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Resonant multiwave-mixing spectra of gas-phase sodium: Nonperturbative calculations
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We perform nonperturbative calculations of resonant multiwave mixing of two high-intensity laser

beams of different frequencies both for a general three-level system and for the 3 Siy2 —3 Piy2 electronic
resonance of the sodium atom. Our calculations proceed by direct numerical integration of the density-

matrix equations and subsequent Fourier analysis of the calculated time-dependent density-matrix ele-

ments. We examine the case where two nearly degenerate input beams are each detuned many collision-

al linewidths from electronic resonance, and the frequency difference between the input beams is tuned

through a ground-state resonance. Unlike previous high-intensity analyses, each input beam can be reso-

nant with numerous transitions simultaneously; for a three-level system, we refer to this as an "M-type"

system, in analogy with A- and V-type systems. Calculated four-, six-, and eight-wave-mixing spectra ex-

hibit subharmouic resonances of the type observed experimentally by Trebino and Rahu [Opt. Lett. 12,
912 (1987)]. The three-level system is studied to gain insight into the physics of these subharmouic reso-

nances. For more quantitative comparison with experiment, we use a model that includes the 16 Zee-

man and hyper5ne states in the 3 S&~2 and the 3 P&&2 levels, and accounts for arbitrary linear polariza-

tion of the input laser radiation. The relative intensities of the resonance features in the calculated

multiwave-mixing spectra show good agreement with experiment. These resonance features broaden and

shift as laser intensity increases, as predicted for four-wave-mixing processes in previous, less general

high-intensity analyses. Both theory and experiment also show additional resonant features in the

eight-wave-mixing spectra that appear at very high intensity.

PACS number{s): 42.65.—k, 32.80.—t, 31.30.Gs, 02.60.+y

I. INTRODUCTION

The physics of wave-mixing interactions has been the
subject of intense research activity for the past few de-
cades. Much of this work, both experimental and
theoretical, has been based on perturbation theory, which
su5ces for most low-intensity cases. The second- and
third-order susceptibilities, for example, form the basis of
many important diagnostic methods and optical devices.
Phase conjugation, harmonic generation, frequency shift-
ing of laser radiation, and various laser methods for prob-
ing the spectroscopy and thermodynamic properties of
media [1—5] are just a few techniques that have been suc-
cessfully described by theories that are perturbative with
respect to the interaction of laser radiation with electron-
ic resonances. For example, coherent anti-Stokes Raman
scattering (CARS) is a well-developed four-wave-mixing
technique for measuring temperature and detection of
gas-phase species [3-5]. For diagnostic applications of
CARS, laser intensities are typically limited so that the
third-order susceptibility given by perturbation theory is
still valid (i.e., negligible population transfer and Stark
shifting).

Higher-order wave-mixing effects have been observed
in several experiments. Zhang, Wang, and Schawlow [6]
and Zhang and Schawlow [7] studied the generation of
coherent ultraviolet radiation by four- and six-wave mix-
ing in gas-phase potassium. Reintjes, She, and Eckardt
[8) observed frequency conversion of 266-nm laser radia-
tion in helium due to y' ' and y' ' processes. In this in-
vestigation some care was required to determine that fre-

quency conversion was due to true y' ' and y' ' processes
and not to cascade generation of higher harmonics by
multiple lower-order wave-mixing processes. Raj et al.,
[9] used higher-order phase-matching geometries to study
higher-order susceptibilities in resonant, degenerate wave
mixing. Trebino and Rahn [10] observed effects due to
nonlinear susceptibilities as high order as y" ' in an
eight-wave-mixing geometry in nearly degenerate wave
mixing in gas-phase sodium in a flame. Debarre,
Lefebvre, and Pealat [11] observed six-wave-mixing
effects in vibrational CARS spectroscopy of hydrogen
and nitrogen, where the pump and Stokes laser frequen-
cies were far from electronic resonance. Higher-order
wave-mixing effects were probably also observed by
Zheng, Wang, and Wu [12], who postulated that higher-
order wave mixing was responsible for sidebands in the
output of a bifrequency HeNe Zeeman laser. Very-high-
order wave mixing has been observed in the interaction of
very-high-intensity laser radiation with noble-gas atoms;
harmonics of order 31 and higher have been observed
[13,14]. These effects involve very high laser intensities,
on the order of 10' %/cm, where perturbation theory
ceases to be valid and significant Stark shifting and pho-
toionization occur. Kulander and Shore [15] and Eberly,
Su, and Javanainen [16] have successfully modeled this
process by direct numerical integration of the time-
dependent Schrodinger wave equation.

The theoretical work discussed in this paper was
motivated by the experiments of Trebino and Rahn [10]
who observed higher-order effects in the course of per-
forming four-wave mixing (4WM) experiments on sodium
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in flames. In their experiments, two pulsed, nearly
Fourier-transform-limited laser beams with frequencies
co, and co& approximately 2 crn ' below the
3 S,&z

—3 P, ~z electronic resonance were used to excite
the sodium atom. The energy-level diagram for the 4%M
experiment is shown in Fig. 1. Spectra for this system
were determined as a function of detuning frequency
co, —co~, co, was fixed and cuz scanned across the hyperfine
resonances. At low laser intensities, in the absence of a
magnetic field, 4WM resonances were observed at
co, —co&=0, corresponding to the Zeeman coherence, and
at
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corresponding to the hyperfine splitting cohf, .
The effect of collisions and the laser polarizations on

these resonances had been investigated previously in de-
tail by Rothberg and Bloembergen [17] using cw lasers in
a sodium cell. The experiments of Trebino and Rahn
were performed at much higher laser intensities than
those of Rothberg and Bloembergen. At low laser inten-
sities, the spectra of Trebino and Rahn were qualitatively
similar to those of Rothberg and Bloembergen. As laser
intensities increased, however, the 4WM resonances at
cogf broadened and, more significantly, spectral features
appeared at the subharmonic resonance frequency coh f /2.
Hypothesizing that these subharmonic resonances were
the result of higher-order wave-mixing processes, Trebino
and Rahn performed experiments using higher-order
phase-matching schemes to selectively detect signals due
to six- and eight-wave mixing. A typical eight-wave-
mixing spectrum is shown in Fig. 2. Strong subharmonic
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Cd -M

FIG. 2. Eight-wave-mixing spectrum for gas-phase sodium in

a flame [10].

resonances are observed at +co&f, /2 and +cohf, /3; weaker
subharmonic resonances are also apparent at +cohf /4
and +cohf, /5.

Perturbation theory has been very useful in describing
these higher-order wave-mixing experiments. Agarwal
[18] used perturbation theory (and several other ap-
proaches) to derive the existence and frequencies of
subharmonic resonances seen in several higher-order ex-
periments. Kothari and Agarwal [19] considered the
effects of collisional mixing on subharmonics that overlap
in molecular spectra using the fifth-order susceptibility.
Trebino and Rahn [20] used perturbation theory to ex-
plain the subharmonics they saw at —,', 3 4 and —,

' of the
hyperfine splitting cohf, of the sodium ground state.
Indeed, their theoretical eight-wave-mixing spectrum fits
their data reasonably well, except near zero frequency,
where contributions from twelve-wave and higher-order
wave mixing are probably important. The advantage of
perturbation theory is that simple energy-level diagrams
or Feynman diagrams show that subharmonics at 1/n of
a transition frequency result simply from 2n-photon reso-
nances; the resulting resonance condition is

(co&
—

co& )= cohf /n . (2)
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FIG. 1. Energy-level diagram for multiwave mixing in the
sodium 3 'S

1 ~&
—3 'P, z, electronic system.

