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Steady-state analysis of a two-mode laser with multiplicative white noise
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The steady-state fluctuations of an inhomogeneously broadened two-mode laser with both additive

and multiplicative white noise are investigated theoretically. A Fokker-Planck equation of the
intensity-distribution function is presented. Analytic expressions of the autocorrelation and cross corre-
lation of the steady-state two-mode intensities are derived for equal pump parameters of the two modes.

Large intensity fluctuations occur when the laser is operated below threshold. However, when the laser
is operated far above threshold, there is almost no difference between the laser models with and without

multiplicative noise.

PACS number(s): 42.50.Lc, 42.60.Mi, 05.40.+j, 05.45.+b

I. INTRODUCTION

The statistical properties of two-model ring lasers have
attracted a great deal of attention both experimentally
and theoretically in recent years [1—5]. Some of these in-
vestigations were concerned with the intensity correla-
tions of inhomogeneously broadened gas [1] and homo-
geneously broadened dye ring lasers [2,4]. Others were
concerned with the first-passage-time problems [3] and
the backscattering in a laser gyro [5]. In these treat-
ments, the laser model including additive quantum noise
was solved analytically [1,5]. While both additive and
multiplicative noise were included in the laser model,
only numerical simulations were available [2—4].

In this paper, the steady-state fluctuations of an inho-
mogeneously broadened two-mode laser with both addi-
tive and multiplicative white noise are investigated
theoretically. A general Fokker-Planck equation of the
distribution function for the two-mode intensities is
presented in Sec. II. In Sec. III analytic expressions of
the equal time auto-correlation and cross correlation of
the steady-state intensities are derived for equal pump pa-
rameters of the two modes. The effects of multiplicative
white noise are presented in Sec. IV. A discussion of the
results concludes the paper.

II. EQUATIONS OF MOTION

The dimensionless coupled complex electric fields E, (t)
and E2(t) of a two-mode laser operating at line center are
well described by the following Langevin equations:

and

(q (t)q, (t')) =2P5,,5(t —t'),

(p "(t)p(t') ) =2P'5(t —t')

(2)

(3)

where P and P' are the strength of the additive and multi-
plicative noise, respectively. The additive noise is inter-
preted as a result of the spontaneous emission (i.e., inter-
nal fluctuations) and the multiplicative noise as a result of
the pump fluctuation (i.e., external disturbances). These
may have different origins and thus be independent of
each other [2,3]. However, in some situations both noises
may have a common origin and also have cross correla-
tions [10]. The statistical fluctuations of a laser with a
certain correlation between the quantum and the pump
noises will be discussed in a forthcoming paper.

The corresponding Fokker-Planck equation for the
probability function Q(I„Iz,t) of the two-mode laser in-

tensities I, = IE, I
and I2= IE2I is given by [6]

d~

' =(a, —IE, I' —g'IEzl')E, +p(t)E, +q, (t),

dE2
=(ap —IE2I —glE~ I')E, +p(t)E, +q, (t),

dt

where a, and a2 are the pump parameters of the two
modes and g is the mode-coupling constant, q &

( t) and

qz(t) are the independent quantum noise, and p (t) is the

pump fluctuation. These random noise terms are taken
to be zero mean and correlation

a a
(2a, I, 2I f 2', 1,+2P—'I, +—2P)Q 2P' (I,I,Q) ——2

&
[(P+P'1~»&Q]

Bt BI) 2 1

(2a&1&—212' 2/1)Iq+2P'Ig+2P)Q 2—P' (I)IzQ) —2— [(P+P'12)12Q]
2 1 2

(4)

where the complex electric fields E, and E2 have been transformed to polar coordinates by writing
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~, =(I, )' e ', E =(I )'~ e (5)

and the probability density function Q (I„Iz,t) has been taken to be independent of the phase variables 8, and 82. The
detailed derivation of Eq. (4) is given in the Appendix.

