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Schrodinger-cat states in the resonant Jaynes-Cummings model: Collapse and revival
of oscillations of the photon-number distribution
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The Jaynes-Cummings model of optical resonance describes the simplest fully quantized interaction
between two quantum systems of different nature: a two-level atom (fermionic system) and a quantized
field mode (bosonic system). This interaction leads to extreme quantum entanglement of the atom and
field. However, the model also predicts that, at precisely half of the revival time, the atom and field be-
come asymptotically disentangled. This disentanglement becomes more exact as the coherent-state am-

plitude increases. In this paper we investigate the nature of the pure-field-state superposition generated
at such times. We show that this superposition is of distinguishable states of the field with the same am-

plitude but opposite phase. Interference between these components leads to nonclassical oscillations in
photon-number distributions and squeezing in quadratures of the field. The Schrodinger-cat states of the
field are highly transient, and depend very sensitively on the interaction time, the initial intensity of the
field, and the atom-field detuning.

PACS number(s): 42.50.—p, 03.65.Bz, 42.52.+x

I. INTRODUCTION

In the last few years considerable attention has been
devoted to the generation and detection of nonclassical
states of light. In particular, squeezed [1] and sub-
Poissonian [2] states of light have been produced in vari-
ous laboratories. It has recently been shown that squeez-
ing (that is, the reduction of quadrature Quctuations
below the vacuum limit) has its origin in quantum in-
terference between various components of quantum-
superposition states [3,4]. For instance, squeezed-
vacuum or squeezed coherent states can be expressed as
one-dimensional continuous superpositions of coherent
states with suitably chosen distribution functions [4]. It
has also been shown that in addition to squeezing,
higher-order squeezing [5], sub-Poissonian photon statis-
tics [6], and oscillations of the photon-number distribu-
tion [3,7] emerge from a superposition of coherent states.

There have been several proposals recently for the gen-
eration of optical superposition states in various non-
linear processes [8]; for example, in quantum-
nondemolition or back-action-evading measurements [9]
and in micromaser experiments [10]. One of the siinplest
quantum nonlinear systems in quantum optics is that of
the single-mode quantized electromagnetic field interact-
ing with a two-level atom. This system is described by
the Jaynes-Cummings model (JCM) [11] of optical reso-
nance and exhibits many features that are purely quan-
tum mechanical in origin. The most famous of these is
the revival of the atomic inversion [12],which has recent-
ly been observed experimentally by Walther and co-
workers [13].

If the atom and the field in the JCM are initially in a

disentangled pure state, that is, the initial state of the
atom-field ( A-H system can be described by the state vec-
tor

(t=o))=~%„(t=o))g 0 (t=o)),
then the quantum dynamics leads to t &0 to a very
strong, approximately maximal, entanglement between
the atom and the field. In other words, if the entropy of
the field subsystem is initially zero (the field is in a pure
state) then at t & 0 it is nonzero; that is, the field is in the
statistical mixture [14] (obviously the total entropy of the
atom-field system is equal to zero for any time t &0). In
spite of this increase of the entropy because of the in-
teraction of the field with the atom, there are some mo-
ments in the time evolution during which the entropy is
dramatically reduced. Recently, Phoenix and Knight
[14] and Gea-Banacloche [15]have shown that if the field
is initially prepared in a coherent state then it evolves
into an almost pure state again at half of the atomic-
inversion revival time.

It is the main purpose of this paper to study in detail
states of the cavity field at half the revival time. As we
will demonstrate, these approximately pure states are in
fact "macroscopic" superposition states composed of two
states of light having the same amplitude but opposite
phase. Gea-Banacloche [15] has recently derived an ap-
proximate analytical expression for the solutions of the
JCM with the field initially prepared in a coherent state
with a large number of photons (high-intensity field). In
the course of the paper we will show to what extent the
solutions proposed by Gea-Banacloche [15]are applicable
for the description of the atom and the field in the JCM.

In Sec. II we briefly describe the Jaynes-Cummings
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model and give its exact solution. In Sec. III we summa-
rize the approximate analytical solution by Gea-
Banacloche [15]. Using the field entropy we estimate the
time interval during which the approximate solution is
applicable. In Sec. IV we discuss the statistical properties
of the cavity field at one half of the revival time. Section
V is devoted to conclusions.

II. QUANTUM DYNAMICS OF THE JCM

b/2 Aa

A& t —6/2 (2.3)

The Jaynes-Cummings Hamiltonian describing an in-
teraction of a two-level atom with a single-mode cavity
field in the dipole and the rotating-wave approximation is
given by (we adopt R= 1) [12]

P=eiF(tt fi'+ —,')+ —,'coA&3+A, (8 o +o+8), (2.1)

where co& is the atomic transition frequency; co+ is the
frequency of the cavity field; A, is the atom-field coupling
constant; ft and & are the field annihilation and creation
operators, respectively ( [8,8 ]= 1); o 3 is the atomic-
inversion operator; and &+ are the atomic "spin-fiip"
operators ([&+,& ]=83 and [&3,&~]=+2o+). In the
interaction picture the Hamiltonian (2.1) takes the form

A't =
—,'6&3+AD, (& & +8+8), (2.2)

where 5 is the detuning (b =coA —coF). In the two-
dimensional atomic basis the interaction Hamiltonian
(2.2) is

factorized density matrix P „F( t = 0}:—P „F(0),

P A F(-0) P A (0)PF(0) (2.7)

where pz and p & are the density matrices of the field and
atomic subsystems, respectively. In the case when the
atom is initially in the excited state le ), and the field is
also in the pure state l VF(0) ), the P matrix (2.7) takes the
form

P (0)=le' (0)&(ip (0)isle&(el . (2.&)

where lg) denotes the lower state of the atom. The
operators OJ(t) are given by Eqs. (2.5).

