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Quantum theory of correlated-emission lasers: Vacuum state for the mode of the relative phase
and the relative amplitude
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We present a comprehensive quantum theory of correlated-emission lasers (CEL's) in a combination-
mode approach, which is valid for both the quantum-beat laser and the CEL with injected atomic coher-
ence. We first show that, under certain conditions, the linear master equation of the CEL s breaks down
into two uncoupled equations in the combination modes, which are linear combinations of two CEL
modes. One combination mode that is above threshold represents the average phase and the average am-

plitude of two CEL modes (called the sum mode), whereas the other that is below threshold represents
the relative phase and the relative amplitude of the two CEL modes (called the relative mode). When the
relative mode is in its vacuum state, the normally ordered variances of two Hermitian operators corre-
sponding, respectively, to the relative phase and the relative amplitude vanish. Through deriving a non-
linear master equation for the CEL with injected atomic coherence in the combination modes, we show
how a set of proper initial atomic conditions can keep the relative mode in its vacuum state. We obtain
the Glauber P functions, the mean photon numbers, and the photon-number variances in both the com-
bination modes and the CEL modes, and find the mode pullings of the CEL's and the natural linewidth
of the sum mode. We also show a correspondence between the vacuum state of the relative mode and
the vanishing of the relative-phase di6'usion coefficient.

PACS number(s): 42.50.Lc, 42.50.Ar

I. INTRODUCTION

It is well known that spontaneous-emission events in a
laser contribute to the phase (as well as amplitude) fluc-
tuations of the laser field. Recently, Scully [1] showed
that, in a correlated-emission laser (CEL) in which V-type
three-level atoms interact with two modes of cavity fields,
it is possible to eliminate the spontaneous-emission Auc-
tuations in the relative-phase angle of the two laser
modes. The quantum-noise quenching in the CEL is
achieved by creating atomic coherence between two
upper lasing levels, which can be realized in a quantum-
beat laser [2,3] and in a CEL with injected atomic coher-
ence [4—6]. The potential application of the CEL's in-
cludes a ring-laser gyroscope [7—9] and a gravity-wave
detector [10]. Some experiments have been carried out to
verify the quantum-noise suppression in the CEL's
[11,12].

The linear master equation of the CEL's has been stud-
ied extensively. Usually, a Fokker-Planck equation [2,4]
in the Glauber-Sudarshan P representation [13,14], or a
corresponding Langevin noise equation [15—17], is de-
rived. The quantum-noise quenching is indicated by the
vanishing of the P's diffusion coefficient for the relative
phase at its phase-locking point under certain conditions.
Schleich, Scully, and von Garssen [16] further found that
Auctuations in the relative amplitude are also noise
quenched. Very recently, Lu [5] has shown that the nor-
mally ordered variances of two Hermitian operators
which correspond to the relative phase and relative am-
plitude, respectively, can vanish. Because of the use of
the Hermitian operators, Ref. [5] puts the quantum-noise
quenching on a more rigorous basis.

There have been some preliminary studies on the non-
linear theories of the CEL's. Bergou, Orszag, and Scully
[3] derived a nonlinear master equation of the quantum-
beat laser using a "dressed-atom —dressed-mode" ap-
proach. Zaheer and Zubairy [6] obtained a nonlinear
master equation of the CEL with injected atomic coher-
ence in the original CEL modes. Both papers showed
that the vanishing of the relative-phase-diffusion
coefficient persists even above threshold.

In this paper we present a comprehensive nonlinear
theory of the CEL's, which treats both the quantum-beat
laser and CEL with injected atomic coherence in a unified
approach. We obtain the Glauber P function and natural
linewidth of the CEL's, and calculate the mean photon
numbers, mode pullings, and photon-number variances
for each of the two CEL modes. We find a "relative
mode" and a "sum mode, "both of which are linear com-
bination of the two CEL modes. The real and imaginary
parts of the annihilation operator of the relative (sum)
mode are two Hermitian operators corresponding to the
relative (average) amplitude and relative (average) phase,
respectively. In a balanced case in which the conditions
for the two CEL models are symmetric, the relative and
sum modes are decoupled from each other, and the rela-
tive (sum) mode is below (above) threshold While .the
sum mode gives the total intensity, mode pullings, and
natural linewidth (for the average phase) of the CEL's,
the relative mode determines the degree of the quantum-
noise suppression in the CEL's. The relative mode can be
in its vacuum state when a CEL is above threshold.
When and only when the relative mode is in its vacuum
state, the P's diffusion coefficient for the relative phase
vanishes.
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The paper is organized as follows. In Sec. II we show
how the linear master equation of the CEL's can be
separated into two uncoupled equations in terms of two
combination modes (called the relative and sum modes)
and show the significance of the vacuum state of the rela-
tive mode. In Sec. III we derive a nonlinear master equa-
tion for the CEL with injected atomic coherence in the
combination modes and show how a set of proper initial
atomic conditions keeps the relative mode in its vacuum
state. In Sec. IV, using a Fokker-Planck approach, we
study the operational and noise properties of the CEL's
in the combination models. In Sec. V we obtain the
Glauber P function and photon statistics in the original
CEL modes. Section VI presents a connection between
the vacuum state of the relative mode and the vanishing
of the relative-phase-diffusion coefficient. Finally, Sec.
VII is a summary.