III. STEADY-STATE SOLUTION

The system will reach a steady state after a suKciently long time. In steady state, the intensity probability function
Q(I„Iz,t) is independent of the time t. Then Eq. (4) reads

(2a, I1 —2I, 2(I—,I3+2P'I, +2P)Q, 2P'— (I,I~Q, ) —2 [(P+P'I, )I1Q, ]

+ (2a~I2 —2I2 2/I—,I3+2P'I2+2P)Q, 2P' — (I1I3Q, ) —2 [(P+P'I2)I2Qg] =0 . (6)

In general, no analytic solution exists for Eq. (6) with
arbitrary values of the pump parameters and the mode-

coupling constant [7] except approximate numerical cal-
culations. However, for an inhomogeneously broadened
laser with equal pump parameters of the two modes, i.e.,
g= 1 and a1=a2 =a, the analytic solution of Eq. (6) can
be obtained immediately,

a
1 ~(p+1)+

"
( —1)"( aP /P' ~}+ 2+"

P'
0 n!(P+1+n )(P+2+n )

a=, , p=, +1 a P
(P')

(8)

where

X exp[ —a(I, +I2 }], (7)

and Px) is the gamma function which is given by [8]

Px)= f e 't" 'dt . (10)
0

After straightforward calculations from Eqs. (7)—(9),
the mean light intensity, the equal time autocorrelation
and cross correlation of the two-mode intensities can be
expressed as

1 Q
oo

( 1)n( pypi)P+3+n
p+»+ y

X„(0)=X„(0)=((aI,)'&/&I, &'=&I', &l&r, &' —1

1 1 f'(P+4)
p& +3 + 3aP f'(P+1)

(I )2 B 3a 3(P')3

ao
( 1 )n( aP yP i )P+4+ n

+ ~0 n!(P+1+n )(P+4+ n )

(aI,aI, ) (I,I, )

( —1)"(aP/'P')t1+ +" P
'i21

—ZP T +
o n!(P+1+n )(P+3+n ) P' (12)

1 1

2(I, )'
ao

( 1 )n( p yp~) +t14 n+

P' „~o n!(P+3+n)(P+4+ n )

P
pl

(0)— —2 .2P
11 Pg(I )

(13}

In the next section, the effects of multiplicative noise are discussed and these results are compared with those from a

laser model without multiplicative noise.
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IV. EFFECTS OF MULTIPLICATIVE NOISE

W, (I„I2)=

The mean light intensity is given by

For a conventional two-mode laser model without multiplicative noise, Eqs. (7)—(13) reduce to very simple forms
which have already been derived in Ref. [1]. Here those equations have been written down for comparison with Eqs.
(7)—(13). The steady-state distribution function W, (I, , I2 ) is of the form

exp[(aI& +aI2 —
—,
' I

&

—
—,'I2 I

&

—I2 ) /P ]
(14)

[a exp(a /2P)[1+erf (a/&2P )]+&2P/n]

)=( P[1+erf (a/ 2P )]
2I a [I+erf (a/&2P )]+V 2P /m exp( a /—2P) [

(15)

The autocorrelation and cross correlation at equal time
are given by

k„(0)=A, (0)= + —1
2P 2a

1 1 22
3 (I )2 3 (I )

(16)

and

P a
Ai2(0)= +

( )
—1 . (17)

The steady-state distribution function Q, (I&,I2) is plot-
ted in Fig. 1 as a function of one mode intensity I& while
the other mode intensity I2 is held fixed. Figure 1(a)
shows the Q, (I&,I2) for different values of the pump pa-
rameter a with P'=5 and I2=0. It is shown that the
curve has a large peak value and drops very quickly for
small values of a but has a small peak with a long tail
when the value of a is quite large. The peak of the curve
corresponding to the most probable distribution occurs
when

1max

0, a I2+2P'
a —I2 —2P', a &I2+ 2P' .

Figure 1(b) is a plot of the distribution function Q, (I&,I2 )

versus I, for different values of the multiplicative noise
P' with I2 progressively increased and with a fixed value

of a. It is shown that the height of the peak increased
with increasing value of P' and the curve with a larger
value of P' has a longer tail. Also, the curve with a larger
value of P' has a more asymmetric shape. However, if
there is no multiplicative noise included in the laser mod-
el, i.e., P'=0, the distribution function Q, (I„I2)reduces
to a Gaussian distribution expressed by W, (I„I2)of Eq.

l

~(p+1) ~ ( —1)"(aP/P')~+'+"

0 n!(P+ I+n}(P+2+n) (19)

then the asymptotic expressions of Eqs. (11)—(13) can be
written as

(14} with a very high and sharp peak. The height of the
peak of W, (I„I2) is 3.6 times as large as that of
Q, (I&,I2) for P'=10 when a=25. Due to the scale of
the vertical axis, the height of the peak of W, (I„I2) can-
not be shown in Fig. 1(b).