If the cavity field is initially prepared in the coherent
state la),

&=b( )lo&= g &n!
(2.10)

where 8(a) is the Glauber displacement operator
8(a)=exp(a& —a*&), and ln) is the Fock number
state of the cavity field, then the atomic inversion
W(t}=(o3) exhibits collapses and revivals [12,13] [see
Fig. 1(a)]. In the case of exact resonance the period ttt of
the revivals (that is, the revival time) has been evaluated
approximately by Eberly and co-workers [12]and is

The time evolution of this vector is governed by the evo-
lution operator (2.4) and at t & 0 we have

i+A F(t) &=0»(t)leF(0) & le &+0»(t)leF(0) & Ig &,

(2.9)

and the corresponding evolution operator
0(t) =exp( i' t ) ca—n be written in the form [16]

~11(t) ~12(t}
0(t)= (2.4)

21 22

where

(2.11)

where n =
l a l

is the intensity of the coherent field.
If the atom is initially prepared in a coherent superpo-

sition of the upper and lower states, that is,

liII„(0))=cos(8l2)le)+e'~sin(8/2)lg), (2.12)

and

g sinQ„+, t
011(t)=cosQ„+ it 1

n+1

t sinQ„+, t
021(t}=—i A&

n+1

sinQ„t
012(t)= ikd-

n

g sinQ„t0 (t)=cosQ t+i
2 Q n

(2.5a)

(2.5b)

(2.5c)

(2.5d)

then the state vector
l
4„F( t) ) at t & 0 takes the form

(t) &
= [cos(8l2) 0„(t)

+e'&sin(8l2) 0»(t)] la )g le )

+ [cos(8/2) 02, (t)

+e'~sin(8/2) t&22(t)] la & lg ) . (2.13)

It has recently been shown by Zaheer and Zubairy [17]
that the revival effect is almost completely suppressed
when at t =0 the atom is prepared in the atomic coherent
state

Q2
Q — +g2Q

n 4

1/2
Q2

0„+,= +A, (8'+ I)
4

1/2

(2.6)

If we assume that at t =0 the atom-field system is in a
pure state while the atom and the field are uncorrelated,
then the initial state of the system can be described by the

(2.14}

that is, 8=1r/2 and /=0 (the amplitude of the coherent
state is supposed to be real). Moreover, these authors
have shown that "coherent trapping" occurs in the two-
level atom, i.e., the atom and the field are almost decou-
pled and evolve independently, which means that one can
write
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(2.15)

%'e mill turn to this point in detail when analyzing ap-
proximate solutions of the Jaynes-Cummings model pro-
posed by Gea-Banacloche [15].

S„(F)= —Tr A (F) [PA (F)ln(P A (F) )!

where the reduced density operators pz [z] are

PA(F) F(A)[P]

(2.16)

(2.17)

Entropy of the cavity field in the JCM

If we assume that initially the atom and the field are
decoupled and both are in a pure state, then at t & 0 be-
cause of the quantum dynamics described by the Hamil-
tonian (2.1), the atom-field system evolves into an entan-
gled state. En this entangled state the atom and the field
subsystems separately are in mixed states. Nevertheless,
the evolution in the JCM is such that the dynamics even-
tually force the atomic and the field subsystems into the
almost pure state at one half of the revival time (see
below). Recently Phoenix and Knight [14] have shown
that entropy is a very useful operational measure of the
purity of the quantum state, which automatically in-
cludes all moments of the density operator. The time
evolution of the field (atomic) entropy refiects the time
evolution of the degree of entanglement between the
atom and the field. The higher the entropy, the greater
the entanglement.

The entropies of the atom and the field, when treated
as separate system, are defined through the correspond-
ing reduced density operators by [18]

1.0

and we have used the subscript A (F) to denote the atom
(field). We should note here that from the theorem of
Araki and Lieb [19] it follows that if the atom-field sys-
tem is initially in a pure state (that is, the total entropy of
the system is equal to zero), then at t )0 the entropies of
the field and the atomic subsystems are precisely equal
(for details see [14]).

Following the work by Phoenix and Knight [14], we
can express the field (atomic) entropy SF (S„)in terms of
the eigenvalues m.

