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Diagrammatic methods for the calculation of the nonlinear response of a system that is dressed by res-

onant external fields are developed. The double-sided diagrams used earlier by Prior [IEEE J. Quantum

Electron. QE-20, 37 (1984)] for the calculation of nonlinear susceptibilities in the presence of weak fields

are generalized. Additional types of double-sided diagrams are given that incorporate explicitly (a) the

relaxation-induced population transfers among the dressed levels and (b) the effects of the nonvanishing

of the diagonal elements of the dipole operator in the dressed-state basis. The rules for the diagrams are

worked out from the analytical structure of the nonlinear response. Applications of the diagrammatic

techniques to several intense-field phenomena are discussed.

PACS number(s): 42.50.Hz

I. INTRODUCTION

The presence of a strong pump is known to give rise to
many interesting effects in the response of an atomic sys-
tem to external fields [1—7]. Mollow studied, in a two-
level atom, the absorption spectrum of a weak probe in
the presence of a strong pump. He showed that a weak
probe may be either absorbed or amplified for various
probe frequencies in the neighborhood of the frequency
of a strong pump [2]. On the other hand, if the probe is
scanned around the frequency of transition connecting
the excited level to a third level, then an absorption spec-
trum exhibiting an Autler-Townes doublet is obtained.
The resonances at the Rabi frequency of the pump (Rabi
splitting) have been shown to occur in a variety of pump-
probe experiments [4—7]. Effects such as the above can
be described in terms of the response calculated to all or-
ders in the strong field but to first order in the weak j7elds
The spectrum of the radiation emitted by a system in-
teracting with a strong pump also exhibits a number of
Rabi resonances [1,7].

Further, the absorption and fluorescence signals in a
system that is interacting with a strong pump field and a
probe field have been found to exhibit resonances at vari-
ous submultiples of the Rabi frequency of the pump field,
as the strength of the probe field is increased [8—10].
Such subharmonic resonances, for example, have been
found to be quite important for the understanding of in-
stabilities in laser systems [11]and have been studied ex-
perimentally [12]. In addition, the generated radiation in
the vicinity of such subharmonic resonances has been
shown to exhibit strong squeezing properties [13]. The
existence of such subharmonic resonances can be ac-
counted for in terms of the response calculated to all or-
ders in the strong fields but to higher orders in the weak

fields [14]. Recently there has also been considerable in-
terest in the subject of single-photon and multiphoton
gain in media pumped by a strong field [15—17]. Such

situations again require response to all orders in strong
j7elds but to diferent orders in fields that are to be

ampli jied.
From the above it is clear that in the study of intense-

field effects in multilevel systems, one has typically the
following situation. The system is interacting with a
strong pump field which may be resonant or close to reso-
nance with certain transitions. In addition, the system is
interacting with weak fields. Some of these weak fields
act as probes of the intense-field dynamics. Here we are
interested in the nonlinear response of such a system.
Such a nonlinear response can be calculated to, say, nth
order in the weak fields but it has to be calculated to all
orders in the pump field We d. enote such a nonlinear
response by R '"', where the symbol R is used instead of y
to denote the fact that the pump has been treated to all
orders. The system could be interacting with more than
one pump, with each pump resonant with a different
transition [6,7]. Such a nonlinear response and its
modifications are useful for describing a 1arge number of
phenomena in optical physics, e.g., (1) pump-probe exper-
iments. (2) higher-order-wave mixing, (3) subharmonic
Rabi resonances, (4) subharmonic Raman resonances
[18,19], (5) fluorescence and ionization from a strongly
pumped system, (6) single-photon and multiphoton laser
action in systems without population inversion but which
are strongly pumped, (7) second-harmonic generation in
the presence of dc fields [20,21] and (8) nonlinear optical
phenomena in regions where transparency is induced by
external fields [22].

In this paper, we show how such a nonlinear response
can be calculated for a multilevel system that is undergo-
ing arbitrary relaxation. We work in the dressed-state
basis and make use of the dressed-atom approximation
[23,25]. We present explicit analytical expressions for
R'", R' ', and R' '. %'e develop diagrammatic methods
to describe each term in the nonlinear response. The
rules for the double-sided diagrams are worked out from
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the formal structure of the nonlinear response.
The organization of the paper is as follows. In Sec. II

we give a brief derivation of the analytical expression for
the nonlinear response R '"'. In Sec. III we give the expli-
cit analytical result for the linear response R ' ". We ilIus-
trate the diagrammatic method by calculating the linear
response R ' ". In Sec. IV we give the explicit analytical
result for R ' ' and present a diagrammatic calculation of
the second-order response. We describe the basic
features of the diagrammatic method. From the formal
structure of the nonlinear response, we establish the rules
for a class of diagrams that depend on the relaxation only
of the off-diagonal elements of the density operator in the
dressed-state picture. We also introduce a new class of
diagrams, namely, the population-transfer diagrams,
which are necessary to represent those terms in R ' ' (and
in general in R'"') which depend on the relaxation-
induced population transfers among the various dressed
levels. We establish the rules for these diagrams too. We
select two typical terms from R ' ' and illustrate how the
corresponding diagrams may be drawn. In Sec. V we

give the explicit analytical result for R ' '. We show that
there are three classes of diagrams that contribute to R '

(and in general to R'"'). By selecting three typical terms
from R ' ' we discuss the characteristics of the three
classes of diagrams and illustrate how the rules for the
two types of diagrams developed in the earlier sections
may be used for the drawing of these diagrams. We
present the complete diagrammatic calculation of the
third-order response. Finally, in Sec. VI we discuss the
applications of the diagrammatic techniques developed in
the earlier sections to several intense-field phenomena
such as subharmonic resonances, dc-field-induced
second-harmonic generation,

fluorescence

and ionization
in the presence of a strong pump, etc.

II. ANALYTICAL EXPRESSION
FOR THE NONLINEAR RESPONSE

TO ALL ORDERS IN STRONG FIELDS

In this section we derive an analytical expression for
the nonlinear response to some given order in the weak
fields and to all orders in the strong fields. We work in
the dressed-state basis and make use of the dressed-state
approximation.

A. Density-matrix equation in dressed-state basis

Consider a quantum-mechanical system that is under-
going relaxation and that is interacting with one or more
strong fields and with weak fields. The evolution of such
a system is described by the dynamical equation [14]

Bp i [Ho+ V(t)+—W(t), p]+L~p,at
(2.1)

where p is the density operator of the system and V(t)
[W(t)] describes the interaction with the strong [weak]
fields. The relaxation of the system is described by the
Liouville operator Lz which has the structure

&" )P +~"g (7' p "1';p;;),

is time independent. As a result of the canonical trans-
formation, Eq. (2.1) becomes

= —i[A', P]—i [ W(t),p)+L~p, (2.4)

where

P= U (t)pU(t),
—1

h =U '(t)[H, + V(t)]U(t)+i U,

jest

W(t)=U '(t)W(t)U(t) .

(2.5a)

(2.5b)

(2.5c)

It may be noted that such a U(t) can always be chosen
provided one neglects the counter-rotating terms in V(t)
and provided no two strong fields saturate the same tran-
sition. The choice of U(t) will depend on the structure of
the energy levels and the external strong fields. Now we
make one more canonical transformation S pS =p,
where S is the operator which diagonalizes h. The equa-
tion of motion for p is given by

= —i [&,P] i [F(t),p—]+Xp, (2.6)

where

S-'hs=m, a~i &=,, ~& ),
F(t)=S 'W(t)S,

Xp=S '(LR(SpS ')]S .

