
PHYSICAL REVIEW A VOLUME 45, NUMBER 11 1 JUNE 1992

Space-time dynamics of wide-gain-section lasers
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The space-time behavior of a wide-gain-section, single-longitudinal-mode laser is investigated.

Analysis of the full Maxwell-Bloch model in one transverse spatial dimension identifies a traveling-wave

solution beyond the first laser threshold, for positive detuning from resonance, which appears to be a

globally attracting state of the laser. On the negative-detuning side we observe an initial bifurcation to a

homogeneous plane-wave state. A second instability threshold can be identified by linearizing about the

respective solutions for both positive and negative detuning. We also find that the standard approach to
adiabatic elimination, whereby the polarization equation is adiabatically eliminated, can lead to a spuri-

ous high-transverse-wave-number instability in the reduced equations. The derivation of an adiabatical-

ly reduced set of equations to remove the instability on the positive-detuning side is a nontrivial matter.

PACS number(s): 42.50.—p, 42.55.Px, 42.60.Gd

INTRODUCTION

In recent years the effect of diffraction on the stability
characteristics of wide-area lasers has been the focus of
much effort [1—4]. We investigate the effect of diffraction
on both the lasing threshold and on the stability of the
lasing state for the detuned Maxwell-Bloch equations in
one transverse space dimension. By performing a linear-
stability analysis on the nonlasing state we find that for
negative detuning the nonlasing state is unstable to the
growth of a uniform amplitude perturbation. For posi-
tive detuning, on the other hand, we find that the pres-
ence of diffraction will favor growth of perturbations in
bands centered on the wave numbers +ko, where

ko = Qy&b /a, and where a is the diffraction, b, is the de-

tuning, and y, is the polarization decay time. This be-
havior represents potential problems for the paraxial-
wave approximation used to derive the model equations.
For the model to be valid the parameters must be chosen
such that the wave numbers +ko are not too large. The
issue of wave-number selection at the first threshold is
also important when one studies the stability of the lasing
state above the first lasing threshold. We find that above
the lasing threshold there is a whole continuum of exact
plane-wave solutions. In order to pose the question of
transverse instability and pattern formation, it is of great
importance to ensure that the proper lasing state is inves-
tigated. We argue using a combination of amplitude ex-
pansions and numerical simulations that for negative de-
tuning the Hat amplitude state is selected above lasing
threshold, whereas for positive detuning a single traveling
wave with wave number ko is selected. Note in this latter
case that even if the amplitude varies in the transverse
direction, the intensity is still uniform. The linear stabili-
ty of the lasing state is investigated for both signs of the
detuning, and the predictions of the linear-stability
analysis are verified by numerical simulations of the full
system of equations.

The effect of adiabatic elimination of the polarization
on the stability properties of the laser equations is also
explored. We find the adiabatic elimination of the polar-
ization alone leads to a system with very singular behav-
ior lacking physical significance. Further adiabatic elim-
ination of the inversion variable removes this singular be-
havior and produces a mathematically well-behaved sys-
tem. However we note that the instability growth curves
for this mathematically fully reduced system and the
original problem are quite different. The inclusion of
more terms in the expansion of the polarization does not
remove any spurious singular behavior for positive detun-
ing. An interesting alternative approach to adiabatic el-
imination in the Maxwell-Bloch equations based on the
center-manifold theory, as outlined in Ref. [5], has re-
cently been implemented [6]. Here, the adiabatic elim-
ination of variables is analyzed in the case of no diffusion

[6] for wide- and narrow-gain-section lasers. The theory,
as outlined in Ref. [5] however, strictly only applies to
cases where the center manifold is finite dimensional and
could lead to spurious high-wave-number instabilities if
formally applied in more general situations [7]. This
spurious high-wave-number behavior appears in Fig. 3(b)
of Ref. [6] for positive detuning. Doing the reduction in
a manner that does not introduce high-wave-number in-
stabilities is an important and so far unresolved problem.