) z of the reduced field (atomic) density
operator

Sp = 7T&inn
&

—@zine.
& (2.18)

The explicit expressions for m.; s are given in Appendix A.
In Fig. 2 we plot the field entropy for various values of
detuning A. From these figures we can conclude the fol-
lowing: (i) the maximum entropy of the field subsystem
that is achieved during the time evolution is inversely
proportional to the detuning, that is, the bigger the de-
tuning, the smaller the maximum entropy; (ii) the first
maximum of the field entropy at t )0 is achieved at the
collapse time, that is, when W(t) reaches its steady value,
which is equal to zero; (iii) at one-half of the revival time,
that is, at to = t~ /2, where the revival time of the atomic
inversion in the case when the atom and the field are not
in resonance can be estimated as

0.5-

0.0 [b, /4+A, (n+1)]' —[b, /4+A, n]'
(2.19)
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FIG. l. Time evolution of the atomic inversion W(t)=(o3)
of the atom initially prepared in the excited state and the field in
the coherent state {n=49). The revival of the atomic inversion

at the revival time ta 2m' n /)(,=is clearly seen. (a) corre-
sponds to the exact solution, while {b) is derived from the ap-
proximate solution given by Gea-Banacloche.

the entropy reaches its local minimum; (iv) at exact reso-
nance (b, =0), this minimum is very pronounced and the
entropy is almost equal to zero, which means that the
field is almost in a pure state (see also Sec. IV); and (v)
with the increase of the detuning, the difference between
the maximum entropy and the entropy at one-half of the
reviva1 time is less pronounced.

From the above we can conclude that the resonant
quantum dynamics leads to a strong entanglement be-
tween the atom and the field during the first stages of the
time evolution. Subsequently, it also leads to a very
strong disentanglement at one half of the revival time.

This effect can be explained as a consequence of quan-
tum interference between two parts of the Q function
defined as Q(a)=(a~p~~a) that evolve from the Q func-
tion of the initial coherent state (for details on bifurcation
of the Q function, see the recent papers by Risken and
co-workers [20]). Namely, in the case of exact resonance,
the Q function splits because of the interaction of the field
with the atom into two identical components that inter-
fere with each other and eventually lead to an increase in
the field entropy at t &0. This quantum interference
leads to suppression of the entropy at t =t~/2. On the
other hand, in the off-resonant case, the atom and the
field are not as strongly coupled as in the resonant case,
so the entanglement between the atomic and the field sub-
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systems is not as strong, which means that the maximum
entropy is smaller than in the resonant case. This effect is
also seen in the time evolution of the Q function, which
for 6%0 splits at t &0 into two unequal pieces that are
able to interfere much less effectively than in the case of
exact resonance. From here it follows that the maximum
entropy is smaller, but simultaneously the suppression of
the entropy at half the revival time is not as pronounced
as in the case when 6=0. It should be noted at this point
that the disentanglement at one half of the revival time is
less and less effective as the detuning increases. We
should also mention that the entropy at the revival time
significantly decreases with an increase of the detuning
and for large detunings the system is obviously purest not
at half the revival time but at the full revival time. This
is due to the fact that in the far-off-resonance limit the re-
vival of the initial state of the system at t =tz is more
complete, as can be seen from the evolution of the Q

function in Fig. 3(c), which shows a nearly perfect recon-
struction of the initial coherent-state contours of the Q
function at the revival time. This should be contrasted
with the rather more elliptical shape of the Q function for
the resonant case at t~ [see Fig. 3(a)]. Obviously, in the
limit A~~ there will be effectively no interaction be-
tween the atom and the field, which will be in the pure
state for any time t &0. The Q function will simply ro-
tate in the phase space without splitting into components.

III. APPROXIMATE SOLUTION OF THE JCM
FOR LARGE INITIAL FIELD

Recently, Gea-Banacloche [15]proposed a very elegant
approximate analytical solution of the JCM with the cav-
ity field initially in a coherent state with a large average
photon number. In particular, he has shown that, if the
atom is initially in the superposition state I+ &,

I+ &
=

—,(e'~le &+Ig &),v'2 (3.1)

1.00 )

~.75-
C40
W P.50-

~ O. 25-

O. 00
0

1.00,

~.75-
C40

~& 0.50-

(a)

20 40 60 80 100
time

Ie'„",(t) &
= Iq',"(t)&e I+'„"(t)&,

where

(3.2)

I%'„*'(t)&= — exp iy+i Ie&+Ig&
2 2 n

(3.3a)

and

I%''F—'(t) & =exp(+iA, t+& )Ia&

p n/2—exp[it(nP+A&n )]In & .
„=, &n!

and the field is in the coherent state Ia & (a =
I a I

e'~), then
the state vector of the atom-field system at t )0, in the
high-intensity limit (i.e., n = IaI ~~), can be expressed
as

+ O. 25-

0~OO 1 ~ ~ 1 1 1 1 1 1 1 ~ 1 1 1 1 1 ~ ~ 1 1 1 ~ 1 1 1 1 ~ 1 ~ I 1 1 1 1 I '1 1 1 1 1 1 1 1 1 1 I ~ 1 1

0 20 40 60 80 100
time

1.OO

~.75-

0
w p. 5o-

(3.3b)

From Eq. (3.2) it follows that if the atom is initially
prepared in the superposition state (3.1), then at t & 0 the
atom and the field are completely disentangled in this
limit; that is, the field entropy is equal to zero.

