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The Pegg-Barnett phase-operator formalism utilizes a finite basis set to represent operators of the har-

monic oscillator; this enables the phase to be represented by a Hermitian operator, but rests on taking
the dimensionality of the basis set to infinity for observable quantities. Simultaneously, in their ap-
proach Pegg and Barnett consider quantum states of a harmonic oscillator which are normalized in the
Fock space, i.e., the dimensionality of the basis set in which the states of the harmonic oscillator are
defined is supposed to be infinite, while the phase operator is defined in the finite-dimensional basis set.
In this paper we address the problem of a consistent definition of a coherent state within a finite state
basis. We employ displacement operators to define such coherent states and numerically evaluate ob-
servables as a function of the size of the basis set. We investigate phase properties of these coherent
states. We find that if the dimensionality of the state space is much larger than the mean occupation
number of the coherent states, then the results obtained in the finite-dimensional basis are applicable in

the case of an ordinary quantum-mechanical harmonic oscillator. These coherent states are minimum

uncertainty states with respect to quadrature operators (i.e., the position and momentum operators) and
do not exhibit quadrature squeezing. A weakly excited (compared with the dimensionality of the state
space) coherent state in finite-dimensional basis is not strictly speaking a minimum uncertainty state with

respect to the number and phase operators. We give definitions of amplitude and phase squeezing and
show that weakly excited coherent states can be amplitude squeezed. In the high-intensity limit (again
compared with the dimensionality of the state space) these states exhibit phase squeezing.

PACS number(s): 42.50.Ar, 42.50.Dv, 03.65.—w

I. INTRODUCTION

Even though the theory of nonrelativistic quantum
mechanics was completed more than 60 years ago, there
are fundamental problems in this theory which only re-
cently have been clarified. One of these problems is relat-
ed to the existence of a Hermitian phase operator of the
harmonic oscillator (or a single mode of the electromag-
netic field). The classical electromagnetic field can be de-
scribed by its amplitude, i.e., the square root of the inten-
sity of the field, and its phase. In the quantum theory,
the amplitude of the field is proportional to the square
root of the photon-number operator, but the question is
how to define the phase operator.

From the complementarity principle [1,2] it follows
that, for each degree of freedom, the dynamical variables
are a pair of complementary observables [3]. This implies
that there should be a Hermitian operator conjugate to
the excitation (photon-) number operator such that a pre-
cise knowledge of one of them implies that all possible
outcomes of measuring the other are equally probable.
Dirac [4] was the first to introduce a Hermitian phase
operator of the electromagnetic field. He utilized the
Poisson-bracket —commutator correspondence principle
[5] and suggested that the photon-number operator and
the phase operator should obey the canonical commuta-
tion relation

[8',4]= i, —

and that the annihilation I and the creation 8 operators

of the single mode of the electromagnetic field (for which
[8,8 ]= 1) can be expressed in the polar form

8=exp(ik)+8', 8 =+8'exp( —i4) . (2)

It was shown by Louisell [6] and Susskind and Glogower
[7] that the number-phase commutator (1} is not con-
sistent with the existence of a well-defined Hermitian
phase operator (see also Refs. [8,9]}. Lat there were
several attempts to define Hermitian phase operators con-
sistently by introducing periodic functions of the phase
[6,10,11]. These attempts did not, however, solve the
problem (for details see Refs. [7,9,12]). Susskind and
Glogower [7] proposed exponential operators ekp(i4)
and efp( i4), which—are not functions of a common
phase operator 4 [13]. The Susskind-Glogower (SG)
phase operators have been applied in a variety of prob-
lems in quantum optics. In particular, using this opera-
tor, Carruthers and Nieto [14] have studied the phase
properties of coherent states.

Susskind and Glogower [7] realized that the main
problem in the proper definition of a phase operator lies
in the existence of a cutoff in the spectrum of the number
operator, which excludes the negative integers. In fact,
there are two possible ways to overcome this problem of
the semiboundedness of the energy spectrum of the har-
monic oscillator and hence to define the phase operator
consistently. One possibility is to extend the normal
harmonic-oscillator Hilbert space to include negative
number states (i.e., the spectrum of the harmonic oscilla-
tor is unbounded, but simultaneously it is assumed that
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the negative-energy states are decoupled from the
positive-energy ground state [15]). Recently it has been
shown that this approach su6'ers from some inconsisten-
cies [16] which are due to the unbounded state space.
The second possibility to treat the problem of the phase
operator is to suppose the spectrum of the harmonic os-
cillator to be bounded, that is, to consider a finite-
dimensional Hilbert space of the harmonic oscillator [17].