BASIC EQUATIONS AND STABLE LASING
SOLUTIONS

The semiclassical equations describing the dynamics of
a hoxnogeneously broadened, single-longitudinal-mode,
unidirectional ring laser have been derived and studied by
many authors [2—4,8,9], see also the review in Ref. [10].
Including diffraction and diffusion of the inversion, but
assuming the mean-field limit to hold, the laser equations
are
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wave solution.
Writing P=p, E=e, and N=NO+n, where p, e, n are

assumed to be small perturbations, we find by lineariza-
tion of (1), (2), and (3)

Be
e, +pe i—a =Pgr,

Bx

p, +y, (1+ib, )p =PzeNo,
where E,P are the slowly varying electric-field and polar-
ization envelopes, N is the inversion of the two-level sys-
tern, p is the cavity-decay constant, r, is the polarization
dephasing time, yz is the inversion-decay time, P& and Pz
are coupling constants proportional to the dipole cou-
pling between the lower and upper levels, No is the
pumping level, a is the diffraction, 5 is the detuning be-
tween the cavity and the atomic line, and D is the
diffusion coeScient for the inversion.

The system (1)—(3) has two difFerent equilibrium solu-
tions depending on the value of the pumping parameter
No. The first solution is E=P=O, N=NO and corre-
sponds to the laser being below threshold. The second
solution corresponds to lasing and is given by

E E i(,kox+Qt)
p p

where E, P, N, and Q are given by
' 1/2

(No N)—
P z

@+i(Q+, ako )P=
'2

N= 1+pr& r&h —ako

&A )'i+s

pA+ako
' r&+v

(4)

Note that the wave number ko is a free parameter. It is
interesting and surprising that the full nonlinear system
of equations (1), (2), and (3) actually have simple spatially
dependent traveling-wave solutions. All these solutions
will have homogeneous intensity, but they will have
different amplitudes and frequencies depending on the
value of the wave number ko. For k0=0 they reduce to
the homogeneous solution studied in Ref. [3]. We are
presently interested in finding the transition to states with
nonhomogeneous intensity, or the so-called second-laser
threshold. This transition will happen when the homo-
geneous intensity solution loses its stability to sideband
perturbations. In order to do this correctly we must
determine which of the solutions (4) the laser selects
above the first-laser threshold. One finds this solution by
linearizing the laser equations around the nonlasing solu-
tion and calculating which wave number k' will have the
highest growth rate at threshold. We will argue that this
is the wave number the laser actually chooses, so when
we study the second-laser threshold we set ko=k' and in-
vestigate the stability of the corresponding travelling-

eo
A, t +ikx

p —po e 7

n no

where k is the perturbation wave number. The charac-
teristic polynomial for A, is

(A, +yz+Dkz)[(A, +P+iak )[A.+y, (1+id, )]
—&ANo] =o .

One eigenvalue is A, = —r2 —Dk . This eigenvalue does
not contribute to instability for any parameter values
since r2 and D are both positive. The two other roots are
found to give instability when the pumping No is above
the threshold value N'

NC —~r~
1 +

&A ri+v
We observe from Eqs. (4) that N' is equal to the ampli-
tude N for the lasing solution. The threshold for instabil-
ity of the nonlasing solution coincides with the threshold
for existence of the lasing solution as it should. The
threshold condition (8) is the same as the one derived
in Ref. [4]. It is now evident that the laser solution
with the lowest threshold is k, =O when 6&0 and

'k=+Qy, ala when b, )0. This indicates that the
laser above the first-laser threshold will select the solu-
tion (4) with ko=O when 6(0. For b )0 we can only
conclude that two wave numbers will grow initially.
There are now several possible finite-amplitude states to
choose from. One possibility is that the finite-amplitude
state will be a standing wave, another possibility is that it
will be a traveling wave, finally it is possible that neither
of the above will happen. This problem is most easily
resolved by direct numerical simulation of the system (1),
(2), and (3). Figure 1 is a picture of the time evolution of
the power spectrum (spatial Fourier transform) of the
electric field above the first-laser threshold. This corre-
sponds to the far-field output of the laser. The parameter
values are p, =0. 1, P&

=0.5, Pz =0.5, 5= 1, y &

= 10, y z
=2,

NO=10. The initial condition was a Gaussian perturba-
tion on the nonlasing state. We observe that initially two
wave numbers start growing, but eventually one of them
wins out and the other vanishes. Figure 2 displays the
last time frame from Fig. 1. The wave number selected

Bn
n, +r2n —D =0 .