It has also been shown by Gea-Banacloche [15] that be-
cause of the fact that the states I+ & and I

—
& given by

Eq. (3.1) form a basis set for the atom, the evolution of
any other initial state can be expressed as a simple linear
combination of Eq. (3.2). In particular, if the atom is ini-
tially in the upper state Ie&=e '~(I+&+I —&)/&2,
then at t & 0 the atom-field state vector evolves into

~O. 2S- P

OeOO I ~ ~ ~ I

0
I ~ ~ ~ I I ~ ~ ~ I 1 ~ ~ ~ I ~ ~ 1 I I ~ ~ 1 ~ I ~ ~ 1 ~ ~ ~ ~ ~ ~ I 1 ~ 1 ~ I 1 1 ~ ~

20 40 60 80 100

~
—ip

I+g (t) &= ' — (Iq"~'p'(t) &+I+', '(t) &),
2

which can be written as

time
FIG. 2. Time evolution of the field entropy S+(t) computed

from the exact solution (the initial condition of the atom-field
system is the same as in Fig. 1). Each figure corresponds to a
different value of detuning: (a) 5=0, (b) 6/A, =10, and (c)
6/A, =20.

IV„F(t)& =cos At V tt + 1

2&n
Ie&e Ia&

—ie '&sin(At&it )Ig&IIIa& . (3.4b)

No matter how the initial atomic state is chosen (e.g.,
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Iq'&(r =1&/2)) = —(ie'&le &
—

Ig &) .
1

If the atom is prepared either in
I
+ ) or

I

—), it remains
in a pure state approximately throughout its evolution.
On the other hand, if the atom is initially prepared in a
superposition of

I
+ ) and

I

—), that is,

I+„(0)) = [cos(8/2) I+ ) +sin(8/2) I

—
& ], (3.5)

then at t & 0 the atomic state will not be pure, but never-
theless at one half of the revival time it evolves into the
"attractor" state IV„(t=r„/2) ), which is almost pure.

I
+ ) or

I

—) ) the evolution forces the atom at to = t„ /2
into the unique (apart from a global phase factor) attrac-
tor state I+„(t=t„/2) ) [14,15]

Simultaneously the cavity field at t =tz/2 also evolves
into a pure state (as we saw in our previous discussion in
Sec. II and Fig. 1). This pure state is described by the
state vector

I pp(r =tg/2) ) =cos(0/2)IV{~+'(t =t~ /2) )

+sin(8/2)IV{F '(t=t~/2)) . (3.6)

It will be the purpose of Sec. IV to study in detail the sta-
tistical properties of the superposition state of the cavity
field (3.6). But before doing so, we will investigate the ex-
tent to which the asymptotic solution of Gea-Banacloche
[15] is valid; that is, we will compare the exact results
from the solution for the JCM with the results obtained
from the approximate solutions (3.6).

1 0.5 10.5 {

7.0 7.0 (b)

3.5 3.5

0 0.0

—3.5- —3.5-

—70- -70-

I I

—1 0.5 —7.0
I I

-3.5 0.0
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3.5
I

7.0 10.5
—10.5 t I I

—10.5 -7.0 -3.5 .0
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i 0.5

7.0 (c)

3.5

0.0
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—10.5—'10.5 —7.0 -3.5 0.0
I

3.5
I

7.0 10.5

FIG. 3. Phase contours of the Q function of the cavity field at t =0, t = t„ /2, and t = t„(the initial condition of the atom-field sys-

tem is the same as in Fig. 1). The Q function of the coherent state with a=7.0 is represented by phase contours [circles centered at
the point (7.0;0.0)]. At t = t„/2 the Q function is composed of two parts located approximately at the points (0.0;7.0) and (0.0;—7.0).
In the case of exact resonance, these two parts of the Q function are "locally" equal, but if 6%0 then the Q function at t = tR is asym-

metric [see {b) and (c), with 6/A, = 10 and 20, respectively]. For nonzero detuning, the revival time t~ is given by Eq. (2.19).
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A. Atomic inversion

Let us suppose that the atom is initially excited. The
time evolution of the atomic inversion W(t)=(03) ob-
tained from the exact solution for the JCM is plotted in
Fig. 1(a}, while in Fig. 1(b} we display the atomic inver-
sion obtained from the asymptotic solution. Corn. paring
Figs. 1(a) and 1(b), we can conclude that they are almost
identical, that is, the asymptotic solution (3.4) is extreme-
ly well suited for the description of the time evolution of
the atomic inversion and precisely describes both the col-
lapse and the revival of this observable. In Appendix B
we show how by using the asymptotic solution (3.4) one
can easily derive an approximate analytical expression
describing the collapse (decay) of the atomic-level popula-
tion of the upper level.