Recently Pegg, and Barnett [18,19,12] defined the Her-
mitian phase operator in a finite-dimensional state space.
They used the fact that, in this state space, one can define
phase states rigorously. The phase operator is then
defined as the projection operator on the particular phase
state multiplied by the corresponding value of the phase
(for details see Sec. II). The main idea of the Pegg-
Barnett (PB) formalism consists in evaluation of all ex-
pectation values of physical variables in a finite-
dimensional Hilbert space. This gives a real number
which depends parametrically on the dimension of the
Hilbert space. Because a complete description of a real
harmonic oscillator involves an infinite set of number
states, the infinite limit must be taken. This limit is taken
only after the physical results (mean values of observ-
ables) are evaluated thereby leading to a proper limit
which corresponds to the results obtainable in ordinary
quantum mechanics (for further work concerning the re-
lation between the SG and the PB formalisms see the re-
cent paper by Luks and Perinova [20]). It can be used for
investigation of the phase properties of quantum states of
the single mode of the electromagnetic field. In the past
two years the PB formalism has been applied to various
problems in quantum optics. In particular, it has been
shown that the uncertainty product of the number and
the phase fluctuations of a highly excited coherent state is
minimized with increasing intensity of the coherent field

[12]; it has also been shown that the number states of the
single mode of the electromagnetic field are the minimum
uncertainty states [21] of light. Phase properties of a
single-mode squeezed vacuum have been analyzed and
the relation between the squeezing parameter and the
form of the phase probability distribution has been found
[22—24]. In addition, phase properties of the cotangent
states were recently analyzed [25] and the PB formalism
has been used for investigation of the phase correlations
between two modes of the electromagnetic field [26]. In
particular, the phase properties of the two-mode
squeezed vacuum have been studied [27] and the interest-
ing feature of phase locking has been revealed. The PB
formalism has been adopted to describe optical phase
diffusion [28], phase-difference fluctuations in a
quantum-beat laser [29], phase fluctuations in a laser with
an atomic memory[30], and phase properties of coherent
light interacting with a two-level atom [31] or nonlinear
medium [32]. In all references mentioned above the
quantum states of light employed in the calculations are
defined in the infinite-dimensional basis, that is, they are
properly normalized only in the infinite-dimensional state
basis, whereas the Pegg-Barnett phase operator is defined
in the finite-dimensional state space.

The aim of this paper is to study in detail the phase
properties of coherent states, which are consistently

defined in the same finite-dimensional basis set in which
the phase operator acts. We find that if the dimensionali-
ty of the state space is much larger than the mean excita-
tion number of the coherent state, then results obtained
in the finite-dimensional basis are applicable in the case
of the ordinary quantum-mechanical harmonic oscillator
within an infinite-dimensional state space. But, as we
show below, our finite-dimensional state space results are
suKciently general to encompass both bosonic coherent
states and atomic [SU(2)] coherent states within a com-
mon formalism. Such coherent states, of course, can be
variously squeezed or subfluctuant.

Coherent states are always associated with the "most"
classical states one can imagine in the framework of
quantum theory, so one would expect to find some con-
nection between the mean values of the quantum phase
operator and the phase of the classical coherent field. We
will base our analysis on the PB formalism and concen-
trate our attention on phase fluctuations, on amplitude
and phase squeezing, and on determining whether the
coherent state of light is a minimum uncertainty state
(MUS) or an intelligent state with respect to the number
and phase operators. In Sec. II we present a short review
of the PB formalism. In Sec. III we analyze in detail the
algebraic properties of the PB phase operator and we
show that one can construct phase annihilation and
creation operators acting in the finite-dimensional Hilbert
space of the quantum system which decrease or increase
the phase by increments which depend on the dimen-
sionality of the state space. In Sec, IV we give a precise
definition of amplitude (number) squeezing and phase
squeezing. In Sec. V we define the coherent state in the
finite-dimensional Hilbert space and study the relation
between this coherent state and the ordinary coherent
state of the usual infinite-dimensional Hilbert-space har-
monic oscillator. In Sec. VI we discuss the phase proper-
ties of the coherent state of light. We concentrate our at-
tention on weakly excited coherent fields where the SG
formalism [14] and the PB formalism [18,19] most
strongly differ (see also Ref. [33]). Finally, we analyze the
relation between amplitude squeezing and sub-Poissonian
photon statistics [34]. Of course we recognize that there
are many cases of interest where the state space is

genuinely finite for which coherent states are of value. In
the Appendix we illustrate the ideas advanced in this pa-
per with the simplest possible finite-dimensional Hilbert
space, namely that of a two-state system.