X(A;y, Q —v)p=—,'—y(2APA —A Ap —pA A)

—t(fl —v)[A A,p] (2.2)

Paa( j ) Paa ~ Pbb( j Pbb

P',b ( tj ) =Pb. ( t, )
* (2.3)

describes the cavity loss (with a rate y) and the mode pul-
ling (amount v —0) of a field mode A ([A, A ]=1); and

y1 is the cavity loss rate of mode l. For definiteness we
assume in the following that Reer&2) O. ,When Rem&2 (0
in Eq. (2.1), we let at2~ —at2 and 6~0+m. ]

The explicit expressions for a1k are model dependent.
For the quantum-beat laser, they were derived in Ref. [2].
For the CEL with injected atomic coherence, we assume
that the jth atom is injected into the cavity at time t
with the initial conditions

II. SEPARATION
OF THE LINEAR MASTER EQUATION

A CEL consists of V-type three-level atoms interacting
with two modes of radiation fields in a doubly resonant
cavity. The atomic levels of a V-type three-level atom are
denoted by Ia ), Ib ), and c ) with atomic energies ttlco„

Acerb, and i)leo„respectively. Two upper levels Ia) and
Ib ) have the same parity, and the lower level Ic ), with
opposite parity, is coupled to the upper levels a ) and
Ib) by direct electric dipole transitions. The atomic
transition a-c (b c) is near r-esonant with a cavity field of
the bare-cavity frequency fI, (Q2) and the oscillation fre-
quency vi (vz). The emission from the two upper levels

I
a ) and

I
b ) are correlated as a result of the existence of

an atomic coherence between the two levels. Such an
atomic coherence can be generated by basically two
methods: One method is using a microwave field to cou-
ple the two upper levels

I
a ) and

I
b ) (called a quantum-

beta laser [2,3]), and the other is preparing the active
atoms initially in a coherent superposition of the two
upper levels Ia) and Ib ) and then injecting the atoms
into the cavity (called a CEL with injected atomic coher-
ence [4—6]). For both the quantum-beat laser and the
CEL with injected atomic coherence, the linear master
equation for the reduced-field-density operator p is of the
form [1] (after the contributions from the cavity losses
and mode pullings [5] are included)

22rag ) paa

r.(r., +ta, )
'

22rag 2Pbb

r, (r„+ta, )
'

2ragtg2 P,b I

[r.„+t(a,—a, )](r.,+ta, )
'

(2.4a)

(2.4b)

(2.4c)

in the Schrodinger picture. Note that, when they enter
the laser cavity, all atoms have the same initial popula-
tions for either of the two upper levels Ia ) and Ib ), but
have different initial phases between the two upper levels
in general (unless vt=vz). The initial atomic conditions
(2.3) can be generated by injecting the active atoms into
the laser cavity through an atomic beam. For each atom,
before it reaches the laser cavity, we first pump the atom
to one of three transition levels ( I

a ), I
b ), or c ) ) and

then use two preparation fields of frequencies v, and v2,
respectively, to create an atomic coherence between levels
Ia ) and

I
b ). It can be shown that this kind of prepara-

tion scheme generates the desired form of the initial
atomic coherence prescribed in (2.3). The detailed
description and proof are similar to those for a two-level
laser with injected atomic coherence, which have been
discussed in detail in Ref. [18]. Under the initial atomic
conditions (2.3), the coefficients atk are found to be [5]

2

p 2 ctlke (at pak— pakat )
i (k —1)0

1,k=1

2r.g tg2 Ipb. I

[r., —t(a, —a, )](r„+ta, )
(2.4d)

2
+H. c. + g X(at,'yt Qt vt)p

1=1
(2.1)

Here a1 and a1~ are the field annihilation and creation
operators of mode 1 (1=1,2), respectively; a» and uzi
are the (self) linear-gain coefficients for modes 1 and 2, re-
spectively; 0.,2 and a2, are two cross linear-gain
coefficients; 0 is a time-independent phase constant, and
it determines the phase difference of the two CEL modes
in steady state;

Here r, is the atomic injection rate; I „is the decay rate
of the atomic level ItM); I „„=—,'(I „+I „) is the decay
rate of the atomic coherence between levels

I jt, ) and ItM')

(p, tM' =a, b, c); g, and g2 are the atom-field coupling con-
stants for the a-c and b-c transitions, respectively; and
b ] =co„—v) =co, —co, —v) and 62=cob, —v2=cob —co,—

v2 are the atom-field detunings for the a-c and b-c tran-
sitions, respectively. Also in Eq. (2.1), 0=argp, b Note.
that, by allowing arbitrary atomic decay rates and arbi-
trary initial atomic conditions, the expressions (2.4) are
more general than those derived in Ref. [4] [see Eqs. (11)
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of Ref. [4]].
In a balanced case in which

Re(aI&+a&2) y . (2.13)

O'» =O'22 ~

Vl V2

~12=&21 ~ (2.5a)

(2.5b)

the linear master equation (2.1) is symmetric about modes
a, and az, and we must have equal mode pullings [5],

When Re(a» —a,2) & y (we assume this henceforth), the
other combination mode B2 is below threshold and Eq.
(2.11) is adequate for the mode Bz. The steady-state solu-
tion of the density operator p' ' can be obtained by using
the detailed balance of the photon-number flux [19,20],
yielding

01 %1=02 V2 (2.6) (2)
r n2, m2 n2, m2

Re(a» —a,2}
n2

Re( C9 I I CX I 2 }

For the quantum-beat laser, conditions (2.5a) can be met
approximately when g, =g2, b, &=A,2=+—,'0 (here 0 is

the Rabi frequency of the microwave field coupling levels

~
a & and

~
b &), and 0 is much larger than the atomic de-

cay rates. For the CEL with injected atomic coherence,
conditions (2.5a) can be satisfied by choosing

(2.14}

The below-threshold operation of the mode B2 implies
null amplitude for it, (B~ & =0. Solving a, and a2 from
Eqs. (2.8) with K=~/4, we arrive at

r.=r, ,

2 = 2
g 1paa g 2pbb

We now introduce two combination modes,
—

i@1
—i/2B1=a,e 'cos~+a2e 'sin~,

—i/1 . —i/2
B2 = —a, e 'sin~+ a2e 'cos~,

(2.7a)

(2.7b)

(2.7c)

(2.8a)

(2.8b)

aI =(8,—8~)e '/v'2,

a~ =(8,+82)e '/v'2 .