B. Mean photon number

It is well known that the so-called excitation number
X'=&3+& is an integral of motion in the JCM, that is,

[E,81]=0, which refiects excitation-number conserva-
tion in this model within the rotating-wave approxima-
tion. From this it follows that if the atom is prepared ini-

tially in the upper level and with the field in the coherent
state with intensity n, then at t )0 the mean photon num-
ber should be

0 20 40 60
time

FIG. 4. Time evolution of the excitation-number deviation
parameter N(t) given by Eq. (3.9) (n =100). The fact that N(t)
is not exactly equal to zero rejects the "violation" of the
energy-conservation law. Nevertheless, in the high-intensity
limit (n &) 1) the parameter N(t)/n is negligible.

n(t)=n+1 —W(t) . (3.7)

On the other hand, we can easily evaluate the mean pho-
ton number using the asymptotic solution (3.4)

n(t)= g P„n[cos (At[V n +1/(2+n )]]
n=0

+sin (At&n )] . (3.8)

In Fig. 2 we plot the parameter N, defined as

N =n(r) n 1+W—(r),— (3.9)

where n(t) and W(t) are defined by Eqs. (3.8) and (3.6),
respectively. The parameter N oscillates around —1,
which is in contradiction with the exact solution (3.7),
from which it follows that in the exact JCM the parame-
ter N is identically equal to zero. In other words, the
asymptotic solution due to Gea-Banacloche [15]describes
quite well the collapse-revival pattern of the mean photon
number that is typical for the JCM, but it leads to a
violation of the conservation of the mean excitation num-
ber. As we see from Fig. 4, one photon is missing. This
can easily be seen when we evaluate the time-averaged
value of the mean value of the operator E, that is,

C. Field entropy

Using the asymptotic solution (3.4) we can easily evalu-
ate the field entropy. To do so, we first find the eigenval-
ues and eigenstates of the reduced field density matrix
corresponding to the state (3.4) (see Appendix C), and
then using Eq. (2.7) we can study the time evolution of
the entropy of the field subsystem, which is plotted in

Fig. 5(b). Comparing Figs. 5(a) and 5(b) describing the
evolution of the entropy using the exact and asymptotic
solutions of the JCM, respectively, we can conclude that
qualitatively the time evolutions of the entropy, obtained
from the approximate solution and the exact solution, are
very similar. Nevertheless, there are some differences.
Namely, at half the revival time the entropy emerging
from the exact solution only approaches zero, and the de-

gree of purity of the field at subsequent minima progres-
sively deteriorates. On the other hand, the entropy eval-
uated from the approximate solution is periodically equal
to zero at half-integer values of the revival period. That
is, according to the approximate solution, the field

periodically completely disentangles from the atom.
From this it follows that one can use the approximate
solution (3.4) only for times smaller than the revival time

lim JCh[n—(r)+ W(r)],
T

T~co T O
(3.10)

which is equal to n using Eqs. (3.6) and (3.8) instead of
n + l. On the other hand, one can say that the asymptot-
ic solution of Gea-Banacloche [15] is valid in the limit
n ~~, so that N/n goes to zero as n ~~ and the por-
tion of the missing" energy is negligible.

D. Photon-number distribution

The photon-number distribution P„ is defined as

P„=((n (ql (3.11)

Using the exact solution of the JCM (2.9), we find the fol-
lowing expression for the photon-number distribution:
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1.00 )

~.75

0
& 0.50

(a)
tion of correlation functions of the field operators when
for some reason the leading order in n vanishes. That is,
(& ) and (it ) will be correct to leading order in n, but
the difference (8 ) —(&) may not be given correctly.
To check this point in more detail, we evaluate here the
time evolution of the variances of the quadrature opera-
tors, which are known to be squeezed [21] in the JCM.

We define quadrature operators of the cavity field X; as

O. OO s s s s s s ~ ~ s I s s

40 60 80 100 X, =8+8, X2 = t'—(tt —tt ), (3.13)

time and evaluate their variances ((bX,. )2) = (X2) —(X, ) ~ at
t & 0 when at t =0 the atom is in the upper level and the
field is in the coherent state. In Fig. 7(a) we plot the time
evolution of the variance of the quadrature operator X;

7g

0
& 0.50

(b)

0 ~ 00 s s s s s s s s s 1 ~ s s s s s s s s 1 ~ ~ s s s s s s s 1 s s s s s s s s s 1
s s s s s s s s s

O 20 4O eO 8O 1OO

time
FIG. 5. Time evolution of the field entropy (the initial condi-

tion of the atom-field system is the same as in Fig. 1 and the de-
tuning 6=0). (a) is derived from the exact solution of the JCM,
while (b) is derived from the approximate solution given by
Gea-Banacloche.
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C4

0.01-
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while from the approximate solution (3.4b) we find that

P„(t)=P„.1+—,
' cos 2A, &n +

2&n

1——cos(2A, t&n ) ',
2

(3.12b)

where P„ is the initial Poissonian photon-number distri-
bution. From Eq. (3.12b) it follows that at the revival
time the approximate P„(t„)is simply a Poissonian dis-
tribution, which periodically recovers at times kt~/2.
On the other hand, from the exact solution (3.12a) it fol-
lows that P„(ttt ) is changed because of the atom-field in-
teraction, i.e., it deviates from the Poissonian distribu-
tion. In fact, at the first revival P„(tie ) can be approxi-
mated by the Poissonian distribution, but at the later re-
vival times it deviates from the Poissonian shape
significantly [see Fig. 6(a)].