II. SHORT REVIEW
OF PEGG-BARNETT FORMALISM

The concept of the phase operators recently introduced
by Pegg and Barnett [18,19] is based on the idea of a Her
mitian operator which has properties usually associated
with phase. This operator is properly defined on a linear
space ql of finite dimension spanned by the (s +1) num-
ber states ~0), ~1), . . . , ~s). The physical variables (ex-
pectation values of Hermitian operators) are evaluated in
the finite-dimensional space O'. These mean values de-
pend parametrically on s. At the final stage of the calcu-
lations for bosonic systems the limit s~ ~ is taken. As
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we will show, we need not insist on taking the infinite s
limit before considering physical quantities: there are
many finite-diinensional systems (the simplest being the
two-level system) with interesting phase-dependent quan-
tities.

Let us consider the finite-dimensional state (Hilbert)
space %' of a "harmonic oscillator. " The number states
in ) E%' are orthonormal:

e,= y e.ie. )&e.~,
m=0

(14}

from which it follows that i 8 ) are the eigenstates of the
Hermitian phase operator 4&..

chosen it defines a particular basis set.
The Hermitian phase operator 4z is defined through

the projection operators ie & & ek i:

S

&num&=5„, g in&&ni=l.
n=0

(3) k, ie. & =e. ie. ), (15)

The annihilation operator & acts on 4 as usual, that is,

&In)=&n ln —1&, &10&=0, ln&&+ (4)

but the action of the creation operator I is modified
when acting on the state is ):
it in ) =v'n+ 1 in +1&, & is) =0, in ) E%' . (5)

The operators & and I t can be rewritten in terms of pro-
jection operators i m ) & n i:

S S8= g V n in —1)&ni, it t= g &n ~n )&n —li . (6)
n=1

The commutation relation for the creation and annihila-
tion operators in 4 is

that is, ie ) are states with well-defined phases. The
phase operator 46) can be rewritten in the number-state
basis:

s4O= 8O+2m s+1

+ y . in &&ki.
exp[ —i (k —n)80]

s + 1 k „0exp [ i ( k— n) 2m—/(s + 1 ) ]—1

kAn

(16)

Using the above definitions, one can find the commuta-
tion relation for the conjugate operators 8 and 4z [36] in
terms of the projection operators in the number-state
basis:

[&,& ]=1—(s+1)is&&si, (7) 2'll[8',4e]=

8'= g nin &&n~,
n=1

(8)

and using the definition (6) of the creation and annihila-
tion operators we can rewrite 8' as

8'=a 'a . (9)

which means that once the dimension of the Hilbert
space of the harmonic oscillator is taken to be finite, the
creation and annihilation operators are no longer related
to the Weyl-Heisenberg algebra. The number operator 8'
can be defined in a natural way:

(n —k)exp[ i (k —n—)80]
in &&k/,

0 exp[ —i(k n)2m —l(s+1)]—1

kXn

(17)
which differs from the commutation relation (1}proposed
by Dirac [4] (for further discussion of Refs. [9,18,19,3,6]).

Once the phase operator 4& is defined consistently on
the space 4, functions of this operator can also be intro-

' M
duced. For instance, the functions exp(i4z), cos4z, and
sin@& defined as

The operators 8, 8, and a obey the following commuta-
tion relations:

[8' 0 "]= kit" [8 (8 —)"]=k(& )" (10)

ie ):—(s+1) 'i g exp(ie n)in),
n=0

with the following properties:

As shown by Pegg and Barnett [18,19], the finite-
dimensional state space 4 can also be spanned by (s + 1)
phase states

i 8 ) (see also Ref. [35]):

S

exp(ill)= g exp(ie )je )&8
m=0

S

costs= g cose i 8 ) & 8
m=0

sinks= g sine ie )&8
m=0

take the following form in the number-state basis:
S

exp(i@e)= g in —1)&n i+e ~s ) &0~,
n=1

(18)

(19)

(20)

(21)

&8 ie„&=6 „, y (8 &&e i=1.
m=0

The phase 8 is defined as

0 =Ho+2m, m =0, 1, . . . , ss+1'

(12)

(13}

S

cosee= — g in —1)&ni+e' ' 'is &&oi+H. c.
2

S

sinks= —. g in —1&&ni+e' ' 'is &&0~
—H. c.