Bx

Without loss of generality we may assume that the solu-
tion is of the form
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FIG. 1. Time evolution of the power spectrum of the electric
field above the first-laser threshold but below the second-laser
threshold. The parameter values are P& =0.5, Pz=0. 5, y& =10,
y2=2, @=0.1, a =0.1, No=10.

is, in absolute value, exactly the one predicted by the for-
mula for k, with the given parameter values. This, taken
together with the fact that (4) are exact traveling-wave
solutions, leads us to conclude that (4) with
ko=k+y&h/a attracts nonlasing initial conditions in

some region above the first-laser threshold. Physically,
this result suggests that the laser will emit at a finite angle
relative to the laser axis in wide-gain systems. In two
transverse dimensions the output would be expected to
grow as a ring whose angle subtended to the laser axis is a
function of y&, 6, and a. Using the linear-stability
analysis from the next section we know that both left-
and right-traveling waves are linearly stable in some re-
gion above the first-laser threshold so that whether the

system chooses right- or left-going waves probably de-
pends on the noise present in the system. In fact, in an
extended region one could imagine that diferent regions
might end up supporting traveling waves in di8'erent
directions corresponding, for example, to front propaga-
tion. This single numerical simulation does not in any
way prove that the standing wave is always unstable. For
one space dimension there is, however, a more compel-
ling argument based on the application of weakly non-
linear theory close to the first laser threshold. The basic
idea of this method is to expand all field quantities to first
order in the unstable modes of the linearized system at
threshold. The dynamics of the amplitudes of this expan-
sion are then chosen so as to keep corrections to the first
order small in time and space. In this way one derives a,
usua11y smaller, system of equations describing the evolu-
tion of the original system close to threshold. A good tu-
torial description of this method is given in Ref. [11]. A
good feature of this method is that it tends to produce
universal equations. For the case of positive detuning
there are two unstable modes at the first-laser threshold,
corresponding to left- and right-traveling waves, and so
we need two amplitudes in order to apply the weakly
nonlinear theory. The two amplitudes satisfy the follow-
ing set of equations [12]:

P,P~N' 2a y ~k,
e, a, = a, — ' 'a„a,

I +r ' v+X

4I yla2k2 ay

(v+y, )' "" ' v+yi ""
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p+y, p+y, . 2

4pg )a k~ a f )

(p+y )' p+yi

j p2 [(1+s)A21&
&
I'+ &2I &&I']

y2 p+yi
(9)

80—

0
-10

I

-5 0 5

ki2z

I

10

FIG.. 2. The last time slice from Fig. 1. The parameter values
are P, =0.5, P2=0.5, y, =10, y2=2, p=0. 1, a =0.1, NO=10.

where s=[l+(D/ )ya&/yz]
' and N' is the pumping

above threshold. The linear parts of these equations are
essentially the dispersion relation for the linearized sys-
tem at threshold, expanded to second order close to the
top of the two bands of unstable wave numbers. These
are two coupled complex Ginsburg-Landau (CGL) equa-
tions and are typical for the type of equations that this
method produces in systems close to threshold. The solu-
tion with A& = A2 corresponds to the standing-wave
solution in the original system. In the Appendix we show
that the solution with A

&

= A2 is always unstable for the
coupled CGL equations (9). This supports our earlier
claim that the laser will select the traveling-wave solution
above threshold.