While the simple explanation of the existence of
subharmonic resonances that is provided by perturbation
theory is encouraging, there are severe drawbacks to its
use in general for describing these experiments. As was
apparent in the experiment of Trebino and Rahn [10], the
range of applicability of perturbation theory can be quite
small for a higher-order wave-mixing experiment: Short-
ly after sufficient intensity is attained to generate
significant signal from a higher-order effect, still higher-
order processes must be considered. Consequently,
perturbation-theory calculations can be become quite in-

tractable, and it becomes difficult to extract understand-
ing of the underlying physical processes involved in
higher-order wave mixing, thus eliminating one of the
major advantages of the use of perturbation theory. In
addition, because monochromatic laser radiation is gen-
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erally assumed in frequency-domain perturbation theory,
a frequency convolution over laser line shapes must be
performed, and this convolution is very complex for
higher-order wave mixing, involving many different in-
tegrals for a given resonance. Worse, the applicability of
some of the major assumptions of the perturbation ap-
proach is questionable for modeling these high-intensity
experimental spectra. In particular, the assumptions of
negligible population transfer and steady state probably
did not hold for any but the lowest laser intensities used
by Trebino and Rahn [10].

Various approaches, such as transformations to rotat-
ing frames or the use of dressed states, have traditionally
been used to describe high-intensity problems. Such ap-
proaches to nonlinear-optical wave mixing have been suc-
cinctly reviewed by Levine et al. [21]. We mention a few
important examples of this work here. Levine et al. [21]
solved the Maxwell-Bloch equations for four-wave mixing
in a four-level system analytically, assuming that each of
the three laser fields considered interacted only with a
single pair of levels and that there was no collisional or
radiative damping. In a later article by the same group,
Chencinski et al. [22] included collisional and/or radia-
tive relaxation in their treatment of the problem. Dick
and Hochstrasser [23] also considered four-wave mixing
in a four-level system. They included damping in their
treatment, but assumed that one field was weak and ob-
tained a perturbation-theory solution to the problem.
Wilson-Gordon and Friedmann [24] considered satura-
tion effects in four-wave-mixing spectra in a two-level
system where one of the beams was nearly resonant and
the other beam was tuned through electronic resonance.

While this work has resulted in the elucidation of the
fundamental physics of the four-wave-mixing interaction
of high-intensity laser radiation in simple systems, more
complex interactions with many-level systems (e.g. , actu-
al atoms and molecules} have not received much atten-
tion. In addition, it has generally been assumed that each
input beam can be resonant with only one transition. In
real systems, by contrast, degeneracies abound, and each
laser beam may be nearly resonant with several transi-
tions with nonzero dipole-moment matrix elements.
None of the above work considered the possibility of
higher-order wave mixing.

Agarwal [25] developed a nonperturbative model for
higher-order wave mixing in an idealized three-level sys-
tem (lower levels a and b, upper level c). Using an
effective Hamiltonian that couples the Stokes and anti-
Stokes lines, he was able to derive the odd subharmonics.
He calculated the two-beam-coupling gain, the four-
wave-mixing signal, and the six-wave-mixing signal. At
high intensity, he obtained broadening and frequency
shifts of these new resonances (to larger values of co, —co2)

in all spectra. In addition to a deep hole appearing in the
two-photon resonance line of the four-wave-mixing spec-
trum, as seen in other four-wave-mixing work, he saw a
small dip in the co,b/3 resonance line at high intensity.
Oliveira et al. [26] have considered theoretically six-wave
mixing in a four-level system (lower levels a and b, upper
levels c and d }, assuming that the laser beam at co& is res-
onant with electronic transition ac. They predict Stark

splittings in the six-wave-mixing spectrum as ~2 is tuned,
corresponding to the Rabi frequency for the interaction
of the laser field at co& with the resonance ac. While these
studies are very interesting, it is not possible to compare
the results with experiment because only idealized three-
and four-level systems were considered.

In this paper we model the resonant higher-order
wave-mixing spectra of Trebino and Rahn [10] using a
nonperturbative approach involving direct numerical in-

tegration of the density-matrix equations. In our
analysis, the time-dependent density-matrix equations are
solved for a multilevel system irradiated by two nearly
resonant, nearly frequency-degenerate laser beams. This
approach is similar to previous studies of saturation in
CARS (Refs. [27—29]} and of picosecond-pulse
amplification in a multilevel XeC1 excimer gain medium

[30]. The assumptions of steady state and negligible pop-
ulation transfer are unnecessary with this approach. In
addition, because the laser temporal pulse shape is a
direct input to the code and the time-dependent medium
polarization is calculated directly, no frequency convolu-
tions are necessary in the calculation of the multiwave-

mixing spectra. We allow a11 input beams to be resonant
with all (electronic) transitions. In analogy with A- and
V-type systems, we call this an "M-type" system in the
limit of three levels. The reason for this name is evident
in Fig. 3.

We compute spectra, both for a three-level system and
for the hyperfine and Zeeman-level system of sodium,
showing the wave-mixing signal strength versus frequen-

cy difference in four-, six-, and eight-wave beam
geometries. At low intensities, we find that subharmonics
appear in the higher-order spectra (unless prohibited by
selection rules). At higher intensities, additional subhar-
monics appear at lower frequency co„&,ln, where n in-

creases. These results are as expected from perturbation
theory. At higher intensities, however, effects generally
associated with the breakdown of perturbation theory
occur, such as spectral-line broadening and shifting. The
magnitudes and directions of the shifts vary from subhar-
monic to subharmonic. The relative intensities of the
subharmonic spectral features change significantly as
laser intensity increases; at higher intensities, high-order
subharmonics grow to dominate the lower-order subhar-
monics. At the highest intensities considered, a dip ap-
pears in one of the subharmonic resonances, drifting
across the spectral line as laser intensity increases. In ad-

FIG. 3. Schematic diagram of the M-type system.



8212 ROBERT P. LUCHT, RICK TREBINO, AND LARRY A. RAHN 45

dition, resonances of unknown origin appear at these
high laser intensities.

II. DENSITY-MATRIX FORMULATION
FOR CALCULATION OF

MULTIWA VE-MIXING SPECTRA

A. Manipulation of the density-matrix equations
for computer solution

The interaction of laser radiation with a multilevel sys-
tem is described by the time-dependent density-matrix
equations [31—33]

1p„„=——g(V„P„—p V „)—I„p„„
m

1. Case 1: Coupling between upper level p
and lower level j

When p is an upper level and j is a lower level, the off-
diagonal matrix elements p will be driven at frequencies
close to co]. Consequently, we can define the slowly vary-
ing quantity 0 pj,

1
I tiJ f

I PJ PJ

Substituting Eq. (8) into Eq. (4) and multiplying both
+ l CO( f

sides of the equation by e ' gives

PJ i PJ PJ ) PJ PJ

+yr „p
2

PI&= Pk, ('~t&+3'k&)
&

g(Vk P J Pk
m

(3)
l + ltd)f

Vpie
'

(plJ ppp
)—

l +1COI f l + l COI f——g V e 'p + —QP, VJe
m S

(9)

where j, k, and m are arbitrary levels. For the off-
diagonal matrix elements, pk =p'k. The angular frequen-
cy cokJ =( Wk —

WJ )/h', where Wk is the energy of level k.
The quantity yk is the dephasing-rate constant for the
off-diagonal matrix element pk . The quantity I k is the
sum of the spontaneous-emission and coliisional-
transfer-rate constants from level k to level j, and I k is
the total transfer-rate constant out of level k.