(2.15a)

(2.15b)

(a) &=(a, &e" . (2.16)

—i/I —i/2
Consequently, we have (a, &e '=(az &e '. While
both phases of the CEL modes a, and a2 can be arbi-
trary, their difference is locked to the phase constant 0
since

where 1(, and p2 are two real constants satisfying

1(,—/A=8. The angle K indicates the degree of mode

mixing, and to be specific, we restrict K to 0&K&77/2.
Note that new operators in the combination modes have
the properties

[B),8, ]=[82,8~]=1, [B),82]=[8),82]=0 . (2.9)

In other words, the combination modes B, and B2 are
two independent field modes.

Using Eqs. (2.5), (2.6), and (2.8), it is easy to find that,
in the balanced case, the linear master equation (2.1) be-
comes

In addition, both amplitudes ~(a, &( and ~(az&~ are
equal. In other words, the below-threshold operation of
the mode B2 is equivalent to the lockings of the relative
phase (to 8) and of the relative amplitude (to 0) for the
CEL modes a1 and a2.

Such a relative-phase locking is closely related to the
quantum-noise reduction in the relative phase of the
CEL's, since both are due to the presence of the cross-
gain coefficients a,2 and a21. The relative-phase locking
also gives the nonvanishing of the beat signal,

e' "' "' (ata &

2

p= g —'[a&I —( —1) aI2sin(2K}](BIpB& pB&BI}-
1=1 ' (8,8, B2t82 &WO, —(2.17)

in the long-time limit, since the mode B, is above thresh-
old and thus (B,B, & ))(8282 &. Note that the diffusion
coefficient for the relative phase, which is important for
any short-time measurement of the beat signal [12], does
not vanish unless the mode B2 is in its vacuum state. We
will show this connection directly in Sec. VI. In the rest
of this section, we reveal the physical meaning of the
combination modes B1 and B2.

The Hermitian operators corresponding to the relative
phase and relative amplitude have been found in Ref. [5]
[see Eqs. (5.1) of Ref. [5]]. They correspond to, respec-
tively, the imaginary and real parts of the annihilation
operator B2.

2

+H. c.+ g C(B,;y, Q, —v, )p,
1=1

(2.10)

in the combination modes. When (and only when)
K=m. /4, the linear master equation (2.10} separates into
two uncoupled equations in the combination modes,

' '= —'[a —( —1) a ](8 p' '8 —p' '8 8 )
2

+H. c. +C(BI,y, 0,—v, )p'", l =1,2, (2.11)

by letting

+-,'tr, icos(2K)(B,p82 —pBzB, +82pB, p8,82)—

(1) (2) (2.12)

From now on we set ~=a/4. It is easy to see from Eqs.
(2.11) that the threshold condition for the combination
mode 8, (and thus for the CEL's) is = —v'2 Im82, (2.18a)

8& —=—(aIe ' —a Ie ') ——(a2e ' —aze ')
2l 2l
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B„=—,(a&e +a &e ) ——,(aze +aze )
-~1 t ~1 &

-I~2

= —+2 ReBz . (2.18b)

Similarly, the Hermitian operator corresponding to the
average phase (amplitude) is proportional to the imagi-
nary (real) part of the annihilation operator B,:

Bz, ———(a&e ' —a&e ')+ —.(aze ' —aze ')I If'] y l y$ $ I $2 y I yp

=Im(B, /&2), (2.19a)

Btt =——(a&e +a &e )+ , (a—ze +aze )

=Re(B, /&2) . (2.19b)

=
—,'+(BzBz)

Re(a&& —a&z)=—+
2 y

—Re(a„—a,z)
(2.20)

Here —,
' is the vacuum noise levels of the Hermitian opera-

tors B& and B„and the last equality is obtained after us-
ing the photon-number distribution (2.14) for the mode
Bz. Equation (2.20) shows that the variances of the Her-
mitian operators B& and B„do not drop to their vacuum
noise levels unless the relative mode B2 is in its vacuum
state.

Under a further condition of maximum correlation,
Reaii =Rea, 2 or

O'ii =i2 (2.21)

[i.e., when all a's are equal; see Eqs. (2.5a)], we find from
Eq. (2.14) that the relative mode Bz is in its vacuum
state,

=s sPn2, m2 n2, m2 n2, 0 ' (2.22)

Consequently, (BzBz ) =0, and the variances of Bt, and
B„are at their vacuum-noise levels,

Because of these correspondences, we call the combina-
tion mode B2 the "relative mode" and mode B, the "sum

mode. " The variances of the Hermitian operators B& and

B, are found to be

((&B „)')= —,'+&:(&B „)'.)

III. CEL WITH INJECTED ATOMIC COHERENCE:
NONLINEAR MASTER EQUATION

We have studied in Sec. II the linear master equation
(2.1) of CEL's, in particular, the properties of the relative
mode B2, which is below threshold. In order to study the
properties of the sum mode Bi, which is above threshold,
we have to include nonlinear saturation effects on the
sum mode B,. In this section we derive a nonlinear mas-
ter equation for the CEL with injected atomic coherence
in the combination modes B, and B2. In Sec. IV we in-

vestigate the properties of the sum mode B&.

Since the CEL with injected atomic coherence is a
coherently pumped, two-mode three-level laser, we use a
quantum theory of coherently pumped lasers. This
theory was developed in Ref. [18] for a two-level single-
mode laser by generalizing the Scully-Lamb laser theory
to a form suitable for a coherently pumped laser. The
generalization was made by treating the interaction of the
laser field with many injected atoms simultaneously: The
new theory started from an equation of motion for the to-
tal density operator of all atoms and the field. The equa-
tion of motion for a reduced density operator should be
obtained by tracing the rest of atomic and/or field vari-
ables on both sides of the starting equation. Two main
equations of motion were obtained through this approach
in Ref. [18]. Expanding the theory of Ref. [18] to treat
the CEL with injected atomic coherence, we give the two
main equations of motion in the following. One is for the
reduced-field-density operator p in the interaction pic-
ture,

2

p= i +8—(t tj)Trz, [—Vi pzf]+ p &(al'l'& fbi vl)p
J 1=1

(3.1)

