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A large number of statistical models of current interest in physics can be characterized as differentially
quenched systems. They are prepared by successively introducing into a volume one fraction after
another of the particles in a many-body system, each successive fraction being equilibrated while all the
earlier fractions are kept frozen in place. Examples of current interest include self-avoiding walks,
chemical association models, growth models, and models of random sequential adsorption (RSA). In
this paper, we develop generalizations of the replica method adequate for calculating the properties of
such systems. These are applied to RSA, resulting in both virial series and integral equations for the
physical quantities describing this system. We extend the virial series for the adsorption rate to give ex-
cellent agreement with simulation results at all densities.

PACS number(s): 05.20.—y

I. INTRODUCTION

This paper is part of an ongoing project [1] of extend-
ing the methods of liquid-state physics (integral equa-
tions, renormalized perturbation theory, etc.) to apply to
continuum systems with quenched disorder. Such sys-
tems include engineering composites, porous materials,
gels, amorphous materials, spin glasses, etc.

There are two broad classes of goals motivating this
research, one of which is practical, the other of which is
rooted in fundamentals. From a practical point of view,
it is important to have algorithms to calculate the bulk
properties of random materials given statistical informa-
tion about their composition. From a more basic point of
view, research has focused on the nature of the continu-
ous transitions, such as the percolation transition and the
glass transition, found in quenched random systems. One
wants to know whether these transitions display a sub-
stantial and computationally powerful resemblance to
those found in equilibrium systems near their critical
point, or whether the resemblance is limited to superficial
analogies based on the occurrence in both of a diverging
correlation length. In particular, it has been shown that
the spectrum of critical exponents associated with
different moments of the order parameter is concave up
in thermal critical phenomena and concave down in
quenched random materials [2]. Furthermore, at least in
two dimensions [2], this behavior can be traced to the ex-
istence of an infinity of dangerous irrelevant operators
which can greatly complicate the analysis of the asymp-
totic scaling. This could present major problems to
workers trying to incorporate a description of the scaling
region into a unified picture of a random system over its
entire phase diagram [3]. Clearly, it is important to de-
velop methods for exploring these questions in detail for
specific models.

In considering these questions, the present author has
noted a property found in a large class of disordered sys-
tems, many of which exhibit the anomalous scaling phe-
nomena just mentioned. Specifically, many of these are
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examples of differentially quenched systems. These are
defined to be many-body systems prepared by the follow-
ing procedure: one adds to the system volume a small
fraction of the total number of particles in the system, al-
lows them to equilibrate, then quenches or freezes them
in place. The next fraction of particles is then added to
the system and allowed to equilibrate in the presence of
the first fraction added. They are frozen in place before
the next fraction is added. Many successive fractions or
layers are added to the system in this manner until the
desired density is achieved. If each successive fraction is
infinitesimal, we will refer to a system prepared in this
way as a differentially quenched system.

Using a useful thermal picture, we may think of each
successive layer or fraction as being much “hotter” than
the “cold” layers already in place. Certainly, this partic-
ular physical circumstance gives a realization of the
preparation procedure just described. However, the oc-
currence of differential quenching is not limited to sys-
tems supporting a wide variation in local temperature [4].
We readily imagine that external constraints (or internal
conservation laws) impose the successive or stepwise
equilibration procedure that we denote as a differential
quenching. Under these circumstances, the successive
fractions of particles may equilibrate at temperatures
provided by an arbitrary annealing schedule. For exam-
ple, each fraction may equilibrate at the same local tem-
perature as, for example, in the case of differentially
quenched hard-sphere systems. These will be an impor-
tant class of the examples we discuss. Also, the initial
fraction of particles in a differentially quenched system
may be distributed according to an arbitrary nonequili-
brium distribution function.

Disordered systems that accord with the picture dis-
cussed here [5] include Eden clusters, diffusion-limited
aggregates, chemical reaction models [6], porous materi-
als [7], sequential adsorption processes, self-avoiding
walks, and turbulent cascades [8]. The description along
these lines, of certain irregular porous materials such as
Berea sandstones [7], relies on a picture of successive ag-
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gregation. Most of the other examples will be discussed
either below, or in a companion paper to this one [9].
The latter treats examples which we formulate as Hamil-
tonian systems by adding certain chemical association
techniques to the methods developed here.

We pause to discuss the turbulent cascade, which is not
obviously related to the general scenario just sketched.
The standard picture of such a cascade [8] is that of a sys-
tem of eddies with a very large range of characteristic
wavelengths or wave numbers. The cascade successively
transfers energy, in a roughly local fashion, from eddies
corresponding to each decade of wave number to eddies
corresponding to smaller wave numbers. Because the
effective kinetic energy (or temperature of different ed-
dies) is a rapidly varying function of their wave number
(it varies as k ~1173), successive decades of wave numbers
play the role of successively quenched fractions in the
picture drawn above. The turbulent cascade thus has the
general structure we have described when considered in
wave number space; the Rayleigh-Benard system and
other systems in local equilibrium under strong thermal
gradients will show a corresponding structure in
configuration space [4]. However, because the turbulent
cascade has no Hamiltonian structure, treating it will re-
quire a basic extension of the methods used here, which
rely on the presence of such a structure.