When investigating pattern-forming transverse insta-
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bilities in this laser model it is very important to be aware
of the fact that it is a traveling-wave solution that is
selected by the laser at the first-laser threshold. The
linear-stability analysis must be performed on this solu-
tion when 6)0 and not on the flat kp=0 solution. A
linear-stability analysis of the flat solution will predict an
instability above the first-laser threshold that is not relat-
ed to pattern formation but only to the fact that the trav-
eling state is stable and attracting, at least locally. The
presence of the nonzero wave number for 6)0, but not
for 6 &0, can be understood physically as a resonance
phenomenon: The polarization has a natural oscillation
at frequency —y&h. A wave number k gives the electric
field an oscillation component at frequency —ak . The
inversion N is driven by (P"E+PE'). The frequency of
this driving term will then be +(y, h —ak ). If 6 (0 the
wave number that gives strongest coupling through the
inversion will be k =0. On the other hand, if 5)0 the
wave number that gives strongest coupling will be
k =k+yth/a.

Since the far field of the laser output is essentially the
Fourier transform of the near field, the physical implica-
tion of this result is that a controlled-beam steering may
be achieved through, for example, piezoelectric tuning of
the cavity. From a numerical point of view the existence
of this traveling-wave instability can present a problem
unless the field quantities are redefined such that the
wave number kp is taken explicitly into account.

LINEAR STABILITY OF THE LASING SOLUTION
IN THE UNREDUCED MODEL

i(kox+Qt)
(10)

P=(P+p)e

We will investigate in this section the linear stability of
the lasing solution with transverse wave number as de-
rived in the last section. Using standard linear-stability
methods we write

g', —2akp

g', +ak

—q', —ak —p,

g) —2akp 0

g2
—

n2 p—2E

P,a"E

—p2N

P,a'E
n'2 nZ

p~E 0 y 2+Dk

where g"„g&,gz, gz are the real and imaginary parts of
ri, =p+i (ak0+ 0) and g2=y &+i (Q+ y, h) T. he wave
number of the perturbing plane wave is k. The laser solu-
tion is unstable to the growth of the plane wave with
wave number k if the matrix A has at least one eigenval-
ue with positive real part. Our point here is to compare
the behavior of this stability problem with the corre-
sponding one for the adiabatically reduced system. In
Fig. 3 the first- and second-laser thresholds are graphed
as a function of pumping and detuning. These curves
were obtained for each value of pumping and detuning by
finding the wave number k with highest growth rate and
then looking for the zeros of this function. Figure 3 is
computed with parameter values corresponding to the
good-cavity limit. The relative disposition of the first-
and second-threshold instability curves will be a sensitive
function of the problem parameters. Here we indicate
general trends in behavior. First, in the good-cavity limit
under consideration here, the second-laser thresholds
shift to lower pumping values as y, —+y2. Also note that
for negative detuning in a certain range the system can go
from stable to unstable and back to stable by increasing
the pumping of the system. The actual shape of the
growth curve for the perturbation is very different de-
pending on the sign of the detuning. Figures 4 and 5
show the growth curve for positive and negative detun-
ing, respectively, above the second-laser threshold. Ob-
serve the very different character of the two curves. For
negative detuning we predict that a single group of close-
ly spaced wave numbers will start growing, whereas for

N=N+n, (12)

e, + [p+i(Q+ako )]e= 2akoe„+ia —+P@,
Bx

(13)

p, +[y, +i(Q +yet, )]p=P2(Ne+En), (14)

82
n, +y2n D= P2E R—e(p*+a'e—), (15)

where e,p, n are assumed to be small perturbations. The
linearized system for the perturbed quantities is

&~First Laser Threshold
I
I

3 l
Traveling-Wave

2 ~ Homogenous I ~ Spatial
Pattern

I
h0

I
I
I

-1 Homogenous State (ko = 0j

-2

$
\

3

where a=@+i(0+ako)]IP,. The stability of the lasing
solution, or in other words, the position of the second-
laser threshold, is found by looking for exponentially
growing plane-wave-mode solutions for (13)—(15). Insert-
ing such a trial solution gives a linear system of equations
for the amplitudes with matrix A given by

-4
0 100 2t)0 300 400

FIG. 3. The second-laser threshold in the plane of detuning
6 and pumping ND Parameter values P, =0.5, P2=. 0.5, y, =10,
@2=2,p=0. 1, a =0.05.
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B +y, (1+ib, )P=P~@N,
Bt