The other is for the reduced-density operator p for the
jth atom and fields in the interaction picture,

pf= i8(t —t, )[v, ,pf]—,'(rjpf+p—fr—~), (3.2)

as in the Scully-Lamb theory of lasers. Here t is the in-

jection time of the jth atom (assumed to be random),
8(t tj ) is the u—nit step function [8(t t )=1 for t ~ —tj.
and 8( t t ) =0 for t & t ], an—d I J=g„,b, 1 „Ip/) (pjI
is the decay operator for the jth atom (assuming that all
three levels decay to other lower lying levels). In addi-
tion, V is the interaction Hamiltonian of the jth atom
with the laser fields in the interaction picture,

&(~B, )')=-' (2.23) v, =g, Ia') (c'la, e'

IP.b I V'P..Pbb . — (2.24)

Equation (2.23) agrees with the result obtained in Ref. [5]
by using the linear master equation (2.1) and conditions
(2.5), (2.6), and (2.21) directly.

i.e., we have quantum-noise quenching (down to the
vacuum-noise level) for the Hermitian operators B& and
B„. For the CEL with injected atomic coherence, condi-
tion (2.21) is satisfied when, besides the conditions (2.7),
we further have a full atomic coherence

+gzlb~)(cjlaze ' "' +H. c. (3.3)

Equations (3.1) and (3.2) can be solved in the good-cavity
limit, in which the cavity-loss rates yi are much smaller
than the atomic decay rates I „(p=a, b, c), so that during
atomic lifetimes I „,p remains approximately constant.
The summation over the injected atoms in Eqs. (3.1) can
be replaced by an integral over injection time t up to
time t, i.e., +J8(t t )~r, f ' „dt—.The self.-. and

cross-linear-gain coefficients a~k in Eqs. (2.4) were thus
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calculated in Ref. [5] up to gtgk with the initial condi-
tions (2.3).

We now wish to obtain the nonlinear master equation
under a set of conditions which lead to the decoupling of
the two combination modes B& and B2. Based on the
linear-theory results in Sec. II, we continue to consider
the balanced case. We assume conditions (2.5b), (2.7a),
and (2.7b),

(3.4a)

and

mode 82 (since its upper state ~)B~) is not coupled to the
other mode 8, ) and that the mode 82 is coupled to a loss
reservoir (at zero temperature) only. Thus the relative
mode B2 is always in its vacuum state,

(3.g)

Since the mode B2 is in its vacuum state, the interaction
Hamiltonian (3.6) can be simplified to

VJ=g~AJ)&c'~B)e ' ''+H. c. = V'" . (3.9}

p« —
p(,(

—Ip.i I

—
—,
' . (3.4b)

Substituting Eqs. (2.12), (2.5b), (2.6), and (3.9) into Eq.
(3.1) and letting

Note that conditions (3.4) replace the less restrictive con-
ditions (2.7c) and (2.24). Let

(3.5a)

(3.5b)

We then find that the interaction Hamiltonian (3.3) be-
comes

f—(&) (&)
pj pg p

we obtain two uncoupled equations:

p"'= i g—e(t t )Tr„,[ V—'",p'"]
J

+Z(8 } n —v)p"'

p '=X(B;y,Q, —v, )p' ' .

(3.10)

(3.11a)

(3.11b)

V, =g ( I
~'& & c'IB i

—8'& & c'182 )

i h(t —t. )
—iv&f.Xe ' ' '+H. c. , (3.6)

in terms of the combination modes and the new atomic
states. It follows from Eqs. (2.3), (3.4b), (3.5), and
P) —Pz=(9=argp, i, that the initial atomic conditions are
simply

p~~(t, )=1,
PJ)J) (tJ ) =PAti(tJ ) =PB„(tJ)' =P„(tJ ) =0,

(3.7)

in terms of the new atomic states; i.e., only the state
~
A J )

is excited initially.
There are two ways to calculate the nonlinear master

equation. One is to conduct a two-mode calculation by
using the interaction Hamiltonian (3.6) and initial atomic
conditions (3.7), which is presented in the Appendix. The
other is to realize that there is no gain for the relative

p( ie(t t )[Vp()](fJp()+pJ()I J) (3.12)

where the decay operator I J can be written as
rJ=r. (~aj)&WJ~+~BJ)&BJ~)+r,~cJ)&cJ~ in the new
atomic bases. It is clear from Eq. (3.12) that the
coherently pumped, two-mode three-level laser problem
has been reduced to a simple incoherently pumped (to the
state

~
AJ)), one-mode two-level laser problem. Thus, in

terms of the second method, we immediately know the
answer from the Scully-Lamb theory of lasers [19,20].
For equal decay rates I,=I,=I, the master equation
for the sum mode B, is

Note that the solution (3.8) of the relative mode satisfies
its master equation (3.11b), as it should. The equation of
motion for the reduced-density operator p'." of the jth
atom and mode B& in the interaction picture is found
after substituting Eqs. (2.12), (2.7b), and (3.10) into Eq.
(3.2},

p'" = 'a[n +—m—+2+i (n —m)5+(n —m) g /I g„'p'„" +a nm g„—) )p'„—),~ —i

+yv'(n +1)(m +1)p'„'+i +)——,'y(n +m)p'„" —)(I~)—v) }(n —m)p, (3.13}

with

2=1+ (n +m +2)+ (1+5) (n —m)2a 16a

(3.14)

dressed states (dressed by the driving microwave field},
Bergou, Orszag, and Scully [3] have obtained equations
similar to (2.12), (3.8), and (3.13) in the quantum-beat
laser [21]. Thus the results in the following sections are
valid for both the CEL with the injected atomic coher-
ence and the quantum-beat laser.