This paper is organized as follows: in Sec. II, we devel-
op an effective thermodynamics, using the replica
method, for a two-species system, one species of which is
quenched. This system, in addition to being a basic
building block of the more complex systems to follow,
has itself been successfully applied as a model for fluid
partitioning of solute particles between a solvent and a
porous material. In Sec. III, we generalize this model to
a multispecies model, which realizes the differential
quenching picture in a general Hamiltonian model. In
particular, when the interactions are provided by hard-
sphere potentials, we get an exact description, in terms of
virial series, of the random sequential adsorption (RSA)
models extensively studied as models of irreversible bind-
ing to substrates [10-20]. Section IV will present the
Ornstein-Zernike equations for the correlation functions
of the RSA system and discuss one possible closure. Sec-
tion V mentions some consequences and extensions of
this work.

Paper II of this series exploits ideas from the theory of
chemical association [21] to relax the constraint that the
“hot” and “cold” degrees of freedom must each corre-
spond to the positions of a subset of the particles in the
system. This extension of our concepts will allow us to
treat the Miller-Abrahams model of electron hopping in
amorphous media [22], self-avoiding walks, the Eden
model, and the continuum spin glass as examples of our
general picture. We do this by considering a general
model in which each particle of an arbitrary many-body
system is represented as a fictitious bound state of two
pseudoparticles, each of which is associated with a subset
of the degrees of freedom normally attributed to a single
particle. For example, a magnetic atom with a point di-
pole at its center may be described as a bound state of a
hard-sphere particle and a point dipole. This description

then allows one “species” to be quenched (i.e., the hard-
sphere particles) and the other to be annealed (i.e., the
point dipoles) thus giving a realistic description of a con-
tinuum spin glass. This process offers a powerful exten-
sion of the methods developed in this paper.

Paper III of this series will use further extensions of
the ideas already developed to treat diffusion-limited ag-
gregation and void percolation within the same effective
equilibrium framework.

II. PROPERTIES OF A BASIC, QUENCHED
TWO-SPECIES SYSTEM

In this section, we will use the replica method [23] to
calculate the properties of a mixture of two species, one
of which is quenched and the other annealed. This sys-
tem was studied from a different, more probabilistic per-
spective by Madden and Glandt [24] and used by them to
calculate the partition coefficient of a spherical solute di-
vided between a homogeneous fluid phase and a porous
material soaked with the same fluid [25]. We present
here complete prescriptions for virial expansions of the
effective properties of this system. We also sketch the ex-
act analytic solution, in the mean-spherical approxima-
tion, of the Ornstein-Zernike equations for the system
correlations functions. The technical details of this solu-
tion are planned to be published separately [26].

The two species in the system discussed here should be
thought of as fractions of the particles in a many-body
system, physically identical, but equilibrated at much
different temperatures. This system will be a basic build-
ing block of the general differentially quenched system
discussed in the next section. We will show that the
quenched averages describing such a system can be
rewritten in terms of the annealed, or equilibrium aver-
ages describing a related two-species system.

We consider then a mixture of two species which has
the pairwise interaction potentials v;;(x),i,j=1,2.
Throughout this paper, species will be numbered accord-
ing to their “temperature,” i.e., to their order of intro-
duction into the system, with the fraction introduced
later always having the higher species index and thus the
higher temperature or level of activity. The average free
energy of our two-species system is

—BF=anmt=% [e Pimz a1, 2.1)
with

z'= [ Pnan 2.2)
and

Z,= [ PHutialgy 23)

Here we write H;; for the sum of all pairwise interactions
between particles of species i and species j. Also, we
write d1,d2, to represent integration over all the posi-
tions of particles of species 1 and 2, respectively. The
average in (2.1) is difficult to treat analytically because of
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the presence, under the integral sign, of the logarithm.
We thus make use of the replica trick [23], which consists
of replacing the logarithm with an exponential by using
the identity

J

InZ,, = hﬂ)% [ |exp ®e

83 |

i=1

The variables describing species 2 have been replicated
and now appear in s copies, in accordance with (2.4). The
notation {d2} indicates an integration over the s sets of
position variables corresponding to these particles.

As we will discuss in later sections, the partition func-
tion (2.5) is a basic building block for several of the
quenched systems to be treated. Here we first discuss the
virial expansions of the various physical quantities that
describe this model. We will then discuss the analytic
solution of the mean-spherical approximation (MSA) for
the correlation functions of this model.