(2.7a)

(2.7b)

(2.7c)

Here,
~
i ) denote the dressed states of the system with en-

ergies given by c.; . These are the eigenstates of the com-
bined atom and strong-field Hamiltonian [23]. The
operator F (t) represents the interaction of the weak fields
with the strong-field-dressed system. It may be noted
that if one makes the rotating-wave approximation with
respect to the weak fields, then, as a result of the canoni-
cal transformation, the rapid oscillations at the optical
frequencies in the weak-field interaction F(t) are re-
moved. Thus the new interaction F(t) has only slowly
oscillating components. The Liouville operator
represents the relaxation of the strong-field-dressed sys-
tem. We now make the secular approximation [23—25]
(which is generally valid for strong fields) so that X can
be approximated by

(&p),. - = —
q,"(1 5,.J )p„+&J.g (p,kp—ua Pkipii ) .

k (2.8)

Here q,- - is the decay rate of the off-diagonal element of
the density operator in the dressed-state picture, namely,

Here I ",-
" is the rate of dephasing of the coherence

p; (i' ) due to phase-changing collisions, and y," gives
the rate of transition from state

~j ) to ~i ) due to inelastic
collisions and spontaneous emission. At this stage we
make a canonical transformation with a unitary operator
U(t) such that the quantity

U '(t)[H, + V(t)]U(t)
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B. Response functions to difFerent orders in weak fields

The nonlinear response is related to the induced polar-
ization P(t) which can be calculated to nth order in the
weak fields from the relation

P'" (t) =Tr[dp'" (t)] . (2.9)

In terms of the density operator in the dressed-state pic-
ture p'"'(t), the pth component of the nth-order induced
polarization can be written as

P„'"'(t)=Tr[d ~(t)P "(t)], (2.10)

p;., whereas p;. denotes the rate of decay of the dressed
state ~j) to ~i . It may be noted that in general for an
operator A, A;J may be defined either as (i~A ~j) or as
(i

~
A

~j ), the two definitions being equivalent. In the first
definition the operator is transformed to the new picture
while the basis is the old one, whereas the reverse is true
in the second definition. The decay rates q," and p; de-

pend, through the elements of the transformation matrix
S, on the Rabi frequencies of the pump fields. It may be
noted that both the downward as well as the upward
transitions among the dressed states are important since,
in general, p," is nonzero whether c;)c. . or vice versa.
This is in contrast to the case when the pump is absent,
where the rate of transition from

~j ) to ~i ), namely, y;~,
is nonzero only if E~ &E; (corresponding to the case of
spontaneous emission), unless the system undergoes in-
elastic collisions. If the pump is weak, the transition
rates p;J depend linearly on the pump intensity. Howev-
er, if the pump is strong, then the dependence of p;~ on
the pump intensity is quite complicated in general.

dl"(t)=S 'U '(t)dl'U(t)S, (2.11)

where d" is the pth component of the dipole-moment
operator d, and p'"'(t) is computed from Eq. (2.6). In
view of the definition (2.11), one can expand d "(t) in the
form

d "(t)=g d "e (2.12)

where co can be either positive or negative. The
modified interaction F(t) [Eq. (2.7b)] can then be ex-
pressed as

F(t)= —gd (t)E (t), (2.13)

which in terms of the Fourier transform of the weak field
E(t) a,nd in view of the expansion (2.12) can be cast in the
simple form

F(t)= —gd, f dcoe
2 jTa, a

E (co) . (2.14)

It may be noted that the upper (Greek) index in d, cor-
responds to the Cartesian component of the vector d
whereas the lower (Latin) index corresponds to a particu-
lar Fourier component in the expansion (2.12). It is clear
from Eq. (2.14) that the Fourier components of the new
interaction F(t) consist of combinations of the weak-field
and the strong-field frequencies as a result of the transfor-
mation to the dressed-state representation.

By using the decompositions (2.12) and (2.14) one can
now express P„'"'(t) in terms of the nonlinear response
R '"' in the following manner [14]:

P„'"'(t)= g g f" dco, f" dco„exp ico~t it—g I—I;

XR„'"{'
} (coq, [II„J)E~ (coi) E (co„), (2.15)

where R '"' is given by the expression
T

R „'"{'
}
(co, [Q„] )=,Tr d" iLO —g II,. cx)a )

iLO —Q II;
1=2

L (iLo —0„) 'L, p' ' .
sym

(2.16)

Lo =i [&, ]+X,
L,=— i[d „]—.

(2.17)

(2.18)

Here we have defined 0; to stand for the sum of frequen-
cies co;+~, , where co,- is a Fourier component of the

l

weak field E(t) whereas co, is a Fourier component of the

dipole-moment operator in the dressed-state picture ap-
pearing in the expansion (2.12). For instance, in the sim-
ple case when there is only one pump co& and one probe

co„one can choose a transformation U(t) such that co&

can take values +col and hence the Q,-'s can assume
values +(co, —col). The density operator p' ' describes
the steady state of the dressed atom and hence is subject
to the restriction p ',- '=p ';, '5; . The quantity
represents the number density of the atoms. The sub-
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script "sym" in Eq. (2.16}implies that the quantity in the
curly brackets has to be symmetrized with respect to the
pairs of indices (Q, ,a,. ), i =1,2, . . . , n. It may be noted
that R '"' as given by the expression (2.16) appears as the
coefficient of the term oscillating with the frequency
co +g,",Q; in the Fourier expansion of P„'"'(t) [Eq.
(2.15)]. Hence the nonlinear response Rz~'

)
(co~, [Q„j )an

describes the generation of radiation with the frequency
coq+g,",Q; =co@++," i(co;+co, ).

C. Expectation values of the atomic observables

The above formulation enables us to compute not only
the induced polarization but also the expectation values
of the system observables, for example, the atomic level

=Tr[S 'U '(t}li &(i I U(t)Sp(t)], (2.19)

where U and S are the matrices (as explained above) that
transform the bare-atom quantities to the dressed-atom
picture. Usually the diagonal operator Ii &(i

I
is left un-

changed by U(t). Thus the population of the level Ii & to
some nth order in the weak field but to all orders in the
strong field will be given by

populations. A knowledge of the level populations is im-
portant in the study of the fluorescence and ionization
signals in the presence of strong pump fields and weak
probe fields. The population N; of the state Ii & will be
given by

N, =Tr[lt &(ilp(t)]

n
n

N, = g g f dco, f dco„exp it g—Q; A;( }([Q„j)E (co, )
. E (co„),

Ig I Ia I
i=1

(2.20)

where the quantity JV';(' )([Q„j) is obtained from the

nth-order response R„'"~'
}
(co, [Q„j) [Eq. (2.16)] by put-

ting co =0 and replacing d ~~ by the operator S 'Ii & (i IS

LOIi & &j I

= i&,, Ii &—(j I, (2.21a)

(2.21b)

D. Eigenfunctions and eigenvalues of the Liouville operator

In order to obtain explicit expressions for R '"' to some
given order n, we need to know the eigenvalues and
eigenfunctions of the Liouville operator Lp ~ It follows
from Eq. (2.17) that Ii & (j I (i' ) forin a set of eigenfunc-
tions of L0 ~ Thus

tion of any arbitrary function f (Lo) on any arbitrary
operator Q. Thus we have

f(LO)g=g gt„f( —tAkj}lk &&jl(1—
&~, )

k,j
+ g Qkk(A )„kf(A„)A .Ie&&el .

k, m, n

(2.26)

In particular, we have the following relation which is
quite useful in simplifying the expression in Eq. (2.16):

(iLO —Q) ' i &(j I=(A; —Q) '(1 —5;, )li &(j I

+5,, g B,„(Q ) I
k & & k

I
(2.27)

k

Another set of eigenfunctions of L0 can be constructed in
terms of the diagonal basis vectors Ii & (i I. It may be not-
ed that L0 is not diagonal in this basis, since

where we have defined

Bt,(Q)=g (3 ')„;3k„(iA„—Q), (2.28)

Lait &&i
I =&D,; jI&&j I, (2.22)

where D is the population relaxation matrix defined by

D;, =p;,(i' ), D, ,
= —gp; .