E. Quadrature sslueexiug

In his paper, Gea-Banacloche [15] mentioned that the
approximate solution (3.4) is not very suitable for evalua-

O. 04

(b)
0.03-

o.02-
C4

D. 01—

70 80 90 100 110 120 130

FIG. 6. Photon-number distribution of the cavity field at
t = t~ [see {al)]aud t =2tR [see (a2)] (the initial condition of the
atom-field system is the same as in Fig. 1, but n =100). (a) cor-
responds to the P„of the cavity field evaluated from the exact
solution of the JCM at t = tR and t =2t„, respectively, while (b)
corresponds to P„obtained from the approximate solution at
t =ktR (k =0, 1,2, . . . ). Using the approximate solution we find
that at the revival time P„ is always Poissonian, which obvious-
ly is not the case for the exact solution [see (al) and (a2)].
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FIG. 7. Time evolution of the variance of the quadrature
operator X', (initial condition of the atom-field system is the
same as in Fig. 1). From (a), which is evaluated from the exact
solution, we see that the cavity field becomes squeezed because
of the interaction with the atom. On the other hand, the picture
obtained from the approximate solution [see (b)] is completely
wrong because it leads to negative values of the variance of the
quadrature operator.

using the exact solution for the JCM. From this figure it
follows that fluctuations in this quadrature become
squeezed [that is, ((~;) ) (1] because of the interac-
tion of the cavity field with a two-level atom (for details
on this subject see Refs. [21]). On the other hand, in Fig.
7(b) we plot the time evolution of the same quadrature
operator using the asymptotic solution (3.4). From this
picture we learn that one cannot use the asymptotic solu-
tion to evaluate the fluctuations of quadrature operators;
in particular, this solution leads to the completely in-
correct result that fluctuations can have negative values.

From the above discussion it follows that the asymp-
totic (approximate) solution (3.4) of the JCM due to
Gea-Banacloche [15] can be adopted for description of
the time evolution of the atomic inversion and for mean
values of correlation functions for field operators for
which the leading term of order n does not vanish.
Simultaneously we should stress that the approximate
solution in general is valid only in the time interval
1/A, &t &t~.

In the next section we will study the statistical proper-
ties of the cavity field at one-half of the revival time
to=tz/2, when the field is almost in a pure state. For
our purposes the approximate solution (3.4) will be ade-
quate to use and will give us a very simple insight into the
nature of the state of the cavity field at this time.

IV. SUPERPOSITION STATES
OF THE CAVITY FIELD

As we stated earlier in Sec. II, the entropy of the field
subsystem reaches its local minima at one-half of the re-
vival time (see Fig. 2). Moreover, the higher the intensi-
ty, the smaller the value of the entropy, which means that
in the high-intensity limit one can assume the field to be
in a pure state. On the other hand, we know that the Q
function of the cavity field at one-half of the revival time
is composed of two independent components that are out
of phase by n (see Fig. 3 and for further details, the work
of Eiselt and Risken [20]). From this we can conclude
that the state of the cavity field at one-half of the revival
time should be close to a pure macroscopic superposition
state (see also Ref. [10]).

First of all we will study the photon-number distribu-
tion P„of the field state at to = ta l2, which in the case of
the exact solution is given by Eq. (3.12a) (the atom is ini-
tially in the upper state). We plot this photon-number
distribution for the case of exact resonance at one-half of
the revival time in Fig. 8. As can be seen from this
figure, the photon-number distribution at to exhibits very
significant oscillations. The origin of these oscillations is
in the quantum interference [3] between two components
in phase space of the Q function (see Fig. 3). In the vicin-
ity of n, P„ looks very much like the photon-number dis-
tribution of the even or odd coherent state [22] (for more
details on the statistical properties of these states see Ref.
[7]). These states are defined as follows:

Ia &,„,„=A,„,„(Ia &+ I

—a & ),
A,„,„=2[1+exp(—2IaI )],

~odd(la& —
I

—a&),

A,dd =2[1—exp( —2IaI )] .

(4.1a)

(4.1b)

To be more precise, if the initial photon number n is even
(odd), then P„(to) around n is similar to the photon-
number distribution of the odd (even) coherent state.
Nevertheless, the superposition state I'IIF(rp) ) of the cav-

ity field is not an even coherent state or an odd coherent
state; that is, it is not a superposition of two coherent
states. It is rather a superposition of two states, which,
as indicated by Gea-Banacloche [15], can in the high-
intensity limit be expressed as

I+ (ro) & = Iq,'+'(t, ))+ Iq,' '(r, )),
where

(4.2)

n n/2
I%~+'(to)) =e " g —exp[itc(np —A&n )]In ),F 0

so that the photon-number distribution can approximate-
ly be described as

(4.3a)
—n/2

I%+ '(to)) =e "~ g —exp[ito(np+A&n )]In ),, &n!

(4.3b)
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Brune et al. [10] for atom-field interactions and by many
authors for the Kerr effect [8].