We first note that the expression on the right-hand side
(RHS) of (2.5) is, in fact, a limiting case of the equilibrium
partition function for a particular system, namely, the
system with Hamiltonian

H= 3 vy(x;)+ 3 vplxy)
i) (i j
+ 2 Uzz(x,'j )880_0_ .
o t

(2.6)

This system is a mixture of a simple, i.e., a one-
component, fluid with an s-component fluid. Particles of
the one-component fluid (the s-component fluid) bear the
subscript 1 (2). We have denoted by o; the number of the
component to which the ith particle of type 2 belongs.
The Kronecker 6 on the RHS of Eq. (2.6) then indicates
that pairs of type-2 particles only interact when they be-
long to the same component. Thus the system of type-1
particles, i.e., the original quenched phase, can be
thought of as a “‘solvent” which mediates interactions be-
tween the different type-2 components. This analogy is
apt in the sense that a quenched phase, like a solvent, can
induce effective interactions that are both long range and
many body. According to Eq. (2.5), the equilibrium free
energy of the system just described becomes, in the s —0
limit, the average free energy of the quenched, two-phase
system described in this section.

We now find it conceptually useful to again recast the
problem, describing the s-component fluid of type 2 as be-
ing instead a one-component fluid whose particles have a
discrete internal degree of freedom which we call “spin.”
The spin of a type-2 particle i, which we write o, is just
another name for what we previously called its com-
ponent. The conceptual change here is the reverse of that
originally used by Onsager [27] in his treatment of aniso-
tropic colloidal systems: Onsager treated colloidal parti-
cles with different orientations as members of different
species; we are treating particles from different com-
ponents as members of a single species differing only by
values of a fictitious internal coordinate. These two
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InZ = lim —l—(Z‘—— 1). (2.4)
s—0 §

Substituting (2.4) into (2.1) gives, for the total partition
function

{d2}d1 . (2.5)

descriptions are equivalent because we work only in the
grand canonical ensemble; however, one must in general
take into account the entropy of mixing between different
components when translating between the two descrip-
tions. Thus in considering Mayer expansions for the
properties of this system, each internal vertex, or root
point, associated with a type-2 particle will be accom-
panied by both a spatial integration over its position and
a summation over its spin state. Also, because of the spin
dependence of the last term in the Hamiltonian (2.6),
each pair of root points of type 2 that are connected by a
Mayer bond must be in the same spin state.

We pause to comment upon the peculiar spin-
dependent potential, given by the last term in Eq. (2.6),
which acts between pairs of type-2 particles; we have pre-
viously [1,28] described this as a generalized Widom-
Rowlinson interaction. The original Widom-Rowlinson
model was introduced as a model of phase separation
[29]; it involved a mixture of particles of two different
species (or “‘spin states”) with a repulsive interaction be-
tween particles in different species. However, s-species
generalizations such as that used here occur frequently in
the theory of random media [28]. They are actually con-
tinuum generalizations of the ferromagnetic Potts model
[30]. A basic insight of the work described here is that
the continuum version of the well-studied replica
method, used for treating many quenched random sys-
tems, falls within the same framework. It is a limiting
case of an anti-Widom-Rowlinson model, so called be-
cause repulsive interactions are present between particles
in the same species, rather than those in different species.
This model is a continuum generalization of the antiferro-
magnetic Potts model. The intriguing notion suggested
by these mappings, namely, that there are two basically
different kinds of models for randomly disordered materi-
als, is still under study. Here we note that the quenched
two-phase system discussed in this section is the s —0
limit of the mixture just described, in the sense implied
by Eq. (2.5). We will realize the analytic continuation im-
plied by Eq. (2.5) by expanding the physical properties of
this mixture in virial series, taking the s —0 limit of each
term, and, in certain cases, resumming the virial series to
give integral equations. The same prescription provides
explicit formulas for the coefficients in the virial expan-
sions of the basic physical quantities. The Kronecker &
occurring in the interaction (2.6) ensures that any pair of
species 2 (or Widom-Rowlinson) particles connected by a
Mayer bond must be in the same spin state. Since each
group of such particles in a Mayer graph that are con-
nected by bonds into a cluster will be weighted by a fac-



45 LIQUID-STATE METHODS FOR RANDOM MEDIA: RANDOM. .. 819

tor of s by the summation over spin states, the only
graphs making a nonzero contribution in the s —0 limit
will be those having all the species-2 particles connected
directly or indirectly by Mayer bonds. By a similar argu-
ment, the graphs contributing to the correlation func-
tions are precisely those in which each species-2 particle
is connected, directly or indirectly, to a root point by a
chain of Mayer bonds passing only through species-2 par-
ticles.

The lowest-order example of such functions is the den-
sity, for which the corresponding Mayer graphs are those
with a single root point. A set of Ornstein-Zernike equa-
tions has been developed [24,25] by exploiting the
description just given for the structure of the Mayer
graphs that contribute to the correlation functions. This
is precisely the s —0 limit of the Ornstein-Zernike system
obeyed by a mixture of a hard-sphere fluid and an s-state
Widom-Rowlinson fluid. The correlation functions for
both the Widom-Rowlinson fluid and the pure hard-
sphere fluid [31] satisfy Ornstein-Zernike equations that
are exactly solvable in the mean-spherical approximation.
We have extended these calculations to treat the mixture
discussed here; the exact solution of the MSA for this sys-
tem will be discussed separately [26].