J
(2.23)

Lo

then, the eigenfunctions Pk are given by

ok=r ~'IJ &&lJ, IJ&&Jl=z(~-'};e. ,

(2.24)

(2.25)

where A is the matrix that diag onalizes D, i e.,
'D A =A, , where A, ; =A,;6; . Having gotten the eigen-

values and eigenfunctions of L0, one can obtain the ae-

The eigenvalues and eigenfunctions of L0 in this basis can
be obtained by solving the eigenvalue problem for the
population relaxation matrix D. Thus if we write

The physical meaning of the B terms can be under-
stood, for instance, by considering the case when there
are no weak fields. In this case, the populations of the
dressed levels at two different times obey the relation

P, (t) =g P,„(t)Pkk(0)
k

P(t)=eD', t)0,

(2.29)

(2.30)

B,k(Q)=i f dt e' 'Pk, (t) .
0

(2.31)

where D is the population-relaxation matrix defined by
Eq. (2.23). It may be noted that P,k (t) in Eq. (2.29) corre-
sponds to the probability that the system is in the dressed
state Ii & at time t given that it was in the dressed state
Ik & at time t =0. The quantity B;k(Q) defined by Eq.
(2.28) is related to the Laplace transform of the condi-
tional probability Pk,.(t) in the following manner:
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III. LINEAR RESPONSE

It follows from Eq. (2.15) that the induced polarization
to first order in the weak fields and to all orders in the
strong fields is related to the linear response R'" in the
following manner:

r

Pq '(t)= g f dcoe2. -"
—i{co +Q)t

q

Hence it follows that 8;k(Q) refers to a population
transfer from dressed state ~i) to ~k) due to the relaxation
processes in the presence of strong pumps.

where R,'b', and R F'wM describe, respectively, the absorp-
tion of energy from the probe co, in the presence of the
pump col and the generation of radiation with frequency
2co) —co, (four-wave mixing). We find that the quantities
R ',b', and R F'~M are explicitly given by

R()) —R())(~ 5)—N y y (-(0) —(0)}(da }
C7 l,J

X (d ~~ ),J(AJ, —5) ', (3.6a)

R ( ) —R())( 5)—N y y (p
(0)

p (0))(d a }
XR„"'(co,Q)E (co), (3.1)

where 0 stands for the sum co+co„with co being a
Fourier component of the weak field and co, a Fourier
component in d (t) [Eq. (2.12)]. The general expression
for the linear response follows from Eq. (2.15) and is
given by 5=(co, —co)) .

X(d +); (A, +5)

(3.6b)

(3.6c)

R~( (coq Q)=N Tr[Z~q(iL& Q) L P ]

In order to simplify the expression (3.2), we write

p(0)gp(0)~))

(3.2)

(3.3)

Here d+ and d are the coefticients of the positive and
negative frequency terms in the expansion of d(t),

d(t)=d+e '+d e (3.7)

and make use of the result (2.27). This leads to the result

R„"'(coq,Q) =N g p';, '[(d, );(d ")J(AJ; —Q)

+( —d, );,(d");(A; —Q) '] .

(3.4)

It is important to bear in mind that the lower indices q
and a in R„"'(coq,Q) (Q=co+co, ) relate to the Fourier
components co and co, appearing in the expansions, re-
spectively, of d "(t) and d (t) [Eq. (2.12)].

In Eq. (3.1), R „'"(coq, Q) is the coefficient of the term in
the Fourier expansion of P„"'(t) that is oscillating with
the frequency co +Q. Thus R„"~(coq,Q) describes the
generation of radiation with frequency m +Q. It can be
seen from Eq. (3.4) that resonances in the linear response
occur when a combination of the strong field and wea-k

field frequencies Q( =co, +co) becomes equal to one of the
transition frequencies of the dressed atom. It may be not-
ed that the linear response is determined only by the re-
laxation of the off-diagonal elements of the density ma-
trix.

Consider for simplicity the case in which the system is
interacting with one pump (co)) and one probe (co, ). In
this case, as we have noted before, ~ and 0 can, respec-
tively, take the values +(co, —co& ) and +(co, +co( ). Hence
P„'"( t) can be expressed in the form

The quantities R',b, and R'„'wM have been used in the
literature in studying a wide variety of phenomena aris-
ing in the presence of a strong pump and a weak probe
[2—5].

It may be noted that the "other terms" in Eq. (3.5}
arise due to the counter-rotating terms in the weak-field
interaction W(t) in the bare-atom picture and hence cor-
respond to nonresonant processes, namely, a nonresonant
contribution to the absorption at the probe frequency and
the generation of radiation at the frequency 2'&+co, . It
may be noted that the pump (dressing) field was treated
under the rotating-wave approximation. This was inevit-
able since otherwise it would not have been possible to
transform away the time dependence in the atom-pump
interaction V(t). However, one can use the linear
response R"' to take into account the effects of the
counter-rotating terms by treating such terms to first or-
der.

IV. DIAGRAMMATIC CALCULATION
OF SECOND-ORDER RESPONSE

Before we proceed to present the diagrammatic calcu-
lation of the second-order response R' ', we give below
the analytical result for R' ' which follows from the gen-
eral result Eq. (2.16}:

+H. c.+ ( other terms ), (3.5)

+B„' 't)(co, Q„Q2)],

where A ' ' and 8' ' are given by the expressions

(4.1)
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(0) (dq}k(":)k&(db)j ( d—»;k( d—.)k, (dq»;
(A,; —Q2)(A„; —Q, —Q2) (A,„—Q2)(A, , —Q, —Q2)

( d )'k(d ~q)k (d '~~) '' ( d ~b)'k(d q~)k (d ')
(A, ,

—Q2)(A,„—Q, —Q2) (A,„—Q2)(A,„—Q, —Q2)
+ ~ ~ ~ (4.2)

where the ellipsis denotes terms obtained by interchanging (Q„a)~(Q2,p), and

(d ~q) (d '')'k(d ~q)k ' ( d ~q)'k( d )k'(d ~q)qj'
ijk ki 2 ik 2

(
—d, ) k(d") (dPb)"k; (

—d~g) k(d"), (d, )k;

ki 2 ik 2

+ ~ ~ ~

(4.3)

where again the ellipsis denotes terms obtained by inter-
changing (Qi, a) (Q2, P).

In writing the expressions (4.2) and (4.3), we have omit-
ted the restrictions on summations which arise in view of
the relation (2.27}. Hence a quantity such as (A; —Q}
in Eqs. (4.2) and (4.3) should be understood as
(A;, —Q) ' with i' It may . be noted that the frequen-
cies Q, and Q2 in Eqs. (4.1)—(4.3) stand for the sums of
frequencies co, +co, and m2+cob, respectively, with ru„co2
(co„cob) being the Fourier components of the weak field
(dipole-moment operator in the dressed-state basis).

In contrast to the case of linear response, the second-
order response R ' ' consists of two different types of con-
tributions given, respectively, by Eqs. (4.2) and (4.3). The
first contribution depends entirely on the relaxation of
the off-diagonal elements of the density operator in the
dressed-state picture p, as in the case of the linear
response. However, the second contribution depends, in
addition, on the relaxation of the diagonal elements as
well through the matrix elements of B [Eq. (2.28)]. Fur-
ther, it also depends on the diagonal elements of the
dipole-moment operator in the dressed-state basis (d

q )jj,
which are in general nonzero. We next discuss how each
term in the expansion of R ' ' can be represented by a dia-
gram. For this purpose we will use double-sided dia-
grams of the type used in the past [26—33] but now the
interpretation will be different. We follow the convention
used by Prior [31] in writing the double-sided diagrains.
In addition we will need an additiona1 type of double-
sided diagrams as shown below.