Here a=2r, g /(I +b, ), P=gr, g /(I +b ), and
5=6/I are the usual linear gain, saturation parameter,
and normalized detuning, respectively. Note that u here
corresponds to Re(a) ) +a)z) =2 Rea) ) in Sec. II. The
two methods, one presented in this section and the other
presented in the Appendix, give the same master equation
(3.13). It should be noted that, by neglecting nonresonant

IV. OPERATION
OF THE CEL'S AND THE P FUNCTIONS

IN THE COMBINATION MODES

We denote ~( ) ) ~6z) as the coherent state of the com-
bination modes 8) and 82, 8) ~6) ) ~g2) =8) ~C) ) ~@2)



45 QUANTUM THEORY OF CORRELATED-EMISSION LASERS: 8159

(1=1,2). We now convert two master equations (3.11b)
and (3.13) into two Fokker-Planck equations in the
Glauber-Sudarshan P representation [13,14]. Using

'"=fP'"(6'()l8()(A'(ld 8, 1=1,2, (4.1)

1+IP/a

a5
2(1+IP/a)

(4.9a)

(4.9b)

we obtain the Fokker-Planck equations in the P represen-
tation,

d +
I (jg

are the intensity- and phase-drift coefficients, respective-
ly, and

Dtt =2I[D@, +Re(D@ @ e ' )]
1 1 1

+ D@ e +c c .P.'"(hi, t),
I I

/=1, 2 . (4.2)

d@ =8~[ —
—,
' y+i(v, —0, ) ], (4.3)

For the relative mode B2, the drift and diffusion
coefficients are derived easily from Eq. (3.11b),

aI
(1+IP/a)

D++=[D, —Re(D@ @ e ' )]/2I
1 1 1 1

a+ ,'IP(1+—5)

4I(1+IP/a)

Dt~=Im(D@@e '
) =—i2e pI5

4(1+IP/a)

(4.10a)

(4.10b)

(4.10c)

D g =Dg@ =0.
2 2

(4.4)

With such drift and diffusion coefficients, the steady-state
solution for P' ' is simply a 5 function which peaks at
8,=0,

P'"(8 ) =5(e ) (4.5)

a(1 i 5)——y+2i(v, —0, )I+I~, l'n/
(4.6)

For the sum mode B&, the drift and diffusion
coefficients can be derived from Eq. (3.13) under the as-
sumption that the average photon number in the mode is
much larger than unity. The derivation has been present-
ed in Ref. [18] for more general initial atomic conditions.
Specializing to the pumping situation here [pump to the
state

l
A ~) only; see Eq. (3.7)], the drift coefficient is

are the intensity-, phase-, and cross-diffusion coefficients,
respectively.

Above threshold a & y, the sum mode B, first builds
up spontaneously in the cavity and then reaches its
steady-state value. Recall that we are considering the
case in which the steady-state mean photon number
(tv, ) =Io is much larger than unity, where N, =B,B& is
the photon-number operator for the sum mode B&. Con-
sequently, it is easy to show that Io satisfies the "semi-
classical" equation

dk(Io)=0 . (4.11)

Such an Io is also the position at which the P function
peaks in steady state. Substitution of Eqs. (4.9a) into Eqs.
(4.11) gives the mean photon number in the sum mode
B),

and the diffusion coefficients are
a a —y

0 p
(4. 12)

4a+P(1+5')
l @,l'

8(1+
l 8, l'P/a)

131~,l'

4(1+
I ~, I'P/a)' '

P(1+5 )6'f P(1 —i5)b f
(4.7b)

8(1+i@,l P/a) 4(1+l8&l P/a)

In order to study the intensity and phase properties of the
sum mode B„we rewrite the Fokker-Planck equation
(4.2) for the sum mode B& in terms of intensity and phase
variables I and 4 through the relation 6

&

=VI e '

Solution (4.12) is stable, since the "locking strength"

Bdt(Io)
At—= = —+(a—y)BI a (4.13)

I Qi+ —,'ye@„

r+ (4.14a)

is negative (At(0). Another "semiclassical" equation

d+(Io) =0 leads to the mode pulling v&
—0& =

—,'y5, where
use has been made of Eq. (4.12). The CEL oscillation fre-
quencies are found with the help of Eq. (2.6),

a2 a2+ DII+ar' ae'

r&2+-,'y ~b,

r+-,'y (4.14b)

where

82
+2 Dtq P (I 4 t) (4 ' 8)

BI 3%

In steady state the diffusion coefficients take their
values at I =Io. Making use of Eq. (4.12), we find from
Eqs. (4.10) the steady-state intensity- and phase-difFusion
coefficients
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Drr(Io }=Ior

a+y+(a —y)5
0 8I0

(4.15a)

(4.15b)
((5I) ) =D (I )/larl=a/g . (4. 19)

As a function of I, P"'(I) is a Gaussian distribution
peaked at I =Io with a "variance" [by Eqs. (4.13) and
(4.15a))

dr Drr P (I) 0(1)
Or ar (4.16)

The detailed-balance solution of Eq. (4.16) is

r d, (x)
(4.17a)

Expression (4.15b) reduces to the result of Ref. [22] when
5=0. The quantity D++(Io) is half the natural linewidth
[23] of the CEL's in the sum mode B(, i.e., it is half width
at half maximum for the Fourier transform of the station-
ary two-time correlation function (B,(t)B)(0)). Equa-
tion (4.15b) shows that the detuning 5 increases phase
fluctuations and the natural linewidth and that the effect
of the detuning 5 becomes significant when a CEL (or an
ordinary laser) is far above threshold (a »y ).

Unlike the phase-diffusion coefficient D~~(Io), the
intensity-diffusion coefficient Drr(Io ) itself represents
only a part of intensity fluctuations. We calculate the
photon-number variance in the remaining of this section.
Since the drift coefficients (4.9) and diffusion coefficients
(4.10) are independent of the phase variable (P, the
steady-state solution of the Fokker-Planck equation (4.8)
must be 4 independent too. Consequently, it satisfies the
equation

r

Since the P function is a normal-ordering function, the
photon-number variance is found by using Eqs. (4.19) and
(4.12),

=&(5I)')+I,=
o.—y

(4.20)

which is the same as that of an ordinary laser with a
linear gain a, a cavity loss y, and a mean photon number
I0.