In an earlier study [24], the two-phase system de-
scribed here was used to model the partition of a solute
between a porous medium and a homogeneous liquid.
The porous medium is modeled as a thermally quenched
species of particles that do not interact with each other,
but have a hard-sphere repulsive interaction with the an-
nealed solute particles. The latter thus percolate through
a matrix of overlapping spheres. The system has been
studied numerically [25]; we are now extending this work
using the exact solution.

III. ANALYTICAL FORMULAS
FOR RANDOM SEQUENTIAL ADSORPTION

In this section, we extend the model of Sec. II to de-
scribe a mixture of many species. This provides an ana-
lytic framework for calculating the properties of systems
constructed by differential quenching. We first develop a
formalism general enough to handle all the models de-
scribed by differential quenching. This formulation is
then used to treat a basic example, namely, random
sequential adsorption. In particular, we present virial ex-
pansions for the properties of a sequentially absorbed sys-
tem of hard disks.

It is straightforward to generalize the two-temperature
model of Sec. II to a model involving multiple fractions,
with the system being quenched before adding each suc-
cessive fraction. As in Sec. II, we will describe a multiply
quenched system as a system of s species, with the parti-
cles of a specific species k being equilibrated at a temper-
ature T, the particles of species i,i <k being already
thermalized and frozen in place. We find it valuable con-
ceptually to bear in mind the case in which the { T}, } obey
the inequality

T,>T;, i>j (3.1)

so that the sudden change in local temperature as one
moves from one fraction to the next brings about the

differential quenching. However, as we have emphasized,
this case is not even general enough to handle all the
differentially quenched systems treated in this paper. In a
more general scenario, the nonequilibrium development
of the system has prevented the equilibration of different
layers with each other, thus externally imposing the
differential quenching we assume. The variation of local
temperature with particle fraction will be called the “an-
nealing schedule,” in order to emphasize this aspect of
differential quenching; here we have generalized a term
used in the simulated annealing algorithms [23]. The
choice of annealing schedule will depend upon the
specific physical application.

One readily constructs Mayer expansions for the prop-
erties of the general differentially quenched system by re-
cursively applying the continuum replica method
developed in Sec. II. Applying this method n» —1 times to
a differentially quenched system of n fractions gives for-
mulas for the thermodynamic quantities of this system in
terms of the thermodynamics of an effective equilibrium
system of n species, of which all but one have been repli-
cated into a mixture of s components, as in Sec. II. The
only residue of the nonequilibrium nature of the problem
being studied is the absence from the Mayer expansions
of the system of all graphs not satisfying certain con-
straints. We will present these constraints for a general
differentially quenched system. The graphical expansions
for the general n-fraction mixture are specified by the re-
quirement that we be able to divide this mixture, in all
possible ways into a “hot species,” comprising the top k
fractions or species, and a “cold species,” which is a mix-
ture of the remaining n —k different fractions or species.
Making such a division, for any value of k, should yield
the constraints derived in Sec. II for the two-
temperature, i.e., two-fraction system. In general, the
graphical expansions for the physical quantities of a
quenched system can be derived from the corresponding
expansions for an equilibrium system by deleting all the
labeled Mayer graphs that do not obey certain con-
straints. Explicitly, the constraint on graphs contributing
to the free energy of the n-species system is as follows.

(1) Free energy constraint: All the vertices correspond-
ing to particles of a particular species (except for the first
species, which was not replicated) must be connected to-
gether by Mayer bonds, i.e, they must form a connected
subcluster. Also, there must be at least one vertex corre-
sponding to a particle of a species other than species 1.
Finally, for each species except for the last at least one
particle of that species must be connected to a particle
with larger species number, i.e., to a particle from a
hotter fraction.

Similarly, the constraint on graphs contributing to the
correlation functions of the s-species system is as follows.

2. Correlation function constraint: Each field point
corresponding to a particle of, say, species m, must be
connected to a root point by a path, i.e., a succession of
directed Mayer bonds, such that the kth bond starts at a
particle of species i; and ends at a particle of species j,,
with j, Zi,. We will call this an “uphill path.” See Fig.
1.

Except for these constraints, the Mayer expansions in-
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volved are just those corresponding to an equilibrium s-
species mixture. Such a mixture has the grand partition
function [32]

iy iy i
1 2125 ...2,

n

(1]

(3.2)

=3 iy .0y
n

nl il i)

Here Z ... is the canonical partition function for a sys-

tem having i, particles of species 1, i, particles of species
2, etc. The average free energy for the multiply quenched
system considered here is placed in precisely this form by
(n—1) applications of the replica method described in
Sec. II. The constraints on the Mayer graphs arise, as in
the 2-species case considered in that section, from consid-
ering which graphs survive the successive s —0 limits.