V. CONCLUSIONS

We have studied the cavity field interacting with a
two-level atom at one-half of the revival time. We have
shown that this state is first a pure state and second a su-

perposition state of two distinct components. We have
shown that the quantum interference between the two
components of this superposition leads to oscillations in

the photon-number distribution (Figs. 10-12). To under-

10.5

7.0

~e,(t))=~+,'+'(t))+~+,'-'(t)), t=t, +f
where

~

O'F '(t) ) can generally be expressed as

(5.1)

0.08

0.06
(a)

~0.04
C4

0.02

stand the nature of these oscillations we have utilized the
approximate solution of the Jaynes-Cummings model of
Gea-Banacloche [15]. Using this approximation one can
express the field state at a time close to one-half of the re-
vival time as a sum of two vectors,
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t t s
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I
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I
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FIG. 9. Q function of the cavity field initially prepared (a) in

the coherent state (n =49) and the atom prepared in the super-
position state ~+ ), and (b) in the state (

—). The atom and the
field are in resonance. The Q function is plotted at t=O,
t = t„ l2, and t = t„. We see that there is no splitting of the Q
function when the atom is prepared in the states ~+). The Q
function simply rotates in the phase space around the origin
(0.0;0.0) and its shape is modified by the interaction with the
atom. The direction of rotation depends on the initial state of
the atom.

FIG. 10. Photon-number distribution of the cavity field reso-
nantly interacting with the atom (the initial condition of the
atom-field system is the same as in Fig. 1, but with n =100.0).
The moments at which the P„ is plotted are (a)
t) = t~ /2+0. 05/A, , (b) t2 =t~ /2+0. 1/A, , and (c)
t3 tg /2 +0.48 /A, . Comparing these figures, we can conclude
that the oscillations in P„are strongly affected by the duration
of the interaction between the atom and field. This is because
the oscillations in P„are due to the quantum interference be-
tween the two parts of the Q function and the quantum interfer-
ence is very sensitive to the relative phase between these two
parts. Finally, the relative phase depends on the interaction
time, so the shape of the photon-number distribution P„de-
pends on very small variations of the interaction time.
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n n/2
l+F+'(t)) =e " g "—exp[i/' +—'(n, b„6)]ln ),

„=o v'n!

(5.2)

and the phases P'*' depend on the initial photon number
n, on the detuning 6, and finally on the exact interaction
time; that is, on the value of 5 (l5l « to) T.he character
of the quantum interference between state vectors
l'O'F+'(t) ) and l%'F '(t)) depends on the values of these
parameters. As we have shown, oscillations in the
photon-number distribution are very sensitive to the par-
ticular values of n, 4, and 5; that is, they are sensitive to
whether the quantum interference is constructive or de-
structive [3].

In this paper we have discussed the lossless Jaynes-
Cummings model. Obviously, losses affect the way in
which the cavity field evolves in the JCM [23]. Neverthe-
less, we can assume that the time of interaction between
the atom and the field is short enough to treat the dynam-
ics of the atom-field system in the framework of a lossless
Jaynes-Cummings model. Then, when the superposition
state of the field is created in the cavity, one can study
the decay of this state due to the finite g of the cavity.

0.08

(a}

~0.04
p

0.02

&s follows from Refs. [6,7], one should expect very rapid
destruction of the oscillations in the photon-number dis-

tribution of the cavity field. The question is whether

these oscillations can be recovered when another atom is

injected into the cavity; that is, whether in the micro-
maser model with losses as proposed by Meystre et al.
[24] the oscillations in the photon-number distribution
can be observed. We will discuss this elsewhere, includ-

ing an analysis of how the repeated injection of atoms,
each having a specific interaction time (controlled
through a careful choice of atomic velocities) equal to
one-half of the revival time, can lead to the creation of
stable superpositions.

0.08
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FIG. 11. Photon-number distribution of the cavity field (the
initial condition of the atom-field system is the same as in Fig. 1,
but with n = 100.5). The interaction time t is (a)
t l

= t~ /2+ 0. 1/k and (b) t2 = tz /2+0. 05/k. From this figure it
follows that for times slightly differing from exactly one-half of
the revival time, the photon-number distribution of the field
with a noninteger initial mean photon number [see Fig. 8(c)] can
exhibit oscillations similar to those of the even coherent state (a)
or the odd coherent state (b). This obviously is the consequence
of very subtle quantum interference in phase space.

FIG. 12. The relative phase between the two components of
the Q function can be changed not only by varying the interac-
tion time, but also by changing the value of the detuning A. In

this figure we plot P„at t = ts /2=tt+n /A. for various values

of the detuning. (The initial condition of the atom-field system
is the same as in Fig. 1, but n = 100.) From (a) (6/A, = l.5) we

see that the oscillations of P„[compare with Fig. 8(a)] can be
destroyed by varying the detuning. As seen from (b)
(b, /1=2. 0) and (c) (6/A, =&8), there exist nonzero values of b,

for which the oscillations can be observed.
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g sinQ„+2t(cls & =ha' g P„cosQ„+2t+i-
n=0 n+2

sinQ„+, t
X

Qn+1

—= I ( C Is & I
e '~ (Alo)

APPENDIX A: EIGENVALUES AND EIGENSTATES
OF THE FIELD DENSITY OPERATOR

If the atom is initially prepared in the upper state le &

and the field in a coherent state la&; that is, the initial
density matrix p„F(0) is

p„(0)= Ia & & al le & & e
I =p (0)sp„(0), (A 1)

pF(t) =(C ik)pF(—0)(C'+iP )+SpF(0)S (A2)

where [see Eq. (2.5)]

then at t & 0 the reduced field density operator
p~(t) =Tr„[p„F(t)} evolves according to