BN BN
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~
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sponding to k0%0.
Linearize the reduced system by writing

E=(E+e)e ', N=N+n

where as usual e and n are small perturbations. Keeping
only linear terms from (22), we find

The equation for P can be solved formally to yield

—y &(1+ih)sP=P,f e ' @N(t —s)ds .
0

(20)

The assumption underlying adiabatic elimination is that
the polarization dephasing time y, is much faster than all
other time scales in the problem. Since diffraction is in-
cluded in the electric-field equation we also must assume
that there is little energy in modes with wave numbers
that correspond to frequencies that are of the order of y1
or bigger. With this in mind we can solve the integral in
(20) using standard asymptotic techniques [13]. The
main feature is that we expand C(t —s) in a Taylor series
around s =0 and integrate this series term by term. The
resulting expression for P is

6'N —
~ B,(gN) . (21)

y~ &+i~ [y,(1+id, )]'
As a first approximation we will keep only terms of first
order in 1 ly, in (21). The time derivative in (21) is evalu-
ated using the linear part of the field equations (1), (2), as-
suming that the nonlinear coupling is small. The reduced
system of equations can, by rescaling, be put into the
form

Be2

e, =—,'P(1 i—b, )En+ia
Bx

2

n, = (y—~+PE )n PE —N(e+e')+D
X

(26)

(27)

The growth rate of plane-wave solutions with wave num-
ber k is determined by the real part of the solutions of the
following characteristic polynomial:

(s+p)(s +1)—q(b —s)=0,
where

p =
~ (ye+PE +Dk ),1

ak2

P~E g~

( k2)2

(28)

(29)

ak

Written in this form it is straightforward to find that
the characteristic polynomial has solutions with positive
real part only if

p+6(0, p —qh &0 .

. r}'E+pE ,'P(1 i h)E—N—i—a =0—,2
Bx

BN+y, (N No) D, +—PIE I'N—=0,
(22)

2@k+aDk

y~(pb —ak ~/N )
(30)

Using the expressions for p and q we find that the condi-
tions for a plane-wave perturbation with wave number k
to grow are

where
1/2

y2E= (NQ N)—
2p

2p

(23)

(24)

where p is a new coupling constant. The reduced system
(22), like the full system, has two different stationary solu-
tions corresponding to a nonlasing and a lasing state.
The lasing solution is

k
N N. N'

y2

D 5&0.

Observe that the second-laser threshold as a function of
pumping and detuning is just a straight line vertical to
the pump axis. This is in sharp contrast to the compli-
cated shape displayed by the second-laser threshold for
the full system in Fig. 3.

We will for simplicity first consider the case without
inversion diffusion, D =0. In this case condition (30) irn-

plies that a11 wave numbers below a certain maximum
wave number are unstable

0= —ph —ak0 . (25) 2',
a N0

(32)

In this case the first laser threshold does not favor any
wave number. We will investigate the stability of the
homogeneous state k0=0 since numerical simulations
seem to favor this state in the regime where the laser
solution is stable. Our main conclusion about the singu-
lar behavior of the reduced system could be derived by
investigating the instability of any of the solutions corre-

This is a long-wavelength instability similar to the
Benjamin-Feir instability [14] for the nonlinear
Schrodinger equation. In fact if the inversion is also adi-
abatically eliminated and the weak-field limit assumed,
then this instability becomes exactly the Benjamin-Feir
instability. Note that this behavior is very different from
the instability for the full system with 5 & 0.
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k)"
This is a short-wavelength instability that clearly is not
physica an mus e1 d t be a result of the adiabatic elimination

the rowthof the polarization. Figures 8 and 9 show the growt
curve for positive and negative detuning, respectively.
The infinite tail of the positive-growth rate is evident in
Fig. 9. Note that apart from the infinite tail, which in-
duces unphysical short-wave instabilities, the growth
curve for the reduced system when 5 (0 is qualitative y
similar to the growth curve for the full system in ig.
Also observe that the growth rate for positive detuning

