlated twin beam gen-
eration have bandwidths only of the order of 20 MHz.
With monolithic ring cavities, the bandwidth may in-
crease to a few GHz [20], still not quite as wideband as
semiconductor-lasers cold-cavity bandwidths. If one is
willing to use pulsed light, then the bandwidth of optical
parametric amplifiers is comparable with that of lasers,
but the available mean power is rather small.

The laser twin beam generation scheme has another
advantage over frequency down-conversion generation.
In the latter, the sum of the signal and idler optical fre-
quencies must always equal the pump frequency. With
lasers, one is free from such constraints. One can use any
two wavelengths where high-quantume-efficiency lasers
and photodetectors are available. In principle, most of
the visible spectrum and some of the near-infrared spec-
trum can be used. In addition, the semiconductor laser
is monolithic and mechanically stable. It does not re-
quire a powerful and expensive pump laser and it is easy
to handle. Thus, in many respects it looks more attrac-
tive to use for correlated twin beam generation then any
frequency down-conversion device.

VI. CONCLUSION

It has been demonstrated that two lasers coupled in se-
ries with a shot-noise-limited current source have strong
intensity-noise correlation. The correlation is limited
only by the overall generation-to-detection quantum effi-
ciency of the devices. At injection currents that are a few
times above threshold, most of the injected free carriers
are converted to photons due to the rapid stimulated-
emission process. In this regime, the correlation is lim-
ited by the laser internal losses and the detection quan-
tum efficiency only. If the latter approaches unity, then
a nonclassical state with sub-Poissonian photon-counting
statistics can be generated by measuring the intensity
fluctuations of one of the lasers and feeding back, or for-
ward, the information to manipulate the intensity of the
other laser. The residual noise after feedback or feedfor-
ward manipulation is roughly two times larger than the
noise of the laser if it were fed by an injection-current-
noise-suppressed source. The noise-reduction bandwidth
is the same in the two cases, fundamentally it is of the or-
der of 50 GHz for a typical semiconductor laser. In prac-
tice it is from a few to 10 GHz. It has also been shown
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that the intensity noise of two LED’s coupled in series
is also correlated. Unfortunately it will be more difficult
to realize a near-unity quantum efficiency and hence a
high correlation with such devices. In addition, the cor-
relation bandwidth (and thus potential noise-reduction
bandwidth) is more limited, it is of the order of 1 GHz.
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