Q2
Q„= +A, n

' 1/2

(Al 1)

From Eq. (A7} we find that the relation

~=&clc&+&cls&—'=&sls&+&sic&
p V

(A12)

should be satisfied where m is an eigenvalue of the density
operator pF(t). Solutions for p and v can be written in
the form

I'„ is the Poissonian photon-number distribution
P„=exp( —lal )lal "/n! and the generalized Rabi fre-
quency Q„ is

C'=cosQ„+)t =Re[0„(t)], (A3a) p=exp(+8)e'&, v=+exp(+8)e (A13)

g sinQ„+it

0„+)
= —Im[ 0'„(t)], (A3b}

so that @v=+1,where

(clc &
—(sls &

2I&cls&I
(A14)

sinQ„+, t
S =A&

0„+)
=i0'2((t) . (A3c)

The eigenvalues m. , 2 of the field density operator p~(t)
are

The field density operator (A2) can be rewritten as
~„=(clc&+e+'(cls& . (A15)

p (t)=lc&&el+Is&&sl, (A4)
The corresponding eigenstates can be written in the form

where the field states
I
C & and IS & are

IC&=(c' —ik)la&, ls&=sla& . (A5)

Following Phoenix and Knight [14], we write the eigen-
state of the reduced field density operator in the form

lili(1, 2)(t) &

1

(2m. , cosh8)'/

x (e ('$+e)/2I c&+e ('PT8)/2IS
& )

(A16)

le&=@le&+vis& . (A6)

If we apply the density matrix given by Eq. (A4) to the
state (A6) we find

APPENDIX B: COLLAPSE OF THE ATOMIC
POPULATION

p (t)lq'&= &clc&+&cls&—)Mlc&
p

+ (sls&+&SIC&~ vis&,

where

OO g2 sin Q„+~t
&CIC&= g P„cosQ„+,t+

n =0 Qn+1

2

(sls&=x' y P„(n+1)
n=0 Q„+)

(A7i}

(A8)

(A9)

P(n) = 1

&2~n
(n n}—

exp
2n

(B1)

and the summation over n by integration over the corre-
sponding continuous parameter. Using this method, we
can easily evaluate the overlap between the field states
I%'~+'(t) & and IV(~ '(t) &, for which we find

The asymptotic solution (3.4) for the state vector of the
atom-field system is well suited for the description of the
collapse (decay) of the atomic population of the upper
level during the first moments of the time evolution of the
system. To do so, we notice that for high intensities n of
the coherent field, the Poissonian photon-number distri-
bution P„can be approximated by the continuous distri-
bution P(n)
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&q'p+'(t)lq'F '(t) &= g P„exp(2ii&n t)
n=0

oof dn exp
27m 0

(n —n)
2n

+2ik,v'n t

APPENDIX C: EIGENVALUES AND EIGENSTATES
OF THE FIELD DENSITY OPERATOR —ASYMPTOTIC

SOLUTIONS

Using the asymptotic solution (3.4) for the state vector
of the atom-field system (the atom is supposed to be in
the upper state at t =0), we can represent the field density
operator in the form

i- (t)=Ic'&&c'I+Is'&&s'I, (Cl)
k't'

=exp — +2iz&nt
2

(B2)

from which it follows that state vectors ~%+*'(t) & are not,
strictly speaking, orthogonal at the first instants of the
time evolution, but for times t ) 1/A, the relation (B2)
tends approximately to zero, from which it follows that
for t ) 1/A, these states are orthogonal and the asymptot-
ic solution (3.4) is properly normalized.

The time evolution of the population of the upper level
of the atom under consideration is given by the relation

where the states ~C'& and ~S'& are defined as

~C'&=cos[At[t/& +1/(2+n )]] a&,
S'

&
=sin(Xt&fi' ) ~a & .

(C2a)

(C2b)

iq'&=i 'ic'&+v'ie'&, (C3)

Following the procedure described in Appendix A we
will look for the eigenstates of the density operator (Cl)
in the form

P, (t)=l&elq, „(t)&I',

from which we easily find that

P, (t)= —,'~exp[ ikt/(2—+n )]~%F+'(t) &

+exp[i', t /( 2+n )]~%~ '(t)&~

(B3)

~'=&c'ic &+&c'is & —,=&s'is'&+&s ic &~,
p V

(C4)
where

&C'~C'&= g P„cos [At[v'n +1/(2+n )]], (CSa)

from which we find the following requirement for the ei-
genvalues m.

& 2.

i' t'= —,'+ —,'exp — cos2A+(n+ 1)t, (B4)
n=0

&S'~S'& = g P„sin (A, tv n ),
n=0

(C5b)

which is equivalent to the semiclassical solution obtained
by Cummings [11] and later by Meystre and co-workers
[11]. The function (B4) describes the collapse (decay) of
the atomic level population and is valid for times
1/A, ((t &&tz, that is, the semiclassical approach is not
acceptable to describe the revival of the initial level popu-
lation.

& C'~S'& = g P„cos[At[v'n +1 (/2/n )] s]i n(it@'n ) .
n=0

(C5c)

Finally, the eigenvalues m', 2 can be expressed in the form
(A15) with the parameter 8 defined by Eq. (A14).
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