Center-manifold methods appear to remove these spuri-
ous instabilities for negative detuning [6]. In order to in-
vestigate the high-wave-number behavior of the growt
curve more closely, we have used perturbation methods
to derive an asymptotic expression for large k

P2E2+~ D+gQ
D +ak

(33)

(34)

F (34) it is clear that the growth rate actually goes torom i
~ ~

nin . Thiszero from below for large k and positive detuning.
. If the s stem isbehavior has very serious consequences. e sy

simulated numerically with positive detuning above the
second laser threshold, the low-wave-number instability
will excite the highest wave number supported on t e
computational grid, and the simulation will fail due to
loss of accuracy. The presence of any amount of inver-
sion diffusion will not remove this singular behavior when
the detuning is positive as is evident from (34). From ( )

and (34) it is, however, clear that when the detuning is

0.1—

The second condition (31) with D=0 shows that all
wave numbers above a certain minimum wave number
are unstable

0.10—
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FIG. 9. The largest real part of any eigenvalue as a function
of wave number k for the reduced problem for the case of nega-
tive detuning. Parameter values are P=0.5, y =2@=0. ,
a =0.05, 5= —4, No = 1.

negative and D )a ~6~, the instability is in fact gone. It
seems paradoxical but is true that an inaccurate numeri-
cal scheme for the reduced equations behaves more
reasona ybl than an accurate scheme, because the former

willwill contain numerically generated diffusion that wi
tend to damp out high wave numbers. The predictions o
the linear-stability analysis are clearly confirme y igs.db Fi s.
10 and 11, which show the time evolution of the power
spectrum when the instability growth curve is given by
Figs. 8 and 9, respectively. Note the similarity to a typi-
cal numerical instability.

%'e have seen that in general the instability growth
curve for the full and reduced systems are very different.
There are, however, also similarities worth noting. In t e
defocusing case 6 &0 the growth curves for the full and

6p

5Q~

O
-0.1—

~~ 4p
Q

3Q~
s

I 2p

1p

-0.2
0

I I
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k/2z
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FIG. 8. The largest real part of any eigenvalue as a function
of wave number k for the reduced problem for the case of posi-
tive detuning. Parameter values are P=0. 1, y2 —,p= .=2 =0.1,
a =0.01, 6=2, NO=5.

FIG. 10. The time evolution of the power spectrum orum of the
electric field as a function of time for positive detuning for the
reduced system. The parameter values are the same as in Fig. 8.
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q) 6

4
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diffusion coefficient is positive, and the equation is well
behaved. However when the detuning is positive, the
diffusion coefficient is negative, and the diffusion terms
acts like a reverse heat equation, and the system is totally
singular. We believe that adiabatic elimination in the
form presented here will never work at any level of trun-
cation of the expansion (21) when b, )0.

The present discussion has been presented for the case
of one transverse dimension, but we are convinced that
our conclusion also holds for two transverse dimensions
and without the mean-field limit. The linear-stability
analysis predicts the same type of asymptotic behavior
for the growth curve for these cases. Pattern formation
in two dimensions is currently under investigation.

FIG. 11. The time evolution of the power spectrum of the
electric field as a function of time for negative detuning for the
reduced system. The parameter values are the same as in Fig. 9.

reduced systems are actually very similar in the low-
wave-number regime. The main difference lies in the be-
havior of the tail at high spatial wave numbers. We have
also investigated the fully reduced system obtained by
also eliminating the inversion adiabatically, and for this
system there is no singular behavior for either sign of the
detuning. The growth curves for the full system and fully
reduced system are, however, very different. In con-
clusion, the standard adiabatic elimination scheme breaks
down for either sign of the detuning. Center-manifold
methods [6] remove high-wave-number instabilities for
negative detuning but fail for positive detuning.