V. I' FUNCTION IN THK CKI. MODES

We denote ~u„'v2) as the two-mode coherent state for
the CEL modes a, and a2 a
(1=1,2). Now let a( act on the B('s coherent state
~6))iA'2) and use Eqs. (2.15); we find that i@()i@2) is
also the coherent state of a, and a2, with the relation

l@)&I&2&=l(&)—e, )e' '/v'2;(6')+6', )e '/&2) . (5.1)

Representing the density matrix p of the fields by the
Glauber-Sudarshan P function in the CEL modes, we
have

rexp 1 ——I
tX

p —f fP(u„u, )~u(;u, )(u„u, ~d'u, d u, . (5.2)

2y PI yP I
a 2e 30', 3

By making a linear coordinate transformation [c-number
version of Eqs. (2.15)]

—:f (I), (4.17b) u, =(( )
—( ~)e '/&2, (5.3a)

where C is a normalization constant, and Eq. (4.17b) is
obtained after using Eqs. (4.9a) and (4.10a). As an ap-
proximation, we now expand dr and Drr in Eq. (4.17a)
around I =I0 up to first and zeroth order in 5I=I —I0,
respectively, and obtain the linearized steady-state solu-
tion

vz =(6)+6'z)e '/&2,

in Eq. (5.2), and using Eq. (5.1), we arrive at

p= f fP(v„v )I@ &I( &&& I&@ ld @ d @

(5.3b)

(5.4)

2nDrr (I() )
exp

is, /(I —I, )'

2Dn(Io )

(4.18)

where two sets of coordinates 6 (, 6z and v „u2 are related
through Eqs. (5.3). Substituting Eqs. (2.12) and (4.1}into
Eq. (5.4), we find the steady-state P function in the CEL
modes,

p(u u )
—p() )( g }p(2)(g (s.sa)

(5.5b)

=2f ( —,
' iv(e '+ vie 'i }5(vie ' —u, e ')

=2f (2iv(i )5(v2e ' —v, e '), l = l or 2, (5.5c)
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=f 2f(2iu, i')iv, i' d'u,

= ((BI ) B I ) /2, 1=1,2, (5.6)

which can be obtained alternatively by using Eqs. (2.15)
and the fact that the mode B2 is in its vacuum state [see
Eq. (3.8)]. Let 8'l =al al', we get the mean photon number
in each of the CEL modes ai,

&ttl &=(alta) &

=
—,
' (B(B) ) =

—,'I(), 1=1,2 . (5.7)

where Eq. (5.5b) is obtained after using Eqs. (4.5) and
(4.17).

It follows from Eq. (5.5c) that

((al ) a( )=f fP(v„v2)~vl~ d u, d u2

(5.11)

which has a lower bound, —1, corresponding to a pure
number state. Here g' '(0) is the normalized second-
order correlation function. In terms of the Mandel Q pa-
rameter and g (0), the fluctuations in the CEL modes al
and those in the sum mode B

&
are related by the follow-

ing simple relations (1 =1,2):

Recall that, for an ordinary laser with a linear gain a and
a cavity loss y, its normalized photon-number variance is

also a/(a —y). Thus, compared with an ordinary laser,
we find quantum-noise reduction in each of the CEL
modes. The relative photon-number fluctuations can also
be represented by the Mandel Q parameter [24] ()2 is a
photon-number operator):

((&fi')') —(tt ) (~)[ (2)(0)
() &

This result can be understood by noting Eq. (4.5): 5(@2)
means 82=0. Thus Eqs. (5.3) reduce to

Q., =-,'Qa,

g(2)(Q)g(2)(Q)
(5.12)

v)=8)e '/+2, 1=1,2 . (5.8)

a= ( fi'l), 1 = 1,2,a —y
(5.9)

which approaches the mean photon number (8'l ) when
the ratio a/y increases to infinity. It follows from Eqs.
(5.9) and (4.20) that the normalized photon-number vari-
ance in each of the CEL modes ai is smaller than that in
the sum mode B&,

Consequently, the photon number in the mode ai is only
half of that in the mode B,. The normalized photon-
number variance in each of the CEL modes ai is

&(&tt )'&=&(at)'a'& —&fi' &'+&tt &

——'((B, ) B, ) 'I + ,'I———

VI. VACUUM STATE OF B2
AND THE VANISHING OF THE

RELATIVE-PHASE-DIFFUSION COEFFICIENT

In most of previous studies on the CEL's, the focus was
on the vanishing of the relative-phase-diffusion coefficient
under certain conditions. Those studies began with the
introduction of the polar coordinates in the CEL modes,

i ttPI

vi =p'Ie, l = 1,2, (6.1)

@=-,'(((') +(t)2»

4=((') —
42

(6.2a)

(6.2b)

and of the average and relative phases of the two CEL
fields,

&(&tt, )'& &(&+, )'&

a —y
(5.10)

Then the master equations of CEL's were converted
[through Eq. (5.2)] into the Fokker-Planck equations ex-
pressed in terms of the variables 4, p, r(, and r2,

a a a a a2 a2 2 a2
P(@,p, r„r2, t)=—— dc, — d&+ 2D@@+ D&&+2 Dc&+ r)r2D„„

a/2 a'C) a r) r2 ar) ar2

1 8 j 8 2 a' 2 a'
+ g —— rid„+ — rlD„„+— rlD, @+— r(D„& P(C), p, r), r2, t) .

rl rl rl arl rl rl rl rl

(6.3)

Last, it was shown that, under certain conditions, the diffusion coefficient D&& in the relative phase can vanish in steady
state,

D~~ =0, (6.4)

where the superscript 0 indicates a steady-state value.
It is the purpose of this section to present a correspondence between the vacuum state of the relative mode B2 [Eq.

(2.22) or (3.8)] and the vanishing of the relative-phase-diffusion coefficient [Eq. (6.4)]. The following study is quite gen-
eral, and the only assumptions made are (i) that the sum mode B, and relative mode B2 are uncoupled, i.e., Eq. (2.12)

and, consequently, Eq. (5.5a) holds; and (ii) that the relative mode B2 is below threshold.