The Mayer expansion for the free energy of this
differentially quenched system is then given by

1 2z ..z

F=3 =7 15

n! Qi 0! 3-3)
where &, is the sum of all connected, topologically dis-
tinct graphs, in general reducible, containing i; vertices
of species 1,. . .,i, vertices of species n, with vertices la-
beled by particle number and species, the species labels
obeying the constraint above. The expansions for the
correlation functions are directly analogous.

Many differentially quenched systems have the proper-
ty that each quenched fraction comprises only a single
particle. These include self-avoiding walks, the Eden
model, and the simplest cases of both diffusion-limited
aggregation (DLA) and of random sequential adsorption.
(The general case of the last two models involves the
deposition of particles at a finite rate, and thus requires
the general formalism just developed.) Differentially
quenched systems with this constraint have Mayer expan-
sions similar in many ways to those of systems po-
lydisperse in size or orientation, which have been de-
scribed analytically by treating each type of particle as a
different species [33]. We will now illustrate this by de-
veloping the explicit Mayer expansions for the properties
of random sequential adsorption of disks on a surface.

The properties of RSA are simpler when the interac-
tions between particles are of exclusion type, i.e., when
the corresponding pairwise Boltzmann factors take only
the values 0 and 1. In this case, we can use certain identi-
ties of a kind familiar from statistical geometry [34] and
scaled-particle theory [35] to simplify the expressions for
the basic thermodynamic quantities. These quantities are
the direct analogs, for RSA, of the activity and the pres-
sure. As we now show, these are directly related to the
adsorption rate, and to the contact value of the two-point
function.

We define RSA in the continuum by making attempts
at a constant rate to place disks on a surface. Each at-
tempt consists of choosing at random a point on the sur-
face as a candidate for the center of a newly placed parti-
cle. Define ¢, to be the probability that an attempt to
place the kth particle in the system will succeed i.e., that

the candidate center will be at the center of a cavity (a re-
gion free of other centers) of radius at least equal to a.
Because such a cavity is functionally identical to a hard-
sphere particle, the probability ¢, is closely related to the
fugacity of a hard-sphere particle in this system. The
quantity ¢,, which is called the available volume frac-
tion, is then identical to the rate of adsorption, on the
surface, of new disks. It is clear that this quantity gives,
for large k, the rate at which random encounters between
substrate and particles will result in binding to the sub-
strate. Then for any hard-particle model, the available
volume fraction ¢, is given by

=P

¢k ’

2k

(3.4)

where one has, for the activity z; of the kth particle
placed in a realization of the RSA:

Bu k

_e
2= (3.5)

Here p,, the density of particles in the kth species, is by
construction equal to 1/V, with V the total system
volume. Similarly, u, is the chemical potential of the
kth particle placed; we will present a Mayer expansion
for this quantity. Finally, A is the standard thermal
wavelength.

The fugacity expansion (3.3) is not very useful for
studying RSA because the activities {z, ] will, in general,
all be different. However, the standard topological reduc-
tion to star graphs, modified by the constraints on admis-
sible graphs, allow us to replace all {z;} vertices with
{pi} vertices. Specifically, we have

Zk

Pk

In =$,, (3.6)

which is the sum of all irreducible, labeled, singly rooted
graphs such that the vertices correspond to p; factors,
for which the origin is not an articulation point, and for
which the particle labels obey constraint (2) above. This
reduction is especially valuable because, as already noted,
the {p, ] are all equal to (1/V). Finally, combining (3.4)
and (3.6) gives a virial expansion for the accessible
volume fraction ¢,

[

¢=exp | 3 Bip" |, (3.7)
k=1
where the 3 are
B' = L(_Sa (3.8)
k k! 3>

where &; is the sum of all irreducible, singly rooted topo-
logically distinct labeled star graphs with k vertices, such
that the labeling obeys constraint (2) above.

The formulas (3.3)-(3.6) then give the virial expansion



45 LIQUID-STATE METHODS FOR RANDOM MEDIA: RANDOM ... 821

for the chemical potential of RSA in two dimensions:
Bu=—417—4.6920279>—6.694 5617+ 14.770 897*
+0(n°), 3.9)

where n=ma’p/4 is the dimensionless density of disks.
Substituting this formula into (3.4) and (3.5) and expand-
ing then gives the virial series for ¢,:

¢, =1—41+3.307 9731+ 1.406 876%°+0.720 5657*
+0(7°) . (3.10)

This formula agrees with previous work [17] through
terms in 7% the * term is new. The best Padé approxi-
mants to (3.10) now agree with available simulation data
to the accuracy of that data. A graph of that data versus
several approximations derived from Eq. (3.10) is shown
as Fig. 2. A [3,2] Padé fit to this formula gives for the
jamming density the value 7.=0.5478 as compared to
the value 0.5470 obtained from simulation data. It is
quite interesting that the formulas (3.8) and (3.10) have
been derived by Dickman, Wang, and Jensen [10] using
an operator, or Fock space formalism apparently unrelat-
ed to the approach taken here. In fact, their general ap-
proach to growth models, built upon the concepts of rate
equations and state transitions, is opposite in philosophy
from the approach used here, in which we map growth
models onto equivalent equilibrium systems. Also, their
work exploits the Mayer series in fugacity (or time); we
find it more economical to calculate the virial series for
¢,(7), then revert to give ¢,(2).