The interaction matrix element Vk is given by

V„~= —dk~. E(t ),
where dk is the electric dipole matrix element and E(t)
is the electric field. The dipole matrix elements dl, k =0.
When k and m are both upper or both lower levels,
dk =0. The electric field is given by

E(t)=—,
'

I e& A
&
(t )exp[i(k, r —co&t ) ]

The notations m and s under the summation signs denote
summation over all states in the ground and excited elec-
tronic levels, respectively. It is helpful to define the radi-

+ ltd)if
ative interaction terms Qp = V e /16,

+ l COi f + ltd)f
QPJ=VPJe i, and Q,J=V,Je i/A'. Rewriting these
expressions in terms of real and imaginary parts and
neglecting terms that oscillate at optical frequencies in
accordance with the rotating-wave approximation gives

Q" = — [d'" A, +d "
Azc os(bt) d~' A2si—n(bt)],1

pm 2g pm 1

(10)

[d~" A &+d~' A2cos(ht )+d~" A2sin(bt)],
1

pm 2~ pm 1

+e,A, (t)exp[i(k, r —~,t)]

+e3A3(t)exp[i(k3 r —to&t)]+c.c.], (6)

where fields A, and A3 have the same frequency co&, but
will in general have different propagation directions. For
simplicity, we will assume that e&

=e3, k, =k3, and that
A, = A,*. Furthermore, we will solve the density-matrix
equations for r=0 only. We can redefine the amplitude
A& as the sum of amplitudes A, and A3. The electric
field is thus given by

E(t)= —,
' [e,Ai(t)e ' +e2A2(t)e ' +c.c. ] . (7)

Equations (3) and (4) must be manipulated for comput-
er solution. For clarity in this paper, the indices j, k,
and m will be assigned hereafter to states in the ground
electronic level, and the indices p, q, and s will be as-
signed to states in the excited electronic level. We will
separate the solution of Eqs. (3) and (4) into the following
three cases: (1) upper level p and lower level j, (2) lower
levels j and k, and (3) upper levels p and q.

and similar expressions for 0 and 0, . The radiative in-
teraction terms Qp Qpj and Q, have units correspond-
ing to Rabi frequencies, but they account for the interac-
tion of both laser fields with the resonance pm, pj, or sj
and are modulated at the beat frequency 5 between the
two laser fields. In Eqs. (10) and (11), the dipole matrix
element d" =d' e&, d " =d' .e2, etc. The super-
scripts r and i refer to real and imaginary components, re-
spectively. The quantity 5=~, —co2.

Solving Eq. (9) for the real and imaginary parts of the
off-diagonal matrix elements gives the following set of
equations:

~JJ')~JJ 1'JJ~JJ+Qti (PJJ pm )

+ g(Q' p' +Q' p', )
—g(p",Q,' +p', Q," ),

(12)
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pj pi 1'pi pi pj Pii Ppp

+ g( —Q" p" . +Q' p' . )

+ g (p",Q,".—p', Q,' ) .

2. Case 2: Coupling between lower levels k and j

(13)

lPk' ~k Pk 1 k Pk

+ g( —Qi 0,"~. +Q'k, o,'j+ok, Q," —aI Q,'. ) . (21)
S

(b) k =j. Manipulating Eq. (3) for the diagonal ma-
trix element in a similar fashion and using the same
definitions for Qk, and Q,k [Eqs. (16}—(19)],we obtain

(a) kAj. We assume that the single-photon, electric
dipole matrix element between lower levels can be
neglected. Consequently, in Eq. (4) we will sum only over

upper levels s,

p„„=—r„p„„+yr,„p„+g r „p
s mAk

+ X (Qk ~sks+Qk+sks~ksQsk ~ksQsk } ~

S

(22)

l
pkj pkj ( ~kj +'Ykj )

g P ( Vkspsj pks Vsj )
S

(14)
Equation (22) describes the time dependence of the popu-
lation for level k.

Pkj Pkj(i~kj+3 kj )

l —iCO/t +iCO)t——g(Vk tr, e ' —oke '
V, ) .

S

(15)

The off-diagonal element Pk- oscillates with a frequency
close to cokj, much less than the typical optical frequency
co&. On the other hand, the off-diagonal elements p, and

pk, oscillate with frequencies close to co„asdiscussed in
Sec. II A 1. In terms of the slowly varying quantities 0.,J
and o k„Eq.(14) becomes

3. Case 3: Coupling between upper levels p and q

(a) p&q. The derivation for case 3 is very similar to
that for case 2. We again assume that the electric dipole
matrix elements between upper levels can be neglected.
In Eq. (4) we will sum only over lower levels m,

As in Sec. II A 1, the radiative interaction terms
ltd)E + l CO) f

Qk, =Vk, e '/fi and Q,j=V,je '/l are defined as
follows:

l
Ppq Ppq pq 7'pq X pmPmq Ppm mq

m

(23)

1
Qk, = — [dk,"A, +dk,"A icos(b t )+dk,' A&sin(ht )],

2A

(16)

In terms of the slowly varying quantities ~mq and opm,
Eq. (23) becomes

1
OI'= — [dk,'A, +dk,' A icos(ht ) —dk,"A&sin(ht )],2'

(17)

ppq
=

ppq(i ~pq+
—

ypq )

l + le)f l 6)1~g ( Vpmtrmq trpme Vmq
) '

m

(24)

Q,"1 = — [d,z'A i+d,z"A2cos(b t ) —d,z' As2in(b, t )],1

2X

Q,'.= — [d,"A, +d, 'A2cos(bt)+d, ."A&sin(ht)] .1
$J 2g $J

(19)

+ l COl f
We define the quantities Q = V e ' /A' and

Q q=V qe '/A' as in Eqs. (16)—(19}. Solving for the
real and imaginary parts of ppq in terms of Q~ and 0

q

gives

l
P sq sqPJ q ~sqPsq

+ P (Qpm ~mq +Qpm ~mq +pm Qmq +pm Qmq }

Equations (16)—(19) are very similar to Eqs. (10) and (11)
but they are not identical. Solving for the real and imagi-
nary parts of Pk in terms of Qk, and Q, - gives

~ r i r
P kj ~kj Pkj V kj Pkj

(20)

l l
~sqP~q ~wPIq

(25)

(26)
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(b) p =q. As for case 2, we can solve Eq. (3} for the
diagonal matrix element

p„=—r,p„+y r„p„+y(f),," o,+n

S,(4', —3',)= fP, (t)e ' ' dt

(34)

—o" 0' —o' 0" ) .