2l

(22}

where the value of the phase eo is arbitrary and once (23)
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The commutation relations of these operators with 8 are

[exp(ike), A ]=exp(ikti) —(s + 1)e '~s & & 0~, (24)

[coskti, k]=i sinkti —
—,
' [(s —1)e '~s &&0~+H.c.I,

(25)

operators & and & can be expressed through the photon
number and the phase operators as [4,9,18,19]

& =exp(ikti)(A')', 8 =(8)' exp( —ike) . (32)

From the analogy between 1V' and kz it follows that the
phase creation and annihilation operators should take the
form

[sinks, k ]

i—coskz ——.[ (s + I )e 'Is & & 01 —H c j .
l

~ 277 A
/=exp ig— (4 )'~

s+l

P=(ke)' exp iA'
s+1

(33)

III. THE CREATION
AND ANNIHILATION OPERATOR

OF PHASE QUANTA

In the linear space '0, which is spanned by (s+I)
states (either the number states ~n & or the phase states
~8 &), there exists a close analogy between the number
operator 8' and the phase operator Ciz. For instance, the
phase states ~8 & are the eigenstates of the phase opera-
tor kz [see Eq. (15)], while the number states are the
eigenstates of the number operator k Furthermore, the
operator exp(iks) plays the role of a step operator with
respect to the number states, that is,

which implies that ks=P P. The operators (() and P act
on the phase states in the same way as the operators &
and 8 act on the photon-number states, that is (see Fig.
1),

exp(iks)ln &=In —1&,

exp( its)(n —
& =)n +1& .

(27)

Analogously, the operator exp[ iA2n/—(s +'1).] is a step
operator with respect to the phase states:

exp iA' —~8 &
= ~8s+1

exp ilV '~8 &=~8 +i& .s+1

(28)

The operator exp(ice) in the number-state basis can be
written as

S

exp(ie, )= g ~n
—1&&n~+e'

'
'~s&&0~ .

n=1
(29)

while the operator exp[ —ilV'2m/(s+ I)] in the phase-
state basis takes the form

exp iP—2' = y I8. , &&8.1+18,&&8.I
.

m=1
(30)

Now we turn our attention to the fact that the number
operator 8' is related to the photon creation (a ) and an-

nihilation (&) operators as A'=& &. Because 8 is the
counterpart of the phase operator 4z, the natural ques-

tion arises whether 4z can be expressed as

@e=4V' (31)

where P and P play the role of the creation and annihila-

tion operators of the phase quanta, respectively (that is,
one can increase or decrease the phase by discrete incre-

ments which depend on the dimensionality of the state
space). To answer this question we first note that the

FIG. 1. We consider the phase space of the "harmonic oscil-
lator" which is defined on the finite-dimensional state space. In

(a) we show number states of this harmonic oscillator as annu-

lae in phase space. The action of the photon creation and an-

nihilation operators corresponds to the transition from one an-

nulus to another. In (b) we show the phase states as vectors in

the phase space and as seen from this picture the phase creation
and annihilation operators are responsible for transitions be-

tween these vectors.



45 COHERENT STATES IN A FINITE-DIMENSIONAL BASIS: 8083

&le &
=v'8 le )&, y 'Ie & =v'8 +, lie +, &,

and

(35)

(36)

&le.&=v'e. le, &, v'le, &=v'8.18.& .