We can also obtain the scaling behavior of physical
quantities at densities near to the jamming limit. Both
analytically [13,15] and numerically [14] it is known that
the jamming density in continuum RSA is approached in
power-law fashion as a function of time:

—(1/d)
b

(ge—m)~t (3.11)

where d is the spatial dimension. From this result and
the interpretation of ¢, as an adsorption rate it then fol-
lows that

¢~ (.= *" . (3.12)
Similarly, from Eq. (3.5) we get
p~d+1)In(n,—7n) . (3.13)

4 2 4 |
(@) ()

FIG. 1. Two labeled Mayer graphs that contribute to the
equilibrium density expansion for the chemical potential. The
one on the right contributes to the corresponding expansion for
RSA; the one on the left does not.

We can also define the pressure corresponding to the
RSA ensemble by using its relation to the grand partition
function =:

Bp=1InZ . (3.14)

The virial series for the pressure is then obtained immedi-
ately from the virial series for the free energy obtained in
Sec. II. Examination of the constraints (1) and (2) given
in that section then shows that they preserve the Gibbs-
Duhem relation

9 _ o

dp P dp
This relation then shows that the logarithmic singularity
in the chemical potential is also present in the pressure.
Because the virial theorem relating the pressure to the
contact value of the correlation function is also preserved
by these constraints, this gives a new prediction for the
rate at which this latter quantity becomes singular.

The approach of a continuum sequentially absorbed
system to its jamming limit is an interesting candidate for
the study of glass-liquid transitions. In order to achieve
densities higher than the hard-sphere freezing density, it
has been suggested [36] that one begin the RSA pro-
cedure with a finite-density, equilibrium, hard-sphere sys-
tem. We note that this more general system is easily de-
scribed within our framework. It is simply a
differentially quenched system in which one phase has
finite density. The resulting graph-theoretic formalism is
easily developed as a two-species mixture of the equilibri-
um fluid and the RSA system developed in Sec. III. Or it
can be developed ab initio as a specific case of the general
system developed in Sec. II.

It is also interesting that the fourth term in the expan-
sion (3.9) differs in sign from the first three terms. It has
been argued that the corresponding equilibrium virial
series may also show such alternation in sign [37], but the
first seven terms in that expansion do not yet show such
behavior. The RSA model studied here and the continu-
um sphere percolation problem are just two of a large
family of quenched statistical models whose virial series
involve the same Mayer integrals as those found in the
equilibrium hard-sphere fluid, but with different com-
binatoric prefactors. One can define a similar correspon-
dence for any purely repulsive potential. It would be of
basic importance to obtain the values of the Mayer in-
tegrals up to a very high order for at least one such repul-
sive model potential, in order to make a comparative
study of the analytic structures of these various closely
related problems. Efforts to do this for the potential hav-
ing a Gaussian f bond are now in progress; it is expected
that they will shed light on such matters.

The sequential adsorption model explored in this paper
is perhaps the simplest nontrivial example of the
differentially quenched system we discuss in the Introduc-
tion. We chose to explore it in detail even though its
basic features have already been elucidated, because it
provides a simple testing ground for the approach intro-
duced here. We emphasize that many apparently more
complex models are easily incorporated within our
framework. For example, if one begins with an equilibri-

(3.15)
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um hard-sphere system at finite density and uses this sys-
tem as a substrate for the random sequential adsorption
process, a higher jamming density is obtained than in the
simpler model studied here. This more general model has
been used [36] to study the glassy state of matter. We
can immediately calculate the properties of this model us-
ing the framework developed in this paper: the equilibri-
um hard-sphere system is the first fraction in a
differentially quenched system, while all the successive
fractions have but one particle each. Similarly, we can
study sequential adsorption on a random, porous sub-
strate [24] using another variation in this approach.

Finally, it is important conceptually to know whether
the RSA or other differentially quenched systems have a
representation as a limit of a Hamiltonian model, like the
representation provided in Sec. II for the two-
temperature model in terms of the Widom-Rowlinson
model. There is some evidence that the RSA is related to
a limiting form of the chiral Potts model [38], but this
matter is still being studied. Such representations exist
for all the other forms of the replica technique. It would
be useful to know whether the same is true of the replica
techniques explored here.

In fact, RSA models have a simple Hamiltonian repre-
sentation. Consider a system of particles, each of which
can be in any of s internal states, or “spin states.” The
interaction potential between particle / and particle j,
with j > i, is taken to be v (x;;) d,.1- Here v(x) is a hard-
sphere potential and o; is the spin state of particle /. In
the s —0 limit, the thermodynamic quantities describing
this model become the physical quantities describing
RSA.