P(t)=Tr[p(t)d]= g gp, (t)d, . (28)

Nonzero density-matrix elements exist only between
upper levels s and lower levels m. In terms of slowly
varying components, Eq. (28) becomes

P(t)= g ger, e 'd, + g ger, e 'd, . (29)

The polarization P(t) has polarization components
aligned with the polarizations e, and e2 of fields 1 and 2:

P, (t)= g g rc, e 'd, ' + g go, e 'd',

(27)

B. Solution of the density-matrix equations and calculation
of the medium polarization

Equations (12), (13), (20)—(22), and (25)—(27) are in-
tegrated numerically to give the time-dependent diagonal
and off-diagonal density-matrix elements for a multilevel
system interacting with two laser beams. The medium
polarization serves as the source term in Maxwell's equa-
tions for the higher-order wave-mixing signals. In terms
of the density-matrix elements, the medium polarization
P(t) is given by [33]

» Eqs. (32)—(34), terms that oscillate at optical frequen-
cies are neglected in the numerica1 integration. Fourier
analysis of the polarization in these calculations serves
the same purpose as phase matching in the experiments
by selecting only certain frequency components that arise
from the wave-mixing process. Experimentally and com-
putationally, higher-order wave-mixing components may
contribute to a wave-mixing signal of a certain order.
For example, the calculated eight-wave-mixing (8WM)
signal may also contain contributions due to wave-mixing
processes of order 10, 12, etc. These processes are ob-
tained by adding and subtracting one or more of either
input frequency (or lc vector} in the phase-matching equa-
tions. A11 of these wave-mixing processes are also al-
lowed in an 8WM phase-matching geometry [10,20]. Of
course, this interpretation will not hold when perturba-
tion theory breaks down.

It should also be noted that the Fourier analysis of the
calculated polarization breaks down at zero frequency
difference (co, =co&). At zero frequency difference it is no
longer possible to distinguish the various wave-mixing or-
ders. Experimentally, geometric phase matching discrim-
inates among wave-mixing orders even for degenerate
beams.

III. MULTI%'AVE-MIXING CALCULATIONS
FOR A THREE-LEVEL SYSTEM

(30)
A. Multiwave-mixing interactions

in the three-level system

P2(t)= g go, e 'd, + g ger, e 'd2,

(31)

Multiwave-mixing intensities are calculated by Fourier
analysis of the polarizations P&(t ) and Pz(t ). For exam-

ple, the four-wave-mixing signal with polarization ez is
given by the power spectrum of P2(t) with respect to

2' 1 C02,

S4(2', —co2)= f P~(t)e ' ' dt

In this section the numerical analysis of multiwave
mixing described in Sec. II is applied to a three-level sys-
tem consisting of two ground levels of nearly equal ener-

gy and one excited electronic level. Some of the essential
physics of the multiwave-mixing interaction wi11 be illus-
trated by first considering this relatively simple three-
level system. irradiated by laser beams with parallel polar-
ization. Later, the more complex case of a 16-level sys-
tem irradiated by two laser beams with perpendicular po-
larizations will be considered.

The three-level system is schematically illustrated in

Fig. 4. We assume that both ground levels are radiatively

2.0 cm

the six-wave-mixing signal is given by

S6(3', —2'~) = fP~(t)e ' ' dt

17 000 cm

(33) 0.059 cm

and the eight-wave-mixing signal is given by FIG. 4. Energy-level diagram for the three-level system.
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TABLE I. Values of the collisional rates used in the three-level model calculations.

Ground-state coherence
Electronic resonance

Ground states
Electronic transfer

Coherence dephasing collision rates
y»=y»=2. 0X10' sec

F13 3 31=712=F23=5.0X 10 se

Population transfer collision rates
I, =I,=1.0X10 sec
I 32 I 3l 5.0X 10 sec
~23 ~13

coupled to the excited electronic level by both of the
nearly degenerate laser beams. The collisional parame-
ters for the three-level system are summarized in Table I.
The dipole-moment matrix elements d &3

=d 23
=d» =d 23

are assumed to be real.
The laser beams are assumed to be linearly polarized in

the same direction [e& =e2, P, (t ) =Pz(t ) =P(t ) ]. The
laser pulse shape is modeled as Gaussian with a full width
at half maximum (FWHM) of 15 ns for the electric-field
amplitude, or 10 ns for the laser intensity. This FWHM
is less than the experimentally measured FWHM of 20 ns
for the laser intensity [10]. The frequency bandwidth of
the experimental laser pulse was slightly less than 0.002
cm, or about twice the Fourier-transform limit. The
frequency bandwidth of the 10-ns laser pulse used in the
calculations is therefore comparable to the experimental
value. Some calculations were performed with 20-ns
pulses that were chirped [34] so as to give the same band-
width as the experimental pulses, and with unchirped
20-ns pulses. For the same peak laser intensity, calculat-
ed spectra were nearly identical for all of these cases. To
reduce computational time, most of the calculations were
performed with the 10-ns pulses.

The coherent-excitation dynamics of various three-
level atomic systems has been reviewed by Shore [31]. In
studies [31,35—37] of the A system, it is assumed general-

ly that each laser field interacts with only one of the tran-
sitions that couple the ground and excited states (1-3 and
2-3) either because of the large splitting between ground
states or because of the polarization properties of the
laser radiation. The phenomenon of population trapping
in the ground states of such a system has been widely
studied. In the calculations presented in this section,
both laser fields interact with both of the transtions 1-3
and 2-3. As will be seen in Sec. III C, at high intensity
population is pumped from one of the ground states to
the other ground state by the coherent excitation. How-
ever, the main focus of our investigation is the
multiwave-mixing interaction in the three-level system.

B. Intensity dependence of the multiwave-mixing spectra

Four-wave-mixing spectra in the three-level system are
shown in Fig. 5. As the laser intensity increases (the Rabi
frequency

40
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(h
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10000-

.06 cm
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0.00 0.02 0.04 O.oe 0.08

400000-

300000-
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100000-

wave-mixing spectra are shown in Figs. 6 and 7. The
six-wave-mixing (6WM) spectra are dominated by the
spectral feature at cohf, /2, which broadens noticeably
with increasing laser intensity. The 8WM spectra show
much more interesting behavior. At the lowest laser in-
tensity shown, only a single spectral component at cohf, /3
is evident in the 8WM spectrum. As the laser intensity
increases, however, additional components at &oh'/2 and

cohf /4 also become noticeable. In addition, the peaks of
these lines have shifted to higher frequency difference.
As will be seen in Sec. III C, the drastic change in the
character of the spectrum with laser intensity corre-

+R R1 R2 d A
&
/2fic =d A2/2' 0.00 0.02

I

0.04
Cd ™Cd

o.oe 0.08

in units of cm ), the four-wave mixing component at

ah f 0.059 cm ' broadens noticeably and an additional
spectral component appears at cohf, /2. Six- and eight-

FIG. 5. Four-wave-mixing spectra for the three-level system
for Rabi frequencies of (a) 0.02, {b)0.06, and (c) 0.10 cm
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FIG. 8. Energy-level diagram for eight-wave mixing in the
three-level system for a laser detuning ~&

—
co2 cohf /2.

sponds to the onset of significant population transfer in
the three-level system.

Consider the energy-level diagrams of the 8WM pro-
cesses shown in Figs. 8 and 9. From the viewpoint of
perturbation theory, the 8WM signal arises from the
scattering of a photon at co& by a ground-level coherence
oscillating at a frequency 3(co, —co&). This ground-level
coherence is induced by a six-photon process, probed by
a single photon. For the spectral component at co&&,/3,
the six-photon process is resonant. The component at
cohfs/2 is due to a four-photon resonant process probed by
three photons. Similarly, the component at cohf„just
barely visible in I'ig. 7, is due to a two-photon resonant
process probed by a 6ve-photon process.