A. Basic features of the diagrammatic method

A double-sided diagram consists of two parallel lines
with time advancing upward. The two lines correspond
to the evolution of the ket and the bra parts of the initial
vector Ii)(iI. It may be noted that Ii)(iI is a "vector"
in the Liouville space, i..e., the space obtained by taking
the direct product of two Hilbert spaces each of which is
spanned by the basis vectors Ii). The diagrammatic
method involves keeping track of the successive evolution
of the initial vector

I
i ) ( i

I
into other vectors in the Liou-

Tr(d" Ik ) ( jI)=(d ") k .

(4.4)

(4.5)

The rule for writing the dipole-matrix elements reads as
follows.

One may begin at the ket and the bra parts of the ini-
tial vector and trace upwards. On the ket side, the evolu-
tion of Ik) into Im ), for instance, gives rise to a factor
(d, ) k in the product of matrix elements, where a is the
index corresponding to the vector component of the field.
On the bra side, on the other hand, the evolution of (j I

into ( m
I

for instance, gives rise to a factor (
—d, )

The crossing from the bra side to the ket side, say from
the bra( k

I
to the ketI j ) gives rise to an additional factor

(d") k. This additional factor comes from the trace
operation as in Eq. (4.5).

(3a) A propagator or a product of propagators: the
rule for writing the propagators follows from the relation

ville space as a result of the interaction of the system with
the weak fields in the presence of the strong fields, and as
a result of the relaxation of the system in the presence of
strong fields. The interactions with the weak fields are
represented by wavy arrows placed on the two sides of
the diagram. The bra and ket vectors are suitably placed
alongside the two parallel lines so that a wavy line drawn,
say above Ii) and below Ik ) on the ket side indicates the
transformation of Ii ) into

I
k ). A wavy line pointing up-

ward (downward) represents absorption (emission} of a
photon of the weak field in presence of the strong field.

The rules for the diagrams follow from the analytical
structure of the nonlinear response (3.3). We examine the
generation at the frequency coq+ g,"=iQ, . A term corre-
sponding to a given double-sided diagram consists of
three factors, as follows.

(la) An initial density-matrix element.
(2a) A product of dipole matrix elements: the rule for

writing down these matrix elements follows from the re-
lations given below:

L, Ik ) (j I

= —i& [(d, ) k Im ) (j I
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(4.6)

where Az. is the complex resonance frequency of the
dressed atom as defined by Eq. (2.21b). The rule for writ-
ing the propagators reads as follows.

One may advance in time until after an interaction ver-
tex is encountered. If the "vector" at that point is, say,
~k)(j~ (kPj), then the corresponding propagator is
given by (Az —0„) ', where 0„ is the weighted sum of
the photon frequencies appearing below that point, the
weighting factor being + 1 for a photon absorbed and —1

for a photon emitted.
The terms in the first contribution A ' ', as they depend

on the relaxation of the off-diagonal elements of p only,
can be represented by the diagrams such as are described
above. Here it may be noted that it is not necessary to
explicitly indicate such a relaxation in these diagrams.
This is due to the simplicity of the relaxation model (3.3)
that we have assumed so that the relaxation-dependent
propagation operator (iLD 0) '—does not transform an
off-diagonal element such as ~k ) (j ~

into some other ele-
ment but merely scales it by the propagation factor
(Aq~

—0„) '. Further, the structure of the off-diagonal
propagator is not modified in any nontrivial way due to
the relaxation, except for co& going to co&. —iI & =—A; .
Here it is super6uous to indicate in the diagrams the
transformation of the vector ~k ) (j ~

into itself. The rules
given above can therefore be used to draw the diagrams
for the terms in A' ' [Eq. (4.2)]. On the other hand, in
order to represent the terms in 8' ' [Eq. (4.3)] that arise
due to the relaxation of the diagonal elements of the den-
sity operator, one needs a different type of diagrams in
which the relaxation-induced population transfers among
the dressed levels are indicated explicitly. Hence the to-
pology of these diagrams as well as the rules for these dia-
grams must be substantially different from those for the
diagrams of the first type that represent the terms in the
first contribution A' '.

First we will consider a typical term in the first contri-
bution A „' '& [Eq. (4.2)], namely,

( —d, );„(d", )g, (& ~b),;

(A~;
—Qq)(A~g

—0)—Qp)
4.7

and explain how, using the rules (la) —(3a) given above,
one can draw the corresponding diagram. One can see
from the structure of the term (4.7) that it represents the
evolution of the initial vector

~
i ) ( i

~
into

~j ) ( i
~

as a re-
sult of the absorption of a photon of frequency Qz, and
subsequently into

~j ) ( k
~

as a result of the absorption of
another photon of frequency 0,. Thus while the first in-

teraction should be placed on the ket side (since ~i) is
transformed to

~j ) ) the second interaction should be
placed on the bra side (since (i

~
is transformed into (k ~).

The diagram corresponding to the above term has been
drawn in Fig. 1.

There are 2 X2!=8 ways in which two interactions
can be placed on two sides of a double-sided diagram in
two different time orders. Thus there are eight diagrams
of the first type that contribute to R' ' and these are

FIG. 1. Diagram representing a typical term in the second-
order response.

given in Fig. 2. The corresponding terms are given on
the right-hand side of each diagram. These terms add up
to give the contribution A' ' [Eq. (4.2)]. It must be noted
here that although the 2! permutations of the indices

(Q&, a)~(Qz, P) in the four terms in the expression (4.2)

do not bear a one-to-one correspondence with the 2! per-
mutations of the time orders. in the diagrams that corre-
spond to these four terms, the two results, in sum, yield
the same terms in A' '. This equivalence between the re-
sults of the analytic and diagrammatic calculations of the
nonlinear response is general and applies to all our fur-
ther discussion.

B. Population-transfer diagrams

As we have pointed out at the end of Sec. II, the ma-
trix elements of B arise due to the transfers of population
among the dressed levels. Thus in order to represent the
terms in 8' ' [Eq. (4.3)] which involve the matrix ele-
ments of B, we must have diagrams that contain the in-
gredient about such population transfers among the levels
concerned. We now describe the topology of these
population-transfer diagrams [34) s well as the rules for
these diagrams. A population-transfer diagram is, in all
respects but one, the same as the usual diagram (the to-
pology of which has been described in detail above). The
one important respect in which the population-transfer
diagram differs from the usual diagram, as the name indi-
cates, is the additional information that it carries about
the transfer of population from one dressed level to
another that is brought about by relaxation processes.
The transfer of population from, say, level ~k ) to

~j),
which in fact corresponds to the evolution of the vector

~

k ) ( k
~

to
~j ) (j ~

in Liouville space, is denoted by means
of two double arrows on each of the two parallel lines ex-
tending from

~
k ) to

~j ) on the ket side and from ( k
~

to
(j~ on the bra side. We give below the rules for writing
the population-transfer diagrams.