IV. ORNSTEIN-ZERNIKE RELATIONS
FOR RANDOM SEQUENTIAL ADSORPTION

In this section, we derive a set of Ornstein-Zernike
equations obeyed by the correlation functions for RSA.
We also present the natural extension to this system of
the mean-spherical approximation.

The standard method in liquid-state theory of charac-
terizing the structure of a system is to calculate the corre-
lation functions. Thus, in the project of extending
liquid-state theory to describe materials with quenched
disorder [1], considerable effort has been devoted to
finding exact integral equations [28,36,9] and suitable clo-
sures for the correlation functions describing such sys-
tems. To construct integral equations for RSA, we first
recall the constraint (2) on labeled Mayer graphs that
contribute to the two-point correlation function h(x).
We rephrase this as follows: allowed graphs are two-
rooted, irreducible, labeled Mayer graphs such that each
field point has an uphill path connecting it to at least one
of the root points. By an ‘“‘uphill path” we mean a se-
quence of Mayer bonds passing through increasing parti-
cle labels. We may divide such graphs into two classes:
those that contain an uphill path from one root point to
the other, and those that do not. Denote by 2A,(x) the
sum of the first set of labeled graphs and by h,(x) the
sum of the second set. We include a factor of 2 in the
former piece of notation because an uphill path may go
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FIG. 2. Several approximants to the adsorption rate in the
RSA of disks. From bottom to top, these are the first three,
four, and five terms of Eq. (9), respectively. Here we plot the
rate of successful adsorption, i.e., the probability that a place-
ment will be successful, vs the dimensionless density of disks
n=ma’p/4. On this plot, the simulation data are indistinguish-
able from the Padé approximant in the top curve.

from root point 1 to root point 2 or vice versa (but not
both). Similarly, define ¢;(x) [c,(x)] to be the sum of the
node-free graphs included in A,(x) [h,(x)]. Then we
have

hRSA(X)ZZhl(X)+h2(x) (4.1)

by definition. We can write a set of equations analogous
to the usual Ornstein-Zernike equations by sorting the la-
beled graphs included in the functions A ,,h,: each such
graph will have a certain number of node points (possibly
zero), and from each node point there must be at least

h, = c, *+ pc,®h,
= 0—0—0 --- G—0 ——— 0—0—0
h, =(c,®c, -..) (14c,) (.C,®cy)

FIG. 3. Diagrammatic structure of the Ornstein-Zernike
equations (4.2) and (4.3). The bold lines connecting root points
denote ¢ functions; the blobs denote A functions. An arrow
pointing from left to right indicates an uphill path from one
root point to the other. A two-way arrow indicates that both
root points of the corresponding function are terminal points
for uphill paths from some of the field points involved. See dis-
cussion above Eq. (4.1).
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one uphill path to a root point. The general structure of
the {A;} is easily found: it is shown in Fig. 2. The result-
ing Ornstein-Zernike equations are simpler in k space be-
cause they are based on convolutions (see Fig. 3). They
are

~

(4
hi=—, 4.2)
l—p?l
~ 1 “ 1
1—p2, 1—pt,

where A ; is the Fourier transform of h;,i =1,2. These
equations can be solved, e.g., by using the mean-spherical
approximation to form a closure:

(4.4)
(4.5)

h;=0, x<a
¢;=0, x>a

for i=1,2. However, it seems clear that a better closure
would be obtained by approximating the short-range
structure in h;(x) using, e.g., scaled-particle theory [35],
then using the analog of Perram’s method for Egs. (4.2)
and (4.3) to complete the calculation. These methods are
under investigation.

V. CONCLUSIONS

We have developed a basic generalization of the replica
method which should be valuable for describing systems
far from equilibrium. Here, this method is applied to
random sequential adsorption and used to develop virial
series for the adsorption rate and the contact value of the
correlation function. The sequel to this paper [9] applies
similar techniques to aggregation models, using an exten-
sion of the chemical association formalism.

ACKNOWLEDGMENTS

I would like to thank the National Science Foundation
for funding this research. I thank Per Hemmer, Ron
Dickman, Vladimir Privman, Bob Kraichnan, Eduardo
Glandt, Bill Madden, and George Stell for discussions of
this work. I am grateful to Kare Olaussen and the facul-
ty of the Institue for Theoretical Physics, NTH, Tron-
dheim, Norway, for extending their hospitality while I
finished this work.

[1] For a review, see J. A. Given and G. Stell, in On Clusters
and Clustering: from Atoms to Fractals, edited by P. Rey-
nolds (North-Holland, New York, in press).

(2] B. Duplantier and A. W. Ludwig, Phys. Rev. Lett. 66, 247
(1991).

[3] A. Parola and L. Reatto, Europhys. Lett. 3, 1185 (1987);
Z.Y. Chen, A. Abbaci, S. Tang, and J. V. Sengers, Phys.
Rev. A 42, 4470 (1990).