The relative intensities of the components at cohf, /2
and cohfs/3 are obviously quite sensitive to laser intensity.
The resonance at cohf, /2 is barely visible at low laser in-

tensity, but becomes comparable in intensity to the reso-
nance at comfy/3 at high laser intensity. One possible ex-
planation for this is that an 8WM selection rule prohibits
the cohf, /2 resonance, but it is allowed for higher-order
processes. Selection rules could prohibit this resonance
in 8WM, even though all single-photon dipole matrix ele-
ments are set equal to each other and are real, because of
cancellations in the various possible two-photon process-
es that give rise to the four-photon resonance. Because
the resonance at noh&, /2 is exactly midway between states
1 and 2, two-photon processes beginning at state 1 may
interfere destructively with processes beginning at state 2.

0
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0.02 0.04 O.OB

(c}

0.08

2.0 cm

15-

CO

v)

= 0.10 cm
R

'I

CO CO

0.00 0.02 0.04
Cd -Cd

I

O.OB 0.08 0.059 cm

FIG. 7. Eight-wave-mixing spectra for the three-level system
for Rabi frequencies of (a) 0.06, (b) 0.08, and (c) 0.10 cm

FIG. 9. Energy-level diagram for eight-wave mixing in the
three-level system for a laser detuning m&

—~2=cohf /3.
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The detuning for these two-photon processes will have
equal magnitude but opposite sign, leading to cancella-
tions in the 8WM process. In ten-wave mixing (10WM),
such cancellations may not occur and the resonance at
cohf /2 could become quite strong compared to the reso-
nance at cohf, /3 as laser intensity increased.

Again from the viewpoint of perturbation theory,
another possible explanation for this behavior is popula-
tion pumping. At low laser intensity, terms proportional
to (p» —

p22) are negligible compared to the collision-
induced terms because the populations of the hyperfine
levels are equal. As will be shown in Sec. III C at higher
laser intensity the populations are no longer equal due to
population pumping, and terms proportional to
(p» —

pzz) may become significant.
The spectra shown in Figs. 5—7 were calculated by in-

tegrating Eqs. (12), (13), (20)—(22), and (27) for successive
values of co2 (co& was fixed) to obtain the time-dependent
on- and off-diagonal matrix elements. A fifth-order
Adams-Bashforth predictor-corrector method, subrou-
tine DEABM in the Sandia FORTRAN SLATEC library, was
used for the numerical integration. The time step of the
numerical integration was decreased until the solution
converged; for an electronic detuning 6, =2 cm ', a time

step of 1 psec was used. This large detuning from elec-
tronic resonance induces the fastest Auctuations in the
numerical solution, and the required time step is inverse-

ly proportional to the detuning in this study. Integration

for 80 nsec over a laser pulse to obtain a single intensity
point in the spectrum required approximately 4 min of
CPU time on a DEC station 3100 (MIPS R2000 CPU and
R2010 FPU chips).

C. Temporal evolution of the density-matrix elements

In this section the temporal response of the three-level
system to the laser pulse at co, and co2 is discussed in de-
tail. The temporal response of the system will be dis-
cussed in terms of the time dependence of the level popu-
lations [p»(t), p22(t), p33(t)], the ground-level coher-
ence [p&2(t)], and the induced polarization [P(t)].
Specifically, the case where co&

—co2=0.03 cm ' and

6, =2.0 cm ' will be considered, and the physics of the
6WM resonance will be explored. The temporal response
of the system will be considered at varying laser intensity
to illustrate the strong coupling between population
transfer and the induced polarization that presumably
influences strongly the strength of the observed subhar-
monic resonances.

The time dependence of the level populations at three
different laser intensities is shown in Fig. 10. The calcu-
lations proceed for 80 nsec, with the laser pulses peaking
at 40 nsec. At low laser intensity [Fig. 10(a)], the level
populations exhibit a beat frequency corresponding to the
difference of the laser frequencies, co&

—co2=0.03 cm
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G(t)= f P+(r)e ' ' d~.
0

(35)

The time dependence of the ground-level coherence p& 2(t )

(imaginary part) is shown in Fig. 11. Again, at low laser
intensity p&z(t) exhibits a beat frequency corresponding
to the difference of laser frequencies.

As the laser intensity increases, however, the change in
level populations becomes significant and the coupling
between the level populations and the induced polariza-
tion becomes apparent. In Figs. 10(b) and 11(b), it is ob-
vious that the ground-level populations p»(t) and p z2(t)

and the ground-level coherence p, 2(t ) are modulated at a
frequency (or frequencies) higher than the laser difference
frequency. As population transfer becomes significant
(fractional population change of approximately 5%), the
equations describing the time development of the on- and
off-diagonal components of the density matrix become
strongly coupled. This coupling will strongly affect the
strength of the subharmonic resonance.

While the modulation of the ground-level coherence at
higher frequencies is obvious in Figs. 11(b) and 11(c), the
appearance of higher-order frequencies in the polariza-
tion P(t) is not at all obvious. The real and imaginary
parts of P+(t) are plotted in Fig. 12 for low and high
laser intensity. The shapes of the wave forms in Fig. 12
are very similar and it is hard to discern any contribution
from higher-order frequencies. The contribution of the
modulation frequency that gives rise to the six-wave-
mixing signal can be seen more clearly by plotting the
function G(t ), where
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For time t long enough to include the entire laser pulse,
the six-wave-mixing signal is given by ~

G(t)
~

. The func-
tion G(t) is plotted for three different values of the laser
intensity in Fig. 13. For low intensity, both the real and
imaginary parts of G(t) oscillate around zero and reach a
limiting value very close to zero compared to their peak
oscillation amplitudes. For higher intensity, the oscilla-
tion of the function becomes less symmetric as the laser
pulse proceeds and the limiting value of the function is
significant compared to the oscillation amplitude, i.e., the
six-wave-mixing signal is becoming stronger. it is obvi-
ous from the highest intensity spectrum plotted, Fig.
13(c), that substantial deviation from symmetric oscilla-
tion about zero begins to occur at approximately the
same point in the laser pulse that significant population
transfer occurs. Note that even for Fig. 13(c) the higher-
order contribution is extremely small relative to the am-
plitude of the medium polarization P+(t); it is not
surprising that no higher frequencies are evident in Fig.
12.

35 45
Time {nsec)

FIG. 12. Time dependence of the real and imaginary parts of
+ldll j

the induced polarization P+(t) =P(t)e ' for the three-level
system for Rabi frequencies of (a) 0.06 and (b) 0.10 cm '. The
laser detuning co, —co2 cj)hfs/2.

IV. MULTI%'AVE-MIXING CALCULATIONS
FOR THE 3 S& i2 3 ~&/2 SYSTEM

QF THE SODIUM ATOM

The 4WM and 6WM spectra calculated for a three-
level system, shown in Figs. 5 and 6, are qualitatively
similar to the spectra observed experimentally. However,
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for the case of 8WM, the calculated relative intensities of
the spectral features differ markedly even for the low
laser intensity. Although the three-level calculations are
helpful for understanding the physics of higher-order
wave-mixing processes, the actual electric dipole interac-
tion matrix elements, the hyperfine splitting in the excit-
ed electronic state, the Zeeman-sublevel structure in both
the ground and the excited states, and the polarization
properties of the laser beams must be included in the cal-
culation to obtain better agreement with experiment. In
this section the results of including all of these effects in a
16-level model of multiwave-mixing interactions with the
sodium 3 S&&2—3 P, &2 electronic resonance are present-
ed. The agreement between theory and experiment is
markedly improved over that of the three-level model.