The term consists of three factors, as follows.
(lb) An initial density-matrix element.
(2b) A product of dipole-matrix elements. The rule is

the same as in (2a) and reads as follows.
One may begin at the ket and the bra parts of the ini-

tial vector and trace upwards. On the ket side, the evolu-
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(ho -Q() (hpQ) -Qa)

FIG. 2. The eight diagrams of the first type contributing to the second-order response. On the right-hand side of each diagram is
the corresponding term.

tion of l
k ) into

l
m ), for instance, gives rise to a factor

(d, ) z in the product of matrix elements, where u is the
index corresponding to the Fourier component of the
field. On the bra side, on the other hand, the evolution of
&j l

into & m
l

for instance, gives rise to a factor ( —d, )1
The additional factor that arises due to the trace opera-
tion is (d «)Jk, for instance, if the terminal vector is
lk) & jl.

(3b) A product of propagators: The rules for writing
the nropagators follow from the relation (3.6) and the re-
lation

It may be noted that the rules (I) and (2) are the same
for the two types of diagrams. However, the rule (3b) is
more general than the rule (3a) in that the former tells us,
in addition, about how to write the propagators when
there is a relaxation-induced population transfer among
the dressed states.

Let us consider now one of the typical terms in the

()LD —&) 'Ik &&kl =&Bk,(fl)lj &&jl, (4.8)

where Bz.(Q) is defined by the relation (2.28). The rule
reads as follows.

One may advance in time until after an interaction ver-
tex is encountered. If the "vector" at that point is, say,
lk ) &jl (kWj}, then the corresponding propagator is
given by (Akj —0„) ', while on the other hand if the vec-
tor at that point is lk ) & k

l followed by an evolution to
lj ) & j l

due to a transfer of population from the dressed
state lk ) to lj ), then the propagator is given by B&J.(A„).
Here Q„denotes the weighted sum of the photon frequen-
cies appearing below that point, the weighting factor be-
ing + 1 for a photon absorbed and —1 for a photon emit-
ted.

lk)— (kl

FIG. 3. A population-transfer diagram representing a typical
term in the second-order response.
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FIG. 4. The eight population-transfer diagrams contributing to the second-order response.

second contribution 8' ' [Eq. (4.3)], namely,

( d. ) k(d" ) (—d ~g)k;"
T = '' 8.(Q+Q)2 Pii (A Q )

kj 1 2
ki 2

(4.9)

and discuss how the corresponding diagram may be
drawn keeping in view the rules (lb) —(3b) given above. It
is clear from the structure of the term (4.9) that it
represents the evolution of the initial vector ~i ) (i

~
into

~k )(i~ as a result of the absorption of a photon of fre-
quency Q2, and subsequently into ~k ) ( k

~
as a result of

the absorption of another photon of frequency 0& ~ The
fact that the vector at this point is

~
k ) ( k

~
implies that

the dressed atom, now in the level
~
k ), has the possibility

of being transferred, due to relaxation, to another level

~j ). That this is indeed the case is evident from the pres-
ence of the diagonal propagator 8k.(Q, +Q2). Thus the
diagram should have the first interaction placed on the
ket side (corresponding to the transformation of

~
i ) into

~k ) ) and the second interaction on the bra side (corre-
sponding to the transformation of ( i

~
into ( k

~
) and one

must draw two double arrows extending from ~k ) to
~j )

and from ( k
~

to (j ~

on the ket and the bra sides, respec-
tively. It may be noted that a transfer of population from

~
k ) to

~j ) takes place after the two photons Q, and Q2
have been absorbed so that the argument of the diagonal
propagator is Q&+Qz. The diagram corresponding to the
term (4.9) has been drawn in Fig. 3.

The eight population-transfer diagrams that contribute
to R' ' and the corresponding terms are given in Fig. 4.
The contributions from the diagrams in Figs. 3 and 5 add
up to give the result (4.1) for the second-order response
R( )

FIG. 5. A diagram belonging to the first class representing a
typical term in the third-order response.
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V. DIAGRAMMATIC CAI.CULATION
OF THE THIRD-ORDER RESPONSE

In this section we present a diagrammatic calculation
of the third-order response R' ' by making use of the

rules for the two types of diagrams, namely, the usual di-
agrams and the population-transfer diagrams, that we
have described in the preceding section.

We first give the analytical expression for R' ' which
follows from the general result (2.16):

R „'~&«(coq, Q&, Qz, Q3)= [B—„'~//«(coq, Q» Qz, Q3)+ C&~//«(coq, Q» Qz, Q3)+D&~&«(cuq, Q» Qz, Q3) ]P& 3'

0) 02 03
+five permutations r.

0) 03 02 02 0) 03 02 03 0]
r 0 '

13 ~ )' .
'

13

where the contributions B' ', C' ', and D' ' are given by the expressions

T

03 0] 02 03 02 0]
a & 1' & a (5.1)

B„' '&«(coq, Qi, Q2, Q3)

(Aj, —Q3)(Ak; —Q, —Q, )(A„,—Q )

( d «)' ( d ~~) k(d ~q)kj(d )j+
(A;„—Q, )(A,„—Q~ —Q, )(A „—Q )

(
—d ~g);„( —d, )„k(d q")kj(d «)j;+

(A; —Q3)(A „—Q~ —Q3)(A k
—Q~)

( —d ~$);„(d ~q)„/, (d, )/,/(d «)j,+
(A/; —Q, )(A „—Q2 —Q3)(Ak„—Q~ )

d a)ln( d b)nk( d a)kj(d q)ji

( A;„—Q3 )( A;k
—Q~ —Q3 )( A; —

Q~ )

(
—d, );„(—d, )„k(d q)kj(d b)/;+

(A;„—Q3)(Aj„—Q~ —Q3)(A k
—

Q~ )

(
—d «);„(d ~q)„k(d, )k/(d Pb),;+

(A;„—Q3)(A/„—Q~ —Q3)(Ak„—Q~ )

( —d, );„(d"q)„k(d ~&)k/(d «),;+
(A/;

—Q3)(Ak; —Q2 —Q3)(Ak„—Q~ )
(5.2)

C„' 'p«(coq, Q „Q~,Q3)

/0/ q nk a kn b ij c jiB (Q +Q
(d") (d ) (d~) "(d )"

(A; —Q3)(Ak„—Q~ )

( —d «);, ( d~g)j;( —d—, )k„(d,")„k ( —d «);, ( d~g)j, (d ~q)„—k(d, )k„

( —d, )j(—d, ) „(d ", )„(d~)j; ( d~)J( —d,—) „(d ", )„„(d,)j;
(Aj; —Q~)(Ak„—Q~ )

( —d «);,(d")„„(d;)„„(dP),; (
—d ~);,(d ")„„(d,)„„(d«),;

a kn q nk b ij c ijB (Q+Q( —d ) (d") (d ~) (d«)"
(A; —Q3)(Ak„—Q )

D„' '//«(coq, Q, , Qz, Q3)

( /

(d ~q)„„(d,);k(d ~g)kj(d «),; ( —d «);k( d~g)kj( —d, ),;(d—~q)„„

(Aj, —Q3)(Ak; —Q2 —Q3) (A;k —Q3)(A;, —Q2 —Q3)
) 0 j

(
—d «);k( d~g )k, (d ", )„—„(d,),; ( —d «);k( —d .)k/(d", )„„(d~q)/,

( d b)'k( d )kj(d ~q) (d «)/ (d'«) k(d ~q) (d )k/(d'~b)ji

(A, ,
—Q3)(A,„—Q2 —Q3)) '" ~ (A;k —Q3)(A,k

—Q2 —Q3)

( —d b);k(d~q)„„(d, )k, (d «),; (
—d, );k(d", )„„(d,)„,(d «),,

(5.3)

(5.4)
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In Eqs. (5.2) —(5.4), we have used the symbol Q to denote
the sum of the frequencies Q„Q2, and 03, i.e.,
Q =0)+02+03.