[4] Both a system in a strong thermal gradient and a system
quenched deep into a metastable region can be described
using the differential quenching paradigm. Such systems
have in common the occurrence of long equilibration
times (when measured in the proper units), although the
general conditions under which a nonequilibrium system
will show scaling behavior are still being explored. For a
good recent discussion, see J. Grinstein (unpublished).

[S]H. E. Stanley and N. Ostrowsky, Random Fluctuations
and Pattern Growth: Experiments and Models (Kluwer
Academic, Norwell, MA, 1988).

[6] K. Kang, S. Redner, P. Meakin, and F. Leyvraz, Phys.
Rev. A 33, 1171 (1986).

[7] See, e.g., E. Guyon, C. D. Mitescu, J. P. Hulin, and S.
Roux, Physica D 38, 172 (1989); D. L. Johnson, J. Koplik,
and R. Dashen, J. Fluid Mech. 176, 379 (1987).

[8] R. Kraichnan and S. Y. Chen, Physica D 37, 160 (1989).

[9]J. A. Given, J. Chem. Phys. (to be published).

[10] R. L. Dickman, J. S. Wang, and I. Jensen, J. Chem. Phys.

94, 8252 (1991).

[11] B. S. Brosilow, R. M. Ziff, and R. D. Vigil, Phys. Rev. A
43, 631 (1991).

2] B. Widom, J. Chem. Phys. 44, 3888 (1966).

3] R. Swendsen, Phys. Rev. A 24, 504 (1981).

4] Y. Pomeau, J. Phys. A 13, L193 (1980).

5]J. Feder and 1. Giaever, J. Coloid Interface Sci. 78, 144
(1980); E. L. Hinrichsen, J. Feder, and T. Jossang, J. Stat.
Phys. 44, 793 (1986).

[16] J. J. Gonzalez, P. C. Hemmer, and J. S. Hoye, J. Chem.

(1
(1
(1
[1

Phys. 3,228 (1974).

[17] J. Schaaf and J. Talbot, Phys. Rev. Lett. 62, 175 (1989); J.
Chem. Phys. 91, 4401 (1989).

[18] V. Privman, J. S. Wang, and P. Nielaba, Phys. Rev. B 43,
3366 (1991); M. C. Bartelt and V. Privman, J. Chem.
Phys. 93, 6820 (1990).

[19] P. Meakin, J. L. Cardy, E. Loh, and D. J. Scalpino, J.
Chem. Phys. 86, 2380 (1987).

[20]J. W. Evans and R. S. Nord, J. Stat. Phys. 38 681 (1985); J.
W. Evans, Phys. Rev. 62, 2642 (1989).

[21]H. C. Andersen, J. Chem. Phys. 59, 4714 (1973); M. W.
Wertheim, J. Stat. Phys. 35, 19 (1984); 35, 34 (1984).

[22]J. M. Ziman, Models of Disorder (Cambridge University
Press, Cambridge, 1979).

[23] M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass
Theory and Beyond (World Scientific, Singapore, 1987).

[24] W. A. Madden and E. D. Glandt, J. Stat. Phys. 51, 537
(1988).

[25] L. A. Fanti, E. D. Glandt, and W. G. Madden, J. Chem.
Phys. 51, 537 (1988).

[26] J. A. Given (unpublished).

[27] L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).

[28] J. A. Given and W. Klein, J. Chem. Phys. 90, 1116 (1989);
J. A. Given, I. C. Kim, S. Torquato, and G. Stell, ibid. 93,
5128 (1990).

[29] B. Widom and J. S. Rowlinson, J. Chem. Phys. 52, 1670
(1970).

[30] For some of the deep relationships between the Potts mod-
el and the replica method, see A. B. Harris, Phys. Rev. B
28, 2614 (1983); J. Rudnick and G. Gaspari, J. Stat. Phys.
42, 833 (1986).

[31] M. Wertheim, J. Math. Phys. 5, 643 (1964); S. Ahn and J.
L. Lebowitz, J. Chem. Phys. 60, 523 (1974).

[32] See, e.g., S. Baer and J. L. Lebowitz, J. Chem. Phys. 44,
3474 (1964).

[33] See, e.g., P. A. Rikvold and G. Stell, Chem. Eng. Com-
mun. 51, 233 (1987) and references cited therein.



824 JAMES A.

[34] G. Stell in The Wonderful World of Stochastics, edited by
M. F. Schlesinger and G. H. Weiss (North-Holland, Am-
sterdam, 1985).

[35] H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys.
31, 369 (1959).

[36] G. Tarjus, P. Schaaf, and J. Talbot, J. Stat. Phys. 63, 167

GIVEN 45

(1991); J. Talbot, P. Schaaf, and G. Tarjus, Mol. Phys. 72,
1397 (1991).

[371J. E. Kilpatrick, Adv. Chem. Phys. 20, 39 (1971).

[38] D. K. Arrowsmith and J. W. Essam. Phys. Rev. Lett. 65,
3068 (1990).