A. Radiative and collisional interactions
in the 16-level system

The relative dipole matrix elements for the electronic
resonance were derived from the angular part of the one-

electron wave functions that include both electron and
nuclear spin. Spin orbit (L S) and hyperfine (J.I) cou-

pling interactions were then sequentially applied to these
normalized wave functions [38]. Matrix elements of the

e, and e„components of the electric dipole moment be-

tween these states are listed in Tables II and III. The po-
larization vector e& is assumed to be aligned with the
magnetic orientation z axis of the sodium atoms. The po-
larization vector e2 is aligned with the x axis. For this
polarization orientation, both d', and d, are real quan-
tities, where m and s are any two lower and upper states,
respectively. The dipole matrix elements are normalized
such that, for a single state (F,m~), the sum of the
squares of the dipole matrix elements for all transitions is
equa1 to —,

' for a particular polarization, or unity for all

three polarizations. The radial part of the nonzero ma-
trix elements, determined using a radiative lifetime of
16.3 nsec, is 6.33 D. Based on our definition of Rabi fre-

quency Qz =dA/2fic, the Rabi frequency for a given

transition in the 3 S&&2—3 P, &2 system is equal to 0.168
cm ' times the value given in Table II or III for a laser

intensity of 10 kW/cm .
The collisional dephasing and population transfer rates

used for the higher-order wave-mixing calculations in the
3 S]/2

—3 P ] y2 system are listed in Table IV. Because the
experiments of Trebino and Rahn [10] were performed in
an atmospheric pressure, hydrogen-air flat flame, the col-
lisional transfer rates are difficult to calculate accurately
due to a lack of information about high-temperature col-
lisional cross sections and to uncertainty in the actual
flame temperature due to heat losses to the burner. How-
ever, after performing numerous calculations with
different collisional rates, it appears that the calculated
spectra are sensitive mostly to the dephasing rate yk for
the ground-level coherence. The dephasing rate for the
electronic resonance y, affects the strength of the spec-
tra but has relatively little effect on the calculated spec-
tral line shapes and relative intensities of the spectral
features.

Fourkas et al. [39] recently determined the electronic
quenching rate and ground-state dephasing rate from
measured grating decay times for sodium seeded into a
methane-air flame. They reported a population grating
decay time of 400 psec, corresponding to an electronic
quenching rate I, =1.2X10 sec '. A ground-state
hyperfine dephasing rate yk =2X10 sec ' was deter-
mined from the decay of the polarization grating. These
values are close to those listed in Table IV. In a flame
very similar to that used by Trebino and Rahn [10],
Goldsmith [40] measured the homogeneous width [half
width at half maximum (HWHM)] of the 3 S&&z—3 P3&2
transition to be approximately 2.7 GHz, corresponding to
a dephasing collision rate of y, =1.7X10' sec '. This
value must be regarded as an upper limit because of the
ground-state splitting of 1.8 GHz (0.059 cm '). The
value of y, =5.0X10 sec ' listed in Table IV seems
quite reasonable compared to the value measured by
Goldsmith for a similar transition.

B. Comparison of calculated and experimental
multiwave-mixing spectra

In this section calculated multiwave-mixing spectra are
compared with the experimental results of Trebino and

TABLE II. Relative values of the z component of the electric dipole matrix elements for the sodium 3 P&y2 —3 Sly' electronic res-
onance. The z-component values are all real quantities.

de,
3 S 3 P 1 y2

F=2
mF —2

F=2
mF=1

F=2
mF=0

F=2
mF= —1

F=2
mF — 2

F=1
mF=1

F=1
mF=O

F=1
mF= —1

F=2
F=2
F=2
F=2
F=2
F=1
F=1
F=1

mF —2

mF=1
mF =0
m = 1F
m = 2F
mF=1
mF=0
m = —1F

—1/&3 0
—1/2&3

0
0
0

1/2

0
0

0
0
0
0
0
0

1/&3
0

0
0
0

1/2+3
0
0
0

1/2

0
0
0
0

1/&3
0
0
0

0
1/2

0
0
0

1/2&3
0
0

0
0

1/&3
0
0
0
0
0

0
0
0

1/2

0
0
0

—1/2&3
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TABLE III. Relative values of the x component of the electric dipole matrix elements for the sodium 3

Plump

—3 Sly' electronic
resonance. The x-component values are all real quantities.

d.e,
3 Sizz

F=2
mF —2

F=2
mF=1

F=2
mF=O

F=2
mF= —1

F=2
mF — 2

F=l
mF=1

F=1
mF=O

F=1
mF= —1

F=2
F=2
F=2
F=2
F=2
F=1
F=1
F=1

mF —2

mF=1
mF=0
mF= —1

mF — 2

mF=1
mF=O

m = —1F

0
—1/2&3

0
0

—1/2
0
0

—1/2&3
0

—1/2&2
0

0
—1/2&2

0

0
—1/2&2

0
—1/2&2

0
1/2&6

0
1/2&6

0
—1/2&2

0
—1/2&3

0
1/2&2

0

0
0
0

—1/2&3
0
0
0

1/2

1/2
0

1/2&6
0
0
0

1/2&6
0

0
—1/2&2

0
1/2&2

0
1/2&6

0
1/2&6

0
0

—1/2&6
0

1/2

0
1/2&6

0

Rahn [10]. A series of experimental spectra at increasing
laser intensities were obtained for the 4WM and 8WM
cases; unfortunately, such a series was not acquired for
the 6WM case. For both experiment and theory, the po-
larization vector for the 4WM and 8WM signal was
parallel to the polarization vector e2, while the polariza-
tion vector for the calculated 6WM spectra was parallel
to the polarization vector e& ~ The intensities of the sig-
nals for the perpendicular polarizations (e, for the 4WM
and 8WM and e2 for the 6WM) were negligible because
the medium is isotropic, and an even number of photons
must be involved in the interaction from each polariza-
tion.

Experimental and calculated 4WM spectra are shown
in Figs. 14 and 15, respectively. The calculated 4WM
spectra are in good agreement with experiment. The
asymmetry in the resonance at 0.059 cm ', with higher
intensity in the wings on the high-frequency (more posi-
tive ~co,

—
co2~ ) side, is reproduced in the calculated spec-

trum. As the laser intensity increases, the resonance at
0.059 cm ' broadens and a noticeable dip appears near
0.03 cm '. A comparison of Figs. 14 and 15 shows that
the model does a good job of predicting the development
of the 4WM spectrum with increasing laser intensity.
For experimental and theoretical spectra of similar shape
in Figs. 14 and 15, the theoretical laser intensity (per
laser beam) is a factor of 1.5 to 2 times higher than the
experimental intensity [with the exception of Figs. 14(a)

and 15(a), where the intensity is low enough that the line
shape is independent of laser intensity]; we regard this as
excellent agreement. It is interesting to note that in both
experiment and the 16-level model, a peak appears at 0.03
cm as laser intensity increases, whereas in the three-
level model a dip appears (Fig. 5).