The contribution B' ' depends only on the relaxation
of the off-diagonal elements of the density operator p
[35]. Hence the terms in B' ) can be represented by the
usual diagrams for which the rules (la) —(3a) given in Sec.
III apply. The contribution C' ', however, depends, in
addition, on the population transfers among the dressed
levels. Hence the terms in C' ' have to be represented by
the population-transfer diagrams described in Sec. IV for
which the rules (lb) —(3b) apply. The contribution D' ',

on the other hand, depends not only on the relaxation of
the off-diagonal elements of p and on the population
transfers among the dressed levels but it also depends on
the nonvanishing of the diagonal elements of the dipole-
moment operator in the dressed-state basis. As we have
noted earlier, the diagonal elements of the dipole-moment
operator in the dressed-state basis are in general nonzero.
This is in contrast to the case when the strong fields are
absent where the contribution D' ' is nonvanishing only
if the system has a permanent dipole moment. The terms
in D' ' again are represented by the population-transfer

diagrams. However, these latter diagrams are essentially
of a different class due to their being significantly distinct
from the diagrams corresponding to the terms in C' '.
Thus, in general, we have three classes of diagrams,
namely, (i) the diagrams which involve the relaxation of
the off-diagonal elements of the density operator alone
(although such a relaxation is not explicitly indicated in
the diagrams), (ii) the diagrams which involve
relaxation-induced population transfers among the
dressed levels, and (iii) the diagrams which depend on the
nonvanishing of the diagonal matrix elements of the
dipole-moment operator in the dressed-state basis. These
three classes of diagrams are typified, respectively, by the
diagrams corresponding to the three contributions to the
third-order response, namely, B' ', C' ', and D' '. It may
be noted that the diagrams corresponding to the terms in
the contribution B' ' [Eq. (4.3)] in the second-order
response belong to both the second as well as the third
classes while the diagrams corresponding to the terms in
the contribution A( ' [Eq. (4.2)] belong to the Srst class.
In what follows we select a typical term from each of the
above three contributions B' ', C' ', and D' ' and illus-
trate the application of the rules for writing the diagrams.
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FIG. 6. The eight basic diagrams belonging to the first class that contribute to the third-order response.
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Let us consider first a typical term in 8' ', namely, C' ', namely, the term given by

( —d:);.(d ", )„,(d ', ),,(d,'),,
Pii"

(AJ; —Q3)(Ak; —Q2 —Q3)(Ak„—Q )
(5.5) O a kn q nk b ij c ji + (Q +Q

( —d ) (d") (d~) (d )-
k ~ 3

ji 3 kn p

This term represents the evolution of the initial vector
i )(i~ into ~j)(i~ and then into ~k)(i~ and then into
k ) (r7~ due to the successive absorption of photons Q„

Q2, and 03, respectively. While the first two interactions
(transformation of

~
i ) into

~j ) and of
~j ) into

~
k ) ) are

on the ket side the last interaction (transformation of ( i
~

into (n
~ ) is on the bra side. Thus the term (5.5) can be

represented by a diagram as in Fig. 5. There are
2 X 3!=48 different ways in which three interactions can
be placed on two sides of the diagram in six different time
orders. We have given in Fig. 6 the eight diagrams corre-
sponding to the eight terms in A ' '. The 48 diagrams can
be obtained from these eight basic diagrams by permut-
ing the time orders of the three interactions in each of the
diagrams. We have demonstrated in Fig. 7 how such a
permutation leads to five additional diagrams starting
from the basic diagram corresponding to the term given
in (5.5). We have also given the corresponding terms,
which have been worked out using the rules (la) —(3a), on
the right-hand side of each diagram. The terms corre-
sponding to the 48 diagrams obtained in this manner add
up to yield the contribution 8' ' to the third-order
response.

Let us next consider a typical term in the contribution

(5.6)

This term represents the evolution of the initial vector
~i)(i~ into j)(i~ and then into ~i)(i~ due to successive
absorption of photons 02 and 03, respectively. As the
structure of the second propagator suggests, a
relaxation-induced population transfer occurs at this
stage so that

~
i ) ( i

~
evolves into

~
k ) ( k ~. Finally,

~
k ) ( k

~
evolves into

~
k ) ( n

~
due to the absorption of the

photon 0}. While the first two interactions (transforma-
tion of ~i) into j) and of ~j) into ~i)) are on the ket
side the last interaction (transformation of ( k

~
into ( n

~ )

is on the bra side. Thus the term (5.6) can be represented
by a diagram as in Fig. 8. The eight basic diagrams be-
longing to this class that contribute to the third-order
response R' ' are given in Fig. 9 along with the terms
corresponding to each of the diagrams, which have been
worked out using the rules (lb) —(3b). Starting from these
eight diagrams, one can obtain the 48 diagrams belonging
to this class by permuting the time orders of the three in-
teractions. It may be noted that in the diagrams in Fig.
9, a relaxation-induced population transfer among the
dressed levels occurs after two photons of the weak field
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FIG. 7. Six diagrams obtained by permuting the time orders of the three interactions in a typical diagram.
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«nl Finally, let us consider a typical term in the contribu-
tion D' ', namely, the term

0 ( Z—, );k(d~q)„„(d~g)g„(d r)J,.
(5.7}

«I I

FIG. 8. A diagram belonging to the second class
(population-transfer diagram} representing a typical term in the
third-order response.

in the presence of the strong field have been absorbed.
Hence the two-photon propagator in the terms belonging
to these diagrams has the structure B;k(Qz+Q3).

This term represents the evolution of the initial vector
i)(i~ into ~j)(i~ and then into ~k)(i~ and then into
k )(k

~
due to the successive absorption of photons Q„

Qz, and 03, respectively. At this stage, a relaxation-
induced population transfer occurs from the dressed level

~k ) to ~if ), as is evident from the structure of the three-
photon propagator Bk„(Q&}. Again while the first two

interactions (transformation of ~i ) into
~j ) and of

~j )
into ~k )}are on the ket side the last interaction (transfor-
mation of (i

~
into (k ~ ) is on the bra side. The term (5.7)

can be represented by the diagram as in Fig. 10. It may
be noted that the structure of the diagram in Fig. 10 is

quite different from that in Fig. 8 since in the former, the
relaxation-induced population transfer takes place after
all the three photons have been absorbed so that the
structure of the three-photon propagator is of the type

Bk„(Qp } (Qp =Q)+Q2+Q3}, while the two-photon prop-
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FIG. 9. The eight basic diagrams belonging to the second class that contribute to the third-order response.
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Jn&

)k)

&n( agator has the usual structure (Ak,. —02 —0&) '. The
eight basic diagrams belonging to this class and the corre-
sponding terms, which have been worked out using the
rules (lb) —(3b), are given in Fig. 11. The contribution
from the 48 diagrams, derived from these eight basic dia-
grams by permutation of the time orders of the three in-
teractions, add up to yield the result for D' ' [Eq. (5.4)j.

Thus the 48+48+48 = 144 diagrams belonging to the
three classes discussed above determine the structure of
the third-order response R' ' completely. By using the
diagrammatic methods developed in the foregoing sec-
tions, one can similarly calculate the higher-order
response R '"', for n & 3 in a straightforward manner.

VI. APPLICATIONS
OF THE DIAGRAMMATIC TECHNIQUES

FIG. 10. A diagram belonging to the third class (population-
transfer diagram) representing a typical term in the third-order
response.