In the phase-state basis these operators take the form

y= y. Qe. le. , &&e. i++8,le, &&e,l,
m=1

k

(p)'le, &
= g 8, le„) .

j=1

On the other hand, if the operator P acts k times, where
k ~s+1 [k =n (s+ I)+m] on the phase "vacuum" state
l eo), then we obtain

(39)

i=0

'"/2 '
m

rr8,
1/2

If the operator P acts k times, where 1~k ~s, on the
phase "vacuum" state leo) we obtain

' 1/2

p= y v'8. 18.&«. ,I+Pe.le. &e, l

m=1
(37) From the above it follows that, in general,

(p)'le, &~(p -le, & .
The commutation relation for these operators is

[y,p]= —2~18, &&e, l
. (38)

Here we note that the phase 0 is defined as
8 =eo+ 2n m /(s + I ). From Eq. (33) it follows that, if
Oo is taken to be zero, then

le, & ifk=0
k/2

v'klle„) if 1 ~k ~s
1/2

lek&=

(42)
2

exp[ ik[2m /(s —+ 1)]](4e)' (4e)'—~ exp{iX[2m/(s '+ 1. )]]
(43)

2l

kne, +, (41)

0 if k &s+1,

which means that, in this case, the complete analogy between the operators P and 8 acting on the states le ) and
l
n ),

respectively, is established. Obviously, the phase creation and annihilation operators are not Herrnitian, so they are not
observable (in the same way as 8 and & are not observable operators). Nevertheless, they offer intuitive and calculation
advantages in their use for description of the phase states of the harmonic oscillator [see Eq. (39)].

Once we have introduced the annihilation and creation operators of the phase, we can define new Hermitian (quadra-
ture) operators X'& and $

&
as

exp I iA'[2m/(—s + 1)]}
.(ke) ' ~ + (4e) ' ~ exp [ i8'[2m /(s + I) ] ]

which are not equal to the operators costs and sin@&e [see
Eqs. (19) and (20)], but nevertheless are well-defined Her-
mitian quadrature phase operators analogous to the "po-
sition" (X', ) and "momentum" ( 9, ) operators of the har-
monic oscillator, which are defined as

@+a'
2 2l

(44)

Finally we emphasize the fact that the phase creation and
annihilation operators P and P are defined consistently
only when acting on the finite-dimensional state space %',
which means that the assumption concerning the finite
dimension of the Hilbert space of the harmonic oscillator
plays a central role in the proper definition of the phase
creation and annihilation operators. In the Appendix we
illustrate the ideas of the phase operator Ne and the
phase creation and annihilation operators with the sim-
plest possible finite-dimensional Hilbert space, namely
that of a two-state system (for instance, a two-level atom).

IV. A4 SQUEEZING
IN THE FINITE-DIMENSIONAL STATE SPACE

Let us consider two noncommuting Hermitian opera-
tors A and k acting on the finite-dimensional state space

The variances of these operators, ((b, A ) )
=(A ) —(A ) and ((hS) )=(S ) —(S), obey the
uncertainty relation [1,2,37,38]

&(» )2& &(»)'& —,'I& [A,~] & I'. (45)

In the case where the commutator [ A, S] is an operator
the right-hand side of the uncertainty relation (45) is state
dependent. Uncertainty relations with a state-dependent
right-hand side are well known from earlier studies of the
atomic coherent states (SU(2) coherent states) [38—40].
The states for which the left- and the right-hand sides of
the relation (45) are equal, but where ( [ A, S]) does not
reach its local minimum, are called intelligent states [39].
If a local minimum is reached, then the state is called the
minimum uncertainty state. Following Wodkiewicz and
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or

&(~~)'& &-,'I([J,s]&I .

(46}

To measure the degree of squeezing with respect to the
pair of operators A and 8 we introduce two parameters
S~ and Sz.

&(~& )'& —
—,'I & [&,~] & I

—,'I& ~,S )I

((~»'& —
—,
'

I & [~,~] & I

—,'I& ~,k )I

S

The squeezing condition now takes the simple form

S~ (0 or Sz (0, (49}

and the maximum (100%) squeezing of variance
((5A) ) [((bk) )] corresponds to S&=1 [Sz= —1].
Using the terminology introduced by Glauber and
Lewenstein [41] we can say that the variable A (8) is
subfiuctuant (superfiuctuant) when S„&0 (Sii &0). Ob-
viously, the operator is 100% squeezed (subfiuctuant) in
its eigenstate.

V. COHERENT STATES
IN A FINITE-DIMENSIONAL STATE SPACE

As we said earlier the phase operators are well defined
when acting on the space 4 spanned by (s + 1) state vec-
tors. This is as it should be, for we know of many finite-
dimensional systems for which excitation number and
phase are relevant quantities. The coherent states of the
two-level system are well known to exhibit squeezing in
suitably chosen operator pairs. We elaborate on this
point in the Appendix. Now the task is to define con-
sistently the states of the harmonic oscillator in 4 which
in the limit s —+ ~ will approach the well-defined (physi-
cal) states of an infinite-dimensional (Fock) state space.
This problem is generally not as simple as one expects at
first sight.