The theoretical intensity should be somewhat higher
than the experimental intensity because we have assumed
that two laser beams ( A, = A2, Ir, =IL2) are present in
our calculations, whereas in the experiment three beams
of equal intensity were used. However, there is also a
factor-of-2 uncertainty in the electronic dephasing col-
lision rate, which determines in large part the strength
("saturation intensity") of the wave-mixing interaction
[10,17]. In addition, while we have assumed spatially
perfect beams in our calculations, it is possible that any
imperfections (hot spots) in the actual laser-beam profiles
would have emphasized the wave-mixing processes be-
cause these processes depend on higher powers of laser
intensity, For a comparison of theory and experiment, it
is much more significant that the ratio of the experimen-
tal to theoretical laser intensity is approximately constant
for Figs. 14(b)—14(d) and 15(b)—15(d).

The most noticeable di8'erence between theory and ex-
periment is that the theory predicts a more significant
background contribution that appears to arise from the
tail of the zero-frequency resonance. This resonance is
discussed in detail by Rothberg and Bloembergen [17]

TABLE IV. Values of the collisional rates used in the 16-level model calculations. For the population transfer rates, it is assumed

that collisional transfer to any given Anal state m is equally probable.

Coherence dephasing collision rates

Ground-state coherences (k, m both ground states)

Excited-state coherences (p, s both excited states)

Electronic resonance (s = excited state, m = ground state)

Population transfer collision rates

Ground states (k, m both ground states)

Excited states (p, s both excited states)

Electronic transfer (s = excited state, m = ground state)

yk =3.0X 10 sec

pp 3.0X 10 sec

y, =5.0X 10 sec

1 „=1.0X 10 sec

g, I,= 1.0X 10 sec

I, =1.0X10 sec
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FIG. 14. Experimental 4WM spectra obtained by Trebino and Rahn [10]at four different laser intensities.

and modeled in a recent paper by Singh and Agarwal
[41]; processes such as Doppler broadening and velocity
narrowing that affect the line shape and intensity of this
resonance have not been included in our calculation.
Consequently, the difference in the background between
theory and experiment is not surprising.

Good agreement is also obtained between experimental
and calculated 8WM spectra. The best agreement is ob-
tained at low intensity when the only noticeable spectral
features are the first and second subharmonics at 0.03
and 0.02 cm ', respectively. The low-intensity 8WM
spectra shown in Figs. 16 and 17 differ markedly from the

40
r% 8PC

r

eo-
Cg

40-

i/i 20—

I Itheor} 1.29 kW/cm
( )

30000

20000—

10000—
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0.00 0.02 0.04 O.oe 0.08
a00000

C

0.00 0.02 0.04 o.oe 0.08

e0000-C

I ~ 14.4

400000—

l„27.9 kW/cm

200000—

0.00 0.02 0.04
Cd -Cd

O.oe 0.08 0.00 0.02 0.04
Cd -Cd

I

O.oe 0.08

FIG. 15. Calculated 4WM spectra for the 16-level system.
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0
0.08 0.00

1

0.02 0.04 0.06 0.08

o.a — ~
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0.08 0.00 0.02 0.04
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FIG. 16. Experimental 8WM spectra obtained by Treinbo and Rahn [10]at four different laser intensities.

low-intensity spectra for the three-level model shown in
Fig. 7(a), where only the subharmonic at 0.02 cm ' is ap-
parent.

As laser intensity increases, the peaks of the spectral
features shift to greater frequency diff'erence, the third
and fourth subharmonics at 0.015 and 0.012 cm ' ap-
pear, and an additional spectral feature appears at ap-

proximately at 0.04 cm . It is possible that this spectral
feature at 0.04 cm ' results from a splitting and appear-
ance of a dip in the first subharmonic. Although at high
intensity the tail of the zero-frequency resonance is un-
derpredicted, all of the spectral features discussed above
are present in the experimental as well as the calculated
8WM spectra. The theoretical laser intensity is a factor

B-
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4
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IL(theor) = 11.4 kW/cm

200

100—
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60—
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(c)
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~~
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CQ
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0.00 0.02 0.04
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I
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0

0.08 0.00
I
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FIG. 17. Calculated 8WM spectra for the 16-level system.
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3000
(a)

2000—

i000-

I (theor) = 36.6 kW/cm

0.00 0.02 0.04 o.oe 0.08

eooo-

4000-

(b)

I = 41.1kW/cm

of 3 to 4 times higher than the experimental intensity for
the 8WM spectra shown in Figs. 16 and 17. However,
the ratio of the theoretical to experimental intensity
varies only between 3.6 and 4.1 for these spectra. Again,
we regard the agreement between theoretical and experi-
mental laser intensities to be excellent.

The agreement between theory and experiment be-
comes worse as the laser intensity increases because the
relative intensities and frequency positions for the spec-
tral features become very sensitive to laser intensity. The
spatial intensity profile and pulse-to-pulse energy fiuctua-
tion of the laser radiation thus increase noise and broaden
spectral features in the experimental spectra. The spatial
intensity profile and pulse-to-pulse fluctuation of the laser
are not included in the calculations, and the spectral
features therefore tend to be narrower.

One feature of the 8WM spectrum that consistently
differs between theory and experiment that cannot be ex-
plained by the characteristics of the laser radiation is the
shoulder of the resonance at zero-frequency difference. It
is much stronger for the experimental than calculated
spectra at high intensity; this is the opposite of the case
for 4WM, where the background contribution is higher

in the theory than in the experiment. Once again, we feel
that the disagreement between theory and experiment
occurs because processes such as Doppler broadening
and velocity narrowing are not included in our model.

Figure 18 shows calculated 8WM spectra at three laser
intensities that are slightly higher than the laser intensity
for the spectrum shown in Fig. 17(d). The spectrum
shown in Fig. 18(b) has a pronounced dip at line center
for the resonance feature at 0.25 cm ', a slight dip is also
noticeable on the low-frequency side of this line in Fig.
18(a) and on the right side of the line in Fig. 18(c). Thus,
as laser intensity increases, the dip in the resonance line

appears to move to higher detuning frequency.
An experimental 6WM spectrum is shown in Fig. 19.

Unlike the case for 4WM and 8WM, a series of spectra as
a function of increasing laser intensity are not available.
The calculated 6WM spectra shown in Fig. 20 are very
interesting, however. In the low-intensity spectrum
shown in Fig. 20(a), the dispersive character of the
feature near 0.02 cm ' suggests that an interference is
occurring between a 6WM resonance and the tail of the
zero-frequency resonance, or perhaps between different
wave-mixing orders. This interference produces a pro-
nounced dip in the spectrum at 0.02 cm ' that is also
present in the experimental spectrum. No such interfer-
ences are evident in the three-level model results (Fig. 6).

The similarity of the 6WM and 8WM spectra at high
intensity should also be noted. For perpendicular laser-
beam polarizations, 6WM resonances at cohf, /2 are not al-

lowed for the sodium 3 S&&z-3 P, &z electronic reso-
nance. Instead, the 6WM resonances shown in Fig. 20
arise from higher-order 3',—2coz+ (co&

—
co& ) or

3',—2coz+(co& —
co&) processes, i.e., eight or more pho-

tons are involved in the wave-mixing interaction. This
will become more apparent when the intensity depen-
dence of wave-mixing resonances is discussed in Sec.
IV C.

As stated earlier in Sec. III A, for the same peak laser
intensity, calculated spectra were nearly identical for un-
chirped 10- and 20-nsec pulses and chirped 20-ns pulses.
This lack of dependence of the spectra on pulse length
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FIG. 18. Calculated 8WM spectra for the 16-level system at
high laser power.