The diagrammatic techniques developed in the forego-
ing sections can be used to study various phenomena in
multilevel systems that arise in the presence of weak
probe fields and strong pump fields. We present below
some of these applications.
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FIG. 11. The eight basic diagrams belonging to the third class that contribute to the third-order response.
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A. Resonance at Rabi frequency in absorytion

As noted in Sec. III the resonances in the linear
response R'" occur at the transition frequencies of the
dressed system. In the case of a two-level system, the en-
ergy difference between the dressed states I 1) and I2) is
equal to the Rabi frequency of the pump field Q~. In
Fig. 12 we give a typical diagram which describes probe
absorption in the presence of a pump. It may be seen
from the diagram in Fig. 12 that the lower dressed level
~2) is transformed to the upper dressed level ~1) due to
the absorption of a photon of frequency 5=(co, —]o]).
Using the rules (la) —(3a) we have written down the corre-
sponding term on the right-hand side of the diagram. It
is clear from the diagram, as well as from the correspond-
ing term, that resonances at the Rabi frequency occur in
probe absorption in the presence of a strong pump [2—5].

B. Resonances at Rabi frequency in four-wave mixing

C. Resonances at Rabi frequency in Suorescence

The diagrams for the linear response can also be used
to study the fluorescence in the presence of a strong
pump and a weak probe. In the case of a two-level sys-
tem the fluorescence intensity will be related to the
excited-state population. As explained in Sec. IIC the
excited-state population p", ,

' (calculated to first order in
the weak field and to all orders in the strong field) can be
computed from the linear response R"' by replacing d"
by the operator S '~ 1)(1IS—:c]. Hence p'1'1' will then be
given by the expression

PI']'=g f d]oe ' 'JV]~'(Q)E (o]) .
277 00

7

(6.1)

In Figs. 14(a) and 14(b) we have given two diagrams

I1 & &2 I

p(o] ]"+]12 1 + ]21
22 (A 5)12

I2& &2I

FIG. 12. Typical diagrams for a two-level system interacting
with a strong pump and a weak probe. The diagram describes
probe absorption. 5=(co, —m~ ).

In Fig. 13 we give a typical diagram which describes
the generation of radiation at the frequency (2'] —]o, ).
Here the lower dressed level I2) is transformed to the
upper dressed level I 1) due to the emission of a photon of
frequency 5=(co, —co]). This process corresponds to the
emission of a photon of frequency co, in the presence of
the pump coI. It is clear from the diagram as well as from
the corresponding term that resonances at the Rabi fre-
quency occur in four-wave mixing as well [2—5].

- )21 (+)12
(A + 5)

I2& &2I

FIG. 13. Same as in Fig. 12 but now the diagram describes
four-wave mixing.

(along with the corresponding terms) which contribute to
JV',"(5) and JV'1"( —5) (5=co, —co]), respectively. The
excited-state population p& &' will then be given by

P]1 XP22[(d +)12( 1)21(A]2

(6.2)
+(d )~](c])]~(A~]+5) 'e' '(6',*}],

c, =S-'I
1 ) (1IS .

There are two more terms that come from the diagrams
with the initial vector

I
1 ) (1I. Thus it is clear from the

diagrams in Figs. 14(a) and 14(b) that the fiuorescence
also exhibits resonances at the Rabi frequency.

In the case when an amplitude-modulated field is used
instead of the pump and probe fields, the carrier part can
be treated as the dressing field and the modulated part as
the probe field. In this case, 5 will be equal to the modu-
lation frequency Q . Hence, the diagrams such as in

Figs. 14 also explain the resonances in modulated
fiuorescence [25] when the modulation frequency equals
the carrier Rabi frequency Qz.

D. Subharmonic resonances

Let us consider for simplicity a two-level system in-
teracting with a pump (o]]) and a probe (co, ). We consid-
er a typical term in R„']]](co],5, 5) 5=(co, o]]), that i—s

represented by the diagram in Fig. 15(a). This diagram
contributes to the second-order response that describes
the generation of radiation with frequency

~&+5+5=2', —co&. It can be seen from the diagram in

Fig. 15(a) that the absorption of a single photon of fre-
quency 5 as well as the absorption of two photons of fre-
quency 5 takes the initial ket I2) (lower dressed level) to
the ket I1) (upper dressed level). This implies the ex-
istence, in the signal generated with frequency 2', —

co&,

of a resonance at the Rabi frequency (5=0]]) as well as a
resonance at one-half of the Rabi frequency (25=0]] ),
since, as remarked earlier, the energy di8'erence between
the dressed levels I

1 ) and I2) is equal to the Rabi fre-
quency of the pump field Qz.

Next let us consider a typical term in the third-order
response R„' I]~(co] 5, 5, 5), 5=(co, co]), that—is represent-
ed by the diagram in Fig. 15(b). This diagram describes
the generation of radiation with frequency

co~+5+5+5=3', —2'&. It can be seen from this dia-
gram that the lower ket I2) is transformed to the upper
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I1 & &2I I2& &iI

(o) (~j.)n («)n (s) (-d )zl («)is
(g„+ 6)

I 2& &2 I I2& &2I

(b)

FIG. 14. Diagrams describing fluorescence in presence of a pump and a probe: (a) contribution to JV'&"(5}; (b) contribution to
N, ".(-5}.

ketI1) due to absorption of a single photon, two photons,
as well as due to absorption of three photons. This im-

plies the existence of resonances at the Rabi frequency, at
one-half of the Rabi frequency, and at one-third of the
Rabi frequency in the signal generated with frequency
3coz 2'�~.

Thus the diagrammatic techniques are useful in analyz-
ing the various subharmonic resonances that occur in
various signals that are generated in a system interacting
with pump and probe fields.

E. Two-photon gain in a dressed two-level system

There has been considerable interest in recent years in
media that exhibit two-photon gain as such media allow
for the possibility of two-photon lasing. Lewenstein,
Zhu, and Mossberg [15] have shown recently that two-

level atoms dressed by a strong pump exhibit a two-
photon gain. This can be understood from the fact that
the diagonal elements of the dipole-moment operator in
the dressed-state basis are in general nonzero. Hence the
nonlinear response that describes the generation of radia-
tion at the probe frequency m„namely, R' '(co, ,5, —5,5),
5= (co, —co~ ), exhibits a two-photon resonance at
25=+hz( (resonance at one-half of the pump Rabi fre-

quency). However, for gain considerations, only the left
sideband 5&0 is of interest. We have given in Fig. 16
some of the diagrams that contribute to R' '(co&, 5, —5, 5)
along with the corresponding terms. These must be sup-
plemented by diagrams with the initial vector Il)(1I
which we have not given but which can be easily written
down. The contribution from all these diagrams adds up
to yield the result

R' '(co&, 5, —5,5)= —
(p&,

' —pzz')(d+ ),z(d )z, [(d+ )» —(Z+ )zz][(Z )» —(d )zz]

1 1 1

(Az) —5)(Az) —25) (Az) —5) 5+t(p, z+pz, )
(6.3)

where p&2 and pz& are, respectively, the rates of decay
from lower dressed level I2) to the upper dressed level

I
1 ) and vice versa. It may be noted that in writing Eq.