8162 NING LU 45

Q2

3U, QU*,

a'—
(
—1) —e

BU BU2
+

aU, a()(,()8(*

Using Eqs. (5.3), we obtain the relations

a2
+C.C. (6.5a)

1=1,2 . (6.5b)

Following Eqs. (6.2), we find that

1

4 ()O' Bp'

1 I+ 1=1,2,
()(t2, 4 842 B(t2

a2

ay, ay,

(6.6a)

(6.6b)

Substituting Eqs. (5.5a), (4.2), (6.5), and (6.6) into the left-hand side of Eq. (6.3), we find that the average- and relative-
phase-diffusion coefficients are related to the diffusion coefficients in the combination modes by the relations

1 1 1D~~= g —+——(
32 ) 1 7'1 T

, 2 cos(P+ f2 —f, )
1)( D@g@

P'1f2 I I

1 —(2(P) —
P) )

e
1=1

i2(&+ &2
—

&1 )
e—+

1

2 2
2

i (P+ g2
—f1)

T1 f'2
Dg @ +C.C. (6.7a)

)
2 cos(0+ 1I'2 iI') )—+—+( —1)' D gr2 r21=1 g( g

1 2

1 —12((())—(() )

e
i2($+ Q2 It11 )

e+
1

py
2 r 2

2

i(4'+ 42
—

01 )

+( —1)' '
r1f2

D@ g +c.c. .
I I

(6.7b)

Since the relative mode B2 is below threshold, we have
Eqs. (2.16) and (5.8). In terms of the amplitudes and
phases, they become [by Eqs. (6.1) and (6.2b)]

r', =r', =+I,/2,1I2— (6.8)

=D~~(IO» (6.9a)

D&& =2[D,
&

Re(D&—
& e ' )]/Io, (6.9b)

where use has been made of Eq. (4.10b) in obtaining the
second equality in Eq. (6.9a). Equation (6.9a) reveals the
physical meaning of the average-phase-diffusion
coefficient D++, It is half the natural linewidth of the
CEL's in the sum mode B,. When the relative mode B2
is in its vacuum state [i.e., when Eq. (2.22) or (3.8) holds],
we have Eq. (4.4). Substitution of Eq. (4.4) into Eq. (6.9b)
leads to the vanishing of the relative-phase-diffusion
coefficient [Eq. (6.4)]. On the other hand, when the rela-
tive mode B2 is not in its vacuum state [which occurs

Substituting Eqs. (6.8) into Eqs. (6.7), we find that the
steady-state diffusion coefficient Dc,z, (D&&) is related
only to the diffusion coefficients in the sum mode B, (rel-
ative mode B2),

Dc&, =[D@+@—Re(D@ @ e ' )]/2IO
1 1 1 1

when Rea») Rea, 2, see Eq. (2.14)], we find from Eqs.
(2.11), (4.1), and (4.2) that

D@„@=
—,'Re(a„—a,2),

2 2

Dg @
=0.

(6.10a)

(6.10b)

Consequently, the relative-phase-diffusion coefficient does
not vanish in steady state (D&& )0).

VII. SUMMARY

We have presented a comprehensive quantum theory
of correlated-emission lasers (CEL s) in a combination-
mode approach, which is valid for both the quantum-beat
laser and the CEL with injected atomic coherence. In
Sec. II we showed that, in the balanced case (2.5), the
linear master equation (2.1) breaks down into two uncou-
pled equations (2.11) for two combination modes B 1 and

B2 defined in Eqs. (2.15). The real and imaginary parts of
the annihilation operator B1 (B2) are proportional to the
Hermitian operators corresponding to the average (rela-
tive) phase and the average (relative) amplitude of two
CEL modes, respectively, and the mode B) (B2) is called
the sum (relative) mode. With a further condition (2.21),
we found that the relative mode B2 is in its vacuum state
and the normally ordered variances of the Hermitian
operators corresponding to the relative phase and relative
amplitude vanish. In Sec. III we derived a nonlinear
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master equation for the CEL with injected atomic coher-
ence in the combination modes and showed how a set of
proper initial atomic conditions can keep the relative
mode 82 in its vacuum state when the CEL is above
threshold. In Secs. IV and V, we obtained the Glauber I'
functions, mean photon numbers, and photon-number
variances in both the combination and CEL modes, and
calculated the mode pullings of the CEL's and natural

linewidth of the sum mode. We found quantum-noise
reduction in each of the CEL modes. In Sec. VI we
showed that the physical meaning of the average-phase-
difRsion coeScient D@@ is half the natural linewidth of
the sum mode B&. We showed that, under the decoupling
condition (2.12), the relative-phase-diffusion coefficient

D&& vanishes in steady state when and only when the rel-
ative mode B2 is in its vacuum state.

APPENDIX: MASTER EQUATION OF THE CEL WITH INJECTED ATOMIC COHERENCE

We derive here the master equation of the CEL with injected atomic coherence directly form the interaction Hamil-
tonian (3.6). For the purpose of identification, we rewrite the interaction Hamiltonian (3.6) as

V =(g,
~
A )(c ~8) —gi~B )(c'~8, )e ' ''+H. c (A 1)

which describes the interaction of two modes of laser fields (8 i and Bz ) with V-type three-level active atoms (two upper
levels are ~AJ) and ~8 )). Zaheer and Zubairy [6] have derived a master equation for such a two-mode laser system
when all three levels have the same decay rate I and the active atoms are pumped to a coherent superposition of the
two upper levels. Corresponding to the initial conditions (3.7) (i.e., incoherent pumping to level

~
A ) only), we should

set Cb =0 and ~C, ~

=1 in Eq. (21) of Ref. [6] and thus obtain the master equation for the CEL with injected atomic
coherence in the combination modes B& and Bz,

(ni, n2p~m „mz) = r,g,D„'+,—„[—,'gi(n, —mi) +—,
'I" (n, +m i+2)+il bni

+g2(n, +1)ni+gi(m, +1)n~x„+i „L„'+,„](ni, ni~p~m„mi)