Figure 2 is a plot of the mean light intensity
(I)=(I, )+(I2) against the pump parameter a. It is
clear that (I ) increases with increasing P' when the laser
is operated below threshold but approaches a when it is
operated well above threshold.

The equal time autocorrelation and cross-correlation
functions A, »(0) and A, ,2(0) are plotted in Figs. 3(a) and
3(b) for different values of P'. It is shown that if P'=0,
k„(0) and A. ,2(0) decrease monotonically as a function of
(I) and also very fast near the threshold regime (from
(I ) =0. 1 to 10). However, there is a peak in the correla-
tions A, »(0) and A, &2(0) if P' is not equal to zero and the
peak position shifts to small values of (I) as P' in-
creases. Well below threshold, A, »(0) and A, ,2(0) are close
to one and zero, respectively, while far above threshold,
A, »(0) and A, ,2(0) approach —,

' and -—,
' respectively. In

these two limiting cases, there is no big difference in
A, »(0) and A. ,2(0) between the laser models with and
without multiplicative noise. This can be directly shown

by asymptotic expansions of Eqs. (11)—(17).
If the laser is operated well above threshold with

a/P')) 1 and

( ) ( )
(a/P')(P+1)
2a(a /P' —1)

A, ) ((0)=A, 22(0)

P a P PP'
2P' 2 a a

(20}

(a /P')(13+ 1)
2a(a /P' 1)—P

2P'

—2
1

(a /P' —1)
P+ 1)(P+2)(P+ 3)

3(x

3 '2
2a P+3 P

P
p/

1 4, P
- —1~—1+—P'+—

3 a a
(21)
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1 (a /P')(P+ 1)
2 2a(a /P' 1)—

—2
(a /P'+ 1)(P+1)(P+2) P

(a /P' —l )a

2

—A. t, (0)

2P (a /P')(P+ 1)
P' 2a(a /P' 1)—

P
2P'

1 2, P
1 ——P'+—

3 a a
(22)

Similarly, for the laser operated well above threshold,
Eqs. (15)—(17) give

A, t t(0) =Aqq(0) =—1+1 4P
3 g 2

(24)

(23) (0)= ——1—1 2P
12

Q
2

(25)
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It is clear that in the mean light intensity (I ) the mul-
tiplicative noise P' only gives a correction term an order
smaller than that from P. However, in the equal time
correlations A, tt(0) and A, tz(0), the multiplicative noise P'
gives a correction term an order larger than that from P.
Thus Eqs. (21) and (22) approach —,

' and -—,
' slower than

Eqs. (24) and (25), respectively.

V. DISCUSSION

The statistical fluctuations of the light emitted by an
inhomogeneously broadened two-mode laser that in-
cludes both additive and multiplicative white noise are
investigated through a Fokker-Planck equation. Analytic
expressions of the mean, the equal time auto- and
crosscorrelation of the steady-state two-mode intensities
show the dependence of these quantities on the additive
and multiplicative noise. The anomalously large fluctua-
tions appearing in A, »(0) and k,z(0) are entirely due to
the efFects of multiplicative noise which plays an impor-
tant role in the threshold regime even though the laser is
operated at steady state. It is also seen from Eqs. (16)
and (17) that for a conventional laser model with P'=0,

&I&=(Ii)+(I )
IO

IO

(p
—

I

FIG. 1. The steady-state intensity distribution function
Q, (I„Iz) as a function of one mode intensity I, with the other
mode intensity I, held fixed. (a) Q, (I, ,Iz) vs I& for difierent
pump parameters a with P'=5 and I&=0. (b) Q, (Ii,Iz) vs Ii
for different multiplicative noise strength P' with a =25 and Iz
increased progressively shown in the figure. —.—- —.: P'=0;

pt : P'=10.