(6.3) we have omitted the diagrams that do not yield
terms with the two-photon resonant denominator

(Az~ —25) '= —(Qz+25+iq&z) '. Further, assuming a
near two-photon resonance condition, we have also omit-
ted the diagrams that yield terms containing one or more
antiresonant terms such as, for example (A,z+5) ' or
(A&z+25) '. The omission of such antiresonant tertns

)1» «jt
«%)

2
v 6 P

(A 12-5) (A12-25)

{0)( y)21 + ~11 t +~11 + 12
u I
A1g4) (A1P-25) {A1245)

«5t

ta)

FIG. 15. Typical diagrams describing subharmonic resonances in a two-level system. (a) and (b) correspond to the diagrams con-
tributing to the second-order response and third-order response, respectively.
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amounts to a generalized rotating-wave approximation
[10] in the modified interaction F(t) [Eq. (2.7b)]. Such a
rotating-wave approximation leads to a considerable
reduction in the number of diagrams that contribute to
any particular nonlinear process. It may be noted that
we have for simplicity suppressed the Cartesian indices in
writing the dipole-moment matrix elements in Eq. (6.3).
The expression in Eq. (6.3) may be compared with the
corresponding one for the linear response describing

(1)(~ fi)(p(0)p(o))(d)
X (d )2,(A~, —5) (6.4)

The dipole-moment matrix elements in Eqs. (6.3) and
(6.4) are explicitly given by

probe absorption. This follows from Eq. (3.6a) and is
given by
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FIG. 16. Diagrams yielding two-photon resonant terms in the third-order response of a dressed two-level system.
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(d ),2=(d+)2, = —d, 2sin p,
(d )2, —(d+ ),2

—d, 2cos p,
(d )„=(d+)„=—(d )22

= —(d+ )22 d 12sink cos0

(6.5a)

~
2 ) do not have definite parities, the matrix elements d»,

d22 d12 d13 and d23 are all nonvanishing. We give in

Figs. 17(a) and 17(b) two typical diagrams which contrib-
ute to the second-harmonic signal. These diagrams cor-
respond, respectively, to the terms T1 and T2 in
R' '(O, co„co, ) given by

(6.5b) 13
1 P33 (A, 3

—co, )(A, 3
—2', )

(6.6a)

where 6 is the atom-pump coupling coefficient and 6 is
the atom-pump detuning. It can be seen from Eq. (6.4)
that in general (p Ii' —p12z') &0 and hence the imaginary
part of R"'(co&,5) is negative in the neighborhood of the
left Rabi sideband 5= —Q„. This gives rise to a linear
gain and, as has been demonstrated recently by Lezama
et al. [16], such a gain is useful for single-photon lasing.
On the other hand, in the neighborhood of 5= —0„ the
imaginary part of R' '(co&, 5, —5, 5) is positive and hence
this acts as a nonlinear loss term in the case of single-
photon laser action. However, the imaginary part of
R' '(co&, 5, —5, 5) is negative in the neighborhood of the
subharmonic resonance 25= —Q& and hence in this case
one has a two-photon gain. It is instructive to look at
this result in comparison with the case of a bare two-level
atom. It is well known that the nonlinear susceptibility
y' '(co„—co„co, ) of a bare two-level atom exhibits a two-
photon resonance 2', =co,2 (where co,2 is the transition
frequency of the two-level atom) provided the atom has a
permanent dipole moment, i.e., the diagonal elements of
the dipole-moment operator, namely, d» and d22, are
nonzero.

F. dc-field-induced second-harmonic generation

It is a well-known fact that second-harmonic genera-
tion cannot take place in systems that have a center of in-
version symmetry, for example, in atomic vapors. Usual-

ly, a dc field is applied to the system to break the symme-
try [20]. The dc field has the effect of mixing the system
levels so that the matrix elements of the dipole-moment
operator in this mixed basis may be nonvanishing, i.e.,
( i

~
d

~
i )%0, where the

~
i ) now represent the mixed lev-

els. Thus one has a nonvanishing second-order suscepti-
bility in this case which leads to second-harmonic genera-
tion.

The coupling between the dc field and the system may
well be quite strong, in which case the dc field may be
thought of as "dressing" the system levels. It may be
noted that the dressing now is done by a field with zero
frequency, i.e., coI =0. Hence in such a case, the second-
order response R' '(O, co„co, ) describes the generation of
radiation at the second harmonic 2', . For the sake of il-

lustration, we consider a model three-level system with
excited levels

~
I ) and

~
2 ) (E, )E2 ) to be coupled by a dc

field while an optical field cu, to be near resonant with the
transition ~2)~~3), ~3) being the ground level. The lev-
els

~
2 ) and

~
3 ) have a parity opposite to that of level

~
1 ) .

In the dressed-state basis, we have ~1) and ~2) which are
a linear combination of levels ~1) and ~2) due to dc field
coupling and

~
3 ) =

~
3 ) . Since the dressed levels

~
1 ) and

(p)d32d22d23
T2 P

(A23 —co, )(A22 —2', )
(6.6b)

Here the dipole-moment matrix elements in the dressed-
state basis are given by

d, 1
= —d 22

=d, 2sin20, d12 =d, 2cos2t9

d13 d13 '0 d23 d13

where 0 is defined by

6 5sin20=
(52+ G2)1/2 ' (52+G2)l/2

cos28=

(6.7)

(6.8)

q13 p P31sin 8, q23 $31cos (6.9)

Here y31 denotes the rate of decay from level ~1) to level

~3). If we assume 5/G «1 (i.e., cos 8=sin 8= —,
' ), then

we can combine the terms in Eq. (6.6) and write the sim-
ple result (cf. Ref. [35])

(a) (b)

FIG. 17. Two typical diagrams describing dc-field-induced
second-harmonic generation in a model three-level system.

Assuming a near two-photon resonance condition be-
tween the ground level

~
3) and the excited levels

~
1) and

~2), we can approximate (A» —co, ) and (A23 —co, ) by co, .
The expressions in Eqs. (6.6) can be further simplified by
rewriting the two-photon resonant terms as
A» —2', =b, +(5 +G )'/ iq» an—d A22

—2', =b —(5'
+G )'/ i@23, wh—ere 25 denotes the energy difference
between the levels ~1) and ~2) in the absence of the dc
field, 6 the strength of the dc-field-atom coupling, 6 is
the two-photon detuning from the center of the Stark
split levels, and q13, and q23 are the dc-field-dependent re-
laxation parameters
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1 1T=E2 5+G —iq 6—G —iq
(6.10)

where E2 is a constant factor and we have used q to
denote y3&/4. The two-photon resonant terms in Eq.
(6.10) corresponding to the two Stark levels have an op-
posite sign due to the fact that d» = —dz2 [Eq. (6.7)].
The intensity of the second-harmonic signal is given by

nonlinear response of a system —the nonlinear response
being determined by the mean value of the dipole-
moment operator. We would like to remark that the di-
agrammatic methods can also be used to calculate the
two-time correlation functions of the dipole-moment
operator. Such two-time correlation functions determine,
for example, the spectrum [1] of radiation emitted by an
atomic system irradiated by strong external fields. We
shall discuss this matter elsewhere.

4G2

[(b,+G) +q ][(5—G) +q ]
(6.11} VII. CONCLUSION

It can be seen from Eq. (6.11) that the second-harmonic
signal at the two-photon resonance (b, =0) is a significant
fraction of the peak value (i.e., at 6=+6). Hence, as
Stoicheff and co-workers [21] have demonstrated, it is
possible to have a significantly large second-harmonic sig-
nal at the two-photon resonance (b =0},at the same time
inducing a transparency in the medium [36]. Harris and
co-workers [22] had earlier shown and recently observed
[37] that such a situation where a nonlinear optical pro-
cess is resonantly enhanced while simultaneously induc-
ing a transparency in the medium can be obtained by ap-
plying a strong coupling field between the uppermost
state and a level through which the nonlinear process
takes place.

It may be noted that we have developed the diagram-
matic techniques in this paper for the calculation of the

In conclusion, we have developed the diagrammatic
methods for the calculation of the nonlinear response of a
system that is dressed by resonant pump fields. We have
also presented explicit analytical results for the first-,
second-, and third-order responses. The rules for the dia-
grams have been worked out from the formal structure of
the nonlinear response. Applications of the diagrammat-
ic techniques to intense-field effects such as subharmonic
resonances, dc-field-induced second-harmonic generation,
fluorescence, and ionization under laser excitation in the
presence of a strong pump and two-photon gain have
been discussed.
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