DISCUSSION

From the results presented in the last two sections it is
evident that direct adiabatic elimination does not work
when there is diffraction present, even if the polarization
dephasing time is much larger than the inversion- and
cavity-decay times. The reason for the failure we believe
is the slaving of the polarization to the motion of the
electric field. This means that P and E will always vary
on the same time scale, and P*E will be slowly varying.
Since the material equation is driven by a time average of
P*E, it will always have a finite driving and the self-
consistent field-material loop is closed. On the other
hand, if P is not slaved to E, then for high wave numbers
P'E will oscillate rapidly, the driving term in the inver-
sion equation will average to zero, and the loop is broken.
It could be argued that the problem may be fixed by re-
taining one or more terms in the adiabatic expansion for
the polarization (21). We have investigated this, and we
found that including one more term in the expansion did
produce a system of equations that differs from the first-
level equations (22) by the inclusion of several additional
terms, the most important being a diffusion term in the
equation for E. The sign of the diffusion coefficient is
determined by the sign of A. When 6 is negative, the

CONCLUSION

We have pointed out that the equations for a homo-
geneously broadened, single-longitudinal-mode ring laser
will start lasing in a traveling-wave state when 6)0.
This state would be observable in the far-field output of
the laser as an off-axis emission. The wave number
selected by this traveling-wave state can violate the as-
sumptions underlying the derivation of the model equa-
tions. We have investigated the method of adiabatic el-
imination in the presence of diffraction and found that it
fails to produce a well-behaved system of equations when
it is applied to the equations for a homogeneously
broadened ring laser. By including diffusion explicitly in
the inversion equation, we have also established that the
artificial instability introduced by adiabatic elimination
cannot be removed. Center-manifold methods appear to
remove successfully artificial instabilities in the defocus-
ing case, but the positive-detuning case remains un-
resolved [6]. This result is particularly relevant when
modeling semiconductor lasers with wide-gain sections as
in multistripe or broad-area lasers.
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APPENDIX

In this section we will investigate the linear stability of
the standing-wave solution for a set of coupled CGL
equations of the form

(A 1)
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9, Az =pAz+PB„Ai+(y ip)B„„Az
—g[(1+s)A iA, i

+A iA i ], (A2)

where p, p, y, p, g, s are real parameters. Standing-wave
solutions are of the form

The linear stability of the standing-wave solution is inves-
tigated by perturbing the standing wave a smaB amount
A1 A1+a1 A2= A2+a2 and deriving a linear system
for the perturbations a1,a2. We hand after linearization
the following system for a1,a2..

A1 A e ', A =A e
i5 t i5 t

1 s 2 2 (A3) B,a, =pa& —PB„a,+(y i—p)t3„„a,

By substituting (A3) into (Al) and (A2) we find that
51=52=0 and

0=y, —q[(1+s)I A', i'+i A', i'],
o=l —q[(1+s)i A', i'+

i
A', ('] .

(A4)

A =A
1 2 ri(s+ 2)

(A5)

%e can now without loss of generality assume that
A i, A2 both are reaL The system (38) gives upon solu-
tion the standing-wave solution

1/2

q—[[(1+s ) A, A z ( a2+ a 2 ) + ( A 2 ) a, ]

+(Al) a|+(Ai) (al+ai)],
t),az =lsa2+ pBxa2+ (y i p—)t)„„a2

—ri[[(1+s)A,A2(a, +a*, )+(Aot)zaz]

+(A2) a2+(A2) (a2+af )] .

(A6)

Take the Fourier transform of (41) and introduce
new dependent variables X=a1+a1, F=a 2+a z,
U=a, —a1, V=a2 —a2. The matrix A of the resulting
linear system of ordinary differential equations is

iPk —yk —2ri( A, )

—2'(1+s ) A i A 2

ipk
0

—2'(1+s) A i A z

ipk —yk —2g(A2)

0
iyk2

ipk

iPk —yk2

0

ipk

iPk ——yk

where k is the wave number of the perturbation. The standing wave is unstable to a perturbation with wave number k if
the matrix A has any eigenvalues with positive real part. Consider the special case k =0. The characteristic polynomi-
al for A when k =0 is

A, +2'[(Ai) +(A2) ]A, —4' s(s+1)(Ai) ( Aq) =0.
This polynomial will clearly have two real roots, and one of them will always be positive. This proves that the standing
wave is unstable to flat perturbations. By continuity it will in fact be unstable to perturbation with wave numbers in
some band around k =0.
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