For example, let us study the analog of Glauber's
coherent state is a finite-dimensional space %. Such a
state cannot be defined as the eigenstate of the annihila-
tion operator it (6) because the only eigenstate of this
operator in 4 is the vacuum state IO) with the eigenvalue
equal to zero. The alternative possibility is to define the
coherent state I a ) as the result of the action of the dis-
placement operator D(a),

D(a ) =exp(a& —a'I ),
on the vacuum state IO), that is,

Ia&=B(a)I0& .

(50}

(51)

Generally, this is the inost appropriate way [40] to define
generalized coherent states. However, the commutator
of the operators 8 and & (7) is not a c number and there-

Eberly [38] we shall say that the variances (fiuctuations)
of the operators A and 8 are squeezed if

((a2)') &-,'I([J,S])

fore the Baker-Hausdorff formula (the disentangling
theorem for the Weyl-Heisenberg algebra [37]) cannot be
used to evaluate the probability distribution of I

a ) in the
number-state basis of O'. To find the explicit expression
for the coherent state Ia) in the finite-dimensional Hil-
bert space, that is to find the coefficients C„" in the
decomposition

I )=pc„"I &,
n=0

(52)

we expand exp(ad t —a'&) in a formal infinite Taylor
series and evaluate the action of the operators
(a& —a'&)" on the vacuum state IO) having in mind
that (o )"IO) =0 if k &s (in the Appendix we illustrate
the formalism presented above using the state space %'

spanned by only two vectors IO) and
I
1 ) ). We are not

able to express the coefficient obtained by this procedure
in a closed analytical form. Nevertheless, it can be
proved at least numerically (see below) that

n

lim C„"=exp(—IaI /2)s- " V'nl ' (53)

Ig') =exp[/(& ) —g'& ]I0), (54)

or any other generalized coherent state [40] in 4, is stud-
ied. Pegg and Barnett [18,19] overcome the problem of
the precise definition of states of the harmonic oscillator
in 4 by assuming that s can always be taken large
enough, such that

(55)

for any arbitrarily small e, where C„are the coefficients
evaluated in the infinite-dimensional state space, that is,
the normalization condition is strictly fulfilled only in the
limit s ~ ao.

Nevertheless, we would like to emphasize that to make
all the calculations self-consistent it is better to utilize the
properly norinalized states in 4 (that is g'„=OIC„"I = 1).
To do so we use the definition (51) from which it is seen
that the coherent state Ia) is normalized to unity in %.
In order to evaluate the coefficients C„" in Eq. (52) we
turn our attention to the fact that the operators 8 and 8

which means that as s increases, the state Ia) given by
Eq. (51) approaches the ordinary coherent state. We
should note here that for finite s the mean excitation
number (8) is not equal to IaI (see the Appendix). Ob-
viously, in the limit s~ ~ we find that (8)= IaI . The
same problem as with the coherent state arises when the
analog of the squeezed vacuum Ig) in '0, that is, the state
given by the relation [42]
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given by Eq. (6) can be expressed in 4 as (s + 1)X (s +1)
matrices:

0.5

0.4- s=10

0.5

0.4- s=15

0
0 0

0
0

0.3—

0.2-

0.3-

0.2-

0
0

0
v'I

0
0

0

0

0
0

0
0

(56)

0.1-

0 0
0 10 20 30 40

0.5

01-
0.0

0 10 20 30 40

0.5

s=25

8 ~ ~ ~ ~ ~ ~

0
0

&s —1 0
o &s

0
0

0.3-

0 2

0.1-

0.3-

0.2-

0.1-

and state vectors can be described as (s + 1)-dimensional
column vectors in %. The displacement operator 8(a}
given by Eq. (50) can be rewritten as

0.0 I I I

10 20 30 40
0.0

0.5

I I I

0 10 20 30 40

18(a)=exp(1')= g (f')",
a=0 n! (57) 0.4- s=30 0.4-

0
a&1

00
—a'&20 0

where the operator f'is an (s+1)X(s+1)matrix

—a'&1 ~ ~ ~

0.3-
Q„

0.1-

0.0 l l I

0 10 20 30 40

0.3-

0.2-

0.1—

0.0
0 10 20 30 40

0
0

a&s —1

0
0

a&s

—a "&s
0

(5&)