+r,D„'„+ig,g~Qn, m, (n~+1)(mi+1)(1+%„~„~+iL„~'„2+i)

X(n, —l, n2+ l~p~m, —l, m2+1)

+r, I D„'„gian, m, (n, —l, n2~p~m, —l, m2)+(c c )„..

with

2

+ g (n„n 2~X( B„y&,Q I
—v&)p~m„m2),

E=1
(A2)

D„„=I'+I b, +21 [g, (n, +mi)+gz(nz+mz)]+[gi(n, —m, )+g2(n2 m2)]— (A3a)

I,„„=I'+ira+g', m &+g2m2, (A3b)

„=21 +gi(ni 2rni)+gz(n2 ——2m&) . (A3c)

In the above equations, whenever n, (n2) is shifted, it is implicit that mi (m2) is also shifted. The quantity
(c.c.)„„denotes complex-conjugate terms with n, and m, interchanged as well as n2 and mz interchanged.

1 l' 2™2
When g2=0, the gain part of Eq. (A2) correctly reduces to that of the familiar Scully-Lamb master equation for a
single-mode laser.

Trying solution (2.12) and (3.8), i.e.,

(A4)

in Eq. (A2), we succeed in obtaining an equation for p'„" . Using the relation1' 1

D„,=r'(r'+a'g„ (A5)

where g„, , is defined in Eq. (3.14), we find that the equation for p'„" is nothing else but the Scully-Lamb mas-

ter equation (3.13) (n, =n and rn, =m used ).



8164 NING LU 45

[1]M. O. Scully, Phys. Rev. Lett. 55, 2802 (1985).
[2] For a linear theory of the quantum-beat laser, see M. O.

Scully and M. S. Zubairy, Phys. Rev. A 35, 752 (1987).
[3] For a nonlinear theory of the quantum-beat laser, see J.

Bergou, M. Orszag, and M. O. Scully, Phys. Rev. A 38,
754 (1988).

[4] For linear theories of the CEL with injected atomic coher-
ence, see J. Bergou, M. Orszag, and M. O. Scully, Phys.
Rev. A 38, 768 (1988) and Ref. [5].

[5] N. Lu, J. Opt. Soc. Am. B 7, 2025 (1990).
[6] For a nonlinear theory of the CEL with injected atomic

coherence, see K. Zaheer and M. S. Zubairy, Phys. Rev. A
38, 5227 (1988).

[7] For a review on ring-laser gyroscopes, see W. W. Chow, J.
Gea Banacloche, J. M. Pedrotti, V. E. Sanders, W.
Schleich, and M. O. Scully, Rev. Mod. Phys. 57, 61
(1985).

[8] M. O. Scully, Phys. Rev. A 35, 452 (1987).
[9) J. Krause and M. O. Scully, Phys. Rev. A 36, 1771 (1987).

[10]M. O. Scully and J. Gea-Banacloche, Phys. Rev. A 34,
4043 (1986).

[11]For long-time measurements, see P. E. Toschek and J. L.
Hall, in Proceedings of the XV International Quantum
Electronics Conference, Vol. 21 of Tehcnical Digest Series
(Optical Society of America, Washington, D.C., 1987), p.
102 [J. Opt. Soc. Am. B 4, F124 (1987)]; M. Ohtsu and
K.-Y. Liou, Appl. Phys. Lett. 52, 10 (1988).

[12) For a short-time measurement, see M. P. Winters, J. L.
Hall, and P. E. Toschek, Phys. Rev. Lett. 65, 3116 (1990).

[13]R. J. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766
(1963).

[14]E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
[15) W. Schleich and M. O. Scully, Phys. Rev. A 37, 1261

(1988).

[16] W. Schleich, M. O. Scully, and H.-G. von Garssen, Phys.
Rev. A 37, 3010 (1988).

[17]R. G. K. Habiger, H. Risken, M. James, F. Moss, and W.
Schleich, Phys. Rev. A 41, 3950 (1990).

[18] N. Lu and J. A. Bergou, Phys. Rev. A 40, 237 (1989).
[19]M. O. Scully and W. E. Lamb, Jr., Phys. Rev. 159, 208

(1967); M. O. Scully, D. M. Kim, and W. E. Lamb, Jr.,
Phys. Rev. A 2, 2529 (1970).

[20] M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser
Physics (Addison-Wesley, Reading, MA, 1974), Chap. 17.

[21] The master equation (27) of Ref. [3],which has a separable
solution (29)—(31), is valid only when the two coupling
constants are equal, g, =g&. The reason for this restric-
tion is that (in the notation of Ref. [3] with /=0), when

using ~ =(g]~]+g2~2)/(g i+g2)'" and B =(g2~i
—g, az)/(g, +g2)'/' (see Eqs. (12a) and (26a) of Ref. [3]),
the elements V„and Vb, of the interaction Hamiltonian
V become V V 1 ei[6—(0/2)]t(g2 +g2 )1/2 g
+ i e i[6+(n/2)]t(g2+g2 ) I/2[(g2 g2 }P+2g g It] Unless

g& =g2, mode B (corresponding to mode B, in the present
paper) is coupled to mode A (corresponding to mode B&).
The requirement g& =g2 is consistent with the require-
ment K=m. /4 obtained in Sec. II of the present paper and
is also consistent with the finding from the linear theory
(Ref. [2]) of the quantum-beat laser.

[22] J. Gea-Banacloche, M. O. Scully, and M. S. Zubairy, Phys.
Scr. T21, 81(1988).

[23] M. Lax, in Statistical Physics, Phase Transitions and Su
perconductivity, edited by M. Chretien, E. P. Gross, and S.
Deser (Gordon and Breach, New York, 1968), Vol. II; M.
Lax and W. H. Louisell, Phys. Rev. 185, 568 (1969);W. H.
Louisell, Quantum Statistical Properties of Radiation (Wi-

ley, New York, 1973).
[24] L. Mandel, Opt. Lett. 4, 205 (1979).