FIG. 19. Experimental 6WM spectra obtained by Trebino
and Rahn [10).
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FIG. 20. Calculated 6WM spectra for the 16-level system.

and bandwidth implies that the laser frequency band-
width is narrow enough to resolve fully the wave-mixing
resonances. The lack of dependence on pulse length fur-
ther implies that the pulses were long enough that the
response of the 16-level system to the laser radiation
reached steady state. This is not to imply that the
density-matrix elements themselves became independent
of time; they continue to show the same sort of oscillato-
ry behavior shown in Figs. 10—13. Rather, the magni-
tudes of the various frequency components for the
density-matrix elements probably reach steady-state
values. This supposition can be studied by a detailed
Fourier analysis of the density-matrix elements, but this
has not yet been done.

Considerably more CPU time was required for the 16-
level model calculations. Integration over a laser pulse to
obtain a single point of the wave-mixing spectrum re-
quired 115 min of CPU time on the DEC station 3100, as
compared to 4 min for the three-level system.

malized 4WM signal S~(b, )/[IL (theor)]' is plotted As.
might be anticipated, the normalized intensity is very
close to 1.0 for low laser intensity. As laser power in-
creases, the resonance broadens and the normalized in-
tensity decreases monotonically, i.e., the resonance exhib-
its saturation behavior.

The laser-intensity dependence of the 6WM and 8WM
resonances is very different. The normalized 6WM inten-
sity S6(6)/[IL(theor)] for the spectral feature at 0.03
cm, shown in Fig. 22, first increases with laser intensity
and reaches a maximum at

0.8—

C. Laser-intensity dependence
of the multiwave-mixing signals

In this section we discuss the intensity dependence of
some of the spectral features in the calculated 4WM,
6WM, and 8WM spectra. The intensity dependence of
these spectral features would be difficult to investigate ex-
perimentally with much accuracy because of the diSculty
of measuring the required laser parameters and of main-
taining stable enough laser operation to allow comparison
of spectra collected at different times with different laser
intensities. The laser-intensity dependence of the 4WM
resonance at 0.059 cm ' is shown in Fig. 21. The nor-

0.6—

0.4—

0.2—

0 I I I I III/ I I I I I I llt I I I I I I III I I I I I I I li

0.002 0.01 0.1 1 10
i (theor) (kW/cm2)

I I

30

FIG. 21. Normalized 4WM intensity S&(5)/(IL )' vs laser in-

tensity. The normalized peak intensity of the resonance at 0.059
cm ' (see Fig. 15) is plotted.
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The curve for the resonance at 0.03 cm ' also exhibits a

12—

10—

B-
M

10 20 30
i (theor} (kW/cm2)

FIG. 22. Normalized 6WM intensity S6(26)/(II ) vs laser
intensity. The normalized peak intensity of the resonance at
0.03 cm ' (see Fig. 20) is plotted.

IL (theor) =20 kW/cm

before decreasing for higher laser intensity. The onset of
the rapid increase in the normalized 6WM signal corre-
sponds closely to the onset of significant population
transfer in the 16-level system. According to the pertur-
bation approach of Trebino and Rahn [20], the increase
in the normalized 6WM intensity suggests that wave-
mixing processes of order higher than 6 are contributing
to the calculated 6WM signal. [For theoretical laser in-

tensities below 1.7 kW/cm, the 6WM and SWM signals
cannot be separated reliably from background noise in
the spectrum caused by residual noise in the Fourier in-
tegration. No points below IL(theor)=2 kW/cm are
plotted in Figs. 22 and 23.]

The laser-intensity dependence of the 8WM resonances
at 0.02 and 0.03 cm ' is shown in Fig. 23. The normal-
ized signals Ss(b, )/[IL (theor)] are at first fairly constant
and then decrease significantly with increasing II (theor)
for both of the resonances. This rapid decrease is some-
what surprising, although it corresponds to a region of
rapid decrease in the normalized 4WM signal and indi-
cates that perturbation theory is no longer valid. The
rapid decrease in normalized 8WM intensity may be due
to Stark shifting of the lines, which are rather narrow
compared to 4WM or 6WM lines. It may be that the in-
tegrated intensity over the line would fall off less rapidly
compared to the peak intensity plotted in Fig. 23. Be-
cause the resonances are overlapped and there is a poten-
tially significant contribution from the shoulder of the
zero-frequency Zeeman resonance, the integrated line in-
tensity cannot be determined unambiguously. For the
resonance at 0.02 cm, the normalized signal is fairly
constant between

1.2

0.8—
ance

0.4—

0.2-

0
1 10 20 30

l„(theor} (kW/cm2}

FIG. 23. Normalized 8WM intensity S8(36)/(Il )' vs laser
intensity. The normalized peak intensities of the resonances at
0.02 and 0.03 cm ' (see Fig. 17) are plotted. The peaks shift
slightly with increasing laser intensity; the peak intensity for the
resonance is plotted, rather than the signal intensity at 0.02 or
0.03 cm

V. CONCLUSIONS

Resonant multiwave mixing in a three-level system and
in the gas-phase sodium atom pumped by two nearly de-
generate laser beams was investigated theoretically. The
3 S&&2-3 P, &2 electronic resonance of sodium was
modeled as a 16-level system. The time development of
the multilevel system was determined by numerical in-
tegration of the time-dependent density-matrix equations.
Multiwave-mixing spectra were then determined directly
from the calculated induced polarization. These calcula-
tions were validated by comparison with the experimen-
tal results of Trebino and Rahn [10].

This approach to modeling high-intensity wave-mixing
interactions in atomic systems involved significantly
fewer simplifying assumptions than previous high-
intensity analysis [21—23]. The drawback of direct nu-
merical integration of the density-matrix equations is that
analytic solutions are not obtained, and physical insight
into the wave-mixing processes can be gained only by de-
tailed analysis of the numerical solutions. However, the
development of a framework for direct numerical simula-
tion of the excitation dynamics in a complicated multilev-
el system opens up new possibilities for the investigation
of the physics of the interaction of laser radiation with
atomic or molecular resonances. For example, the three-
level system was used to study the close coupling between
the population dynamics and the development of the in-
duced polarization. We have also begun to explore the
laser excitation dynamics of the 16-level system in detail,
and plan to present the results in a future publication. As

brief flattening near

IL (theor)=15 kW/cm

These flat regions in the plot are evidence of the influence
of wave-mixing processes of order 10 or higher.
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another example, the laser power dependence of 4WM,
6%M, and 8WM signals was investigated theoretically
for the 16-level system.

The numerical methods applied here are potentially
applicable to a large number of problems such as elec-
tronic resonance CARS [42] and resonant DFWM
[43-45]. DFWM calculations that are nonperturbative in
all three beams would be of great interest. For the
DFWM calculations, the density-matrix equations must
be integrated in space as well as time. Inclusion of the
Doppler effect in the calculations is another significant
hurdle for realistic simulation of experimental spectra.
The numerical methods discussed in this paper are not
restricted to nearly degenerate laser beams. However,
the laser frequencies must be within a few cm ' of
single-photon resonance to allow the calculations to be
completed in a reasonable amount of time; the integra-
tion time step is inversely proportional to the frequency

detuning.
There is great potential for significant decreases in

CPU time required for these and similar calculations via
massively parallel processing. The spectral calculations
are almost trivially parallelizable. Each processor can in-
tegrate the density-matrix equations for a different value
of laser detuning; the calculations for each value of
co, —coz are completely independent. Parallel processing
would greatly expand the scope of the problems that
could be addressed and the detail with which they could
be addressed.
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