Using the fact that such tridiagonal matrices can easily
be multiplied numerically, we can evaluate the
coefficients C„* in Eq. (52) straightforwardly and then find
all quantities of interest in the (s+ I)-dimensional Hil-
bert space. Of course, all these quantities depend
parametrically on the dimension of the state space. If we
are describing a real finite-dimensional system (for in-
stance, a spin system of the type discussed in the Appen-
dix), this dependence is as it should be. Nevertheless,
these results can also be applied to harmonic oscillators
(and light fields) if suitable care is taken ensuring that the
limiting process s~~ is performed appropriately. We
remind the reader that our states are properly normalized
throughout.

In Fig. 2 we plot the "photon-number distribution'*
P„"defined as

FIG. 2. Photon-number distribution P„"of the coherent state
as given by Eq. {59)for a=4 {a is supposed to be real) and for
various values of s. We see that for s ))a = 16, P„'"' very rapid-

ly converges to the Poissonian distribution {s—+ 00 ).

large s limit, that is, if s » lal . In Fig. 3 we plot the
mean photon number n

n= y nlc"l' (61)

15—

as a function of s for the state given by Eq. (52). From
this figure it is clearly seen that in the limit of s » lal
the mean photon number is equal to lal, as is expected
for the Glauber coherent state.

P"=l(n l8(a}lO&l'=lC" l' (59) iO-

for the coherent state la) with a=4 in (s+1)-
dimensional state space for various values of s. We see
that for s ~ lal, P„"significantly deviates from the Pois-
sonian distribution

f2n
P„=exp( —lal ) nt (60)

corresponding to the ordinary coherent state. The shape
of the distribution (59) becomes more Poissonian in the

0 i0 80 30 40 50

Flay. 3. Mean photon number n [see Eq. (61)]of the coherent
state with a=4 is plotted as a function of s. If s &&a, then
n =a, as one would expect for the ordinary coherent state.
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VI. PHASE PROPERTIES
OF COHERENT STATES

A. Phase probability distribution

P(8.)=[(8.[a) [',
with the normalization condition

S

g P(8 )=1 .
m=0

For the coherent state (52) we obtain
2

S

P(8. )= y e '-"C„')
s+1

(62)

(63)

(64)

This expression is plotted in Fig. 4 for a ~4 and s =100,
that is, s is large enough so that the results obtained are
physical. We have chosen the value of 80 such that the
variance of the phase operator ((bks} ) is minimized
(see discussion below}. In particular, for real a we have
chosen Ho= —m. From Fig. 4 it is seen that for a=0, i.e.,
for the vacuum state, the phase probability distribution is
uniform and equal to 1/(s+1) (i.e., is inversely propor-
tional to the density of phase states). In the continuum
limit the normalization condition (64) for the phase-
probability limit should be rewritten in the form [18,19]

Op+2~I P(8)d8=1, (65)
2m' p

and the phase-probability distribution of the vacuum
state is again uniform, but equal to 1/2m. The mean
value of the phase in the vacuum state is

(O(a, ~O) =8,+~s+1 (66)

and its variance ((bk&) ) = (4 s) —(4s) is

We start our discussion on the phase properties of
coherent states by exploring the phase-probability distri-
bution of these states. The phase-probability distribution
P(8 ) is defined as [18,19]

We see from Eq. (67) that the variance of the phase
operator in the vacuum state does not depend on the par-
ticular value of 00 and in the limit s ~~ is equal to m. /3.
Generally this is the value of the variance for any state of
random phase [18,19], that is, for any number state. On
the other hand, in the limit s —+ ~ the mean value of the
phase operator is equal to 80+m, that is, it depends on
the "reference" phase Oo. This is also the case in classical
optics, where the mean value of the phase P can be evalu-
ated from the formula

Hp+ 2m.

0= I,
with the phase distribution P(P) = 1/2n.

The phase-probability distribution (64} for the nonzero
value of a of the coherent state

~
a ) is localized around

the phase of the coherent amplitude a. In our case a is
supposed to be real and therefore P(8 ) is localized
around zero phase. This is clearly seen from Fig. 4,
where we have chosen 80= —m.. As seen from this figure,
the variance ((64&) ) depends on the intensity of the
coherent field. Generally, the higher the