IO-2
—IOO -50 50 IOO

Flax. 2. The mean light intensity (I)=(I, )+(Iz) vs the
pump parameter a for different values of P' (from bottom to
top): P'=0, 5,10,50.
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(I, ) = (I2 ) =At&(0)+ 1 is always twice as large as
(I,I2 ) =A, &2(0)+ 1. However, in a laser model with
P'%0, there is no such relation for arbitrary value of the
pump parameter a. Only when the laser is operated far
above threshold, (I

&
) =2(ItI2 ), which is shown in Eqs.

(21}and (22). It is also clear that when the laser operates
high above threshold, the equal time intensity autocorre-
lation and cross-correlation functions A, »(0) and A, ,z(0)
are determined by quantum noise for a conventional laser
model with P'=0. However, for a laser model with

P'WO, the equal time intensity correlation functions
A, »(0) and A, ,z(0) are determined by pump fluctuations.
The first-order correction term in A, »(0) and A, ,2(0) from
the multiplicative pump noise P' is an order larger than
that from the additive quantum noise P. This is shown in
Eqs. (20)—(25). For correlation functions which involve
the phases, behavior similar to that in a single-mode laser
[12] may be expected. Finally, these conclusions should
lend themselves to experimental verification in a manner
similar to those for a single-mode laser [9].

XII(0)

-25
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-20 APPENDIX

-l5

-IQ

-5

If the two-mode laser fields E, and E2 are written as
E, =x&+ix2 and E2=x3+ix4, the Fokker-Planck equa-
tion corresponding to Eqs. (1)—(3) for the probability
density function Q(x&, x2, X3,X4,'t) is found to be [6]

(DQ)+ g g (DJQ), (Al)Bt; i BXI Bx;Bx

where

Q

IO IO

2-

I IQ

&l)=&I/+ &1 )
0

I02 I03

-10

Dg =«t —lEil 4 E~l'}xt

D =(~ —IE, I' —g'IE I')x,
D4=(~3 —IE2I' —g IE) I'}x4

and

Di, =D32 = ,'(P+P'iE,
i

—),

D )2 =D2) —D34 D43 0

(A2)

-5

-0

D)3 =D3, =D24 D42 = ,'(P+P—x,x3+—PX3X4),
(A3)

D,4=D4t = ,'P'(x tx4 —x2x—3)

D23 D32 2P (X2X3 Xtx4),

D33 =D44= ,'(P+P'lE3P)—

The use of polar coordinates

—
I

IQ
—2 Ip- I

I IQ

(I&=(I )+&I,)

I -5
IP2 I03

xi =(Ii ) cosOi

X2 =(I, )'~ sinO, ,

x3 =(I2)' cosO~,

x4 = (I~ }' sinO2,

(A4)

FIG. 3. The equal time autocorrelation and cross correlation
for different values of P' (from bottom to top): P'=0, 5, 10,50.
The dashed curve should be read from the vertical scale on the
right-hand side axis which is five times as large as that on the
left. (a) The autocorrelation A, »(0) vs (I ). (b) The cross corre-
lation A, ,z(0) vs (I).

with

1Q(I»I2, O&, O2, t}=
t&2 Q(x&,xz', X3 x4 t)

(I(I2 )'

leads to the Fokker-Planck equation

(A5}
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2(a&I& I—, g—I&Iz+P+P'I, )Q —2 [[(I,Iz)' P cos(8t —8z)+P'I, Iz] IQ
1 2

—2 [(P+P'It )ItQ]
a

BIi

2(azIz Iz —gI—,Iz+P+P'Iz )Q —2 [ [(I,Iz }'~ P cos(8, —8z}+P'I,Iz ]Q ]

a2—2 [(P+P'Iz }Izg] + [2(I, )'~ sin(8, —8z)Q]
2 1 2

2 tlz
[2(Iz ) '~zP sin(8, —8z)Q ]+

t} 1 a'
+ (P+P'It )Q + (P+P'Iz}Q

t}8 2I, ' t}8 2Iz
L

I'
cos(8, 8z)+—P' Q

)
t/z

(A6)

If the phase variables 8t and 8z are integrated over in Eq. (A6) with

Q(It, Iz', t)= J d8z I d8tQ(It, Iz', 8t, 8z, t),
0 0

Eq. (A6) reduces exactly to Eq. (4) [1,2, 11].

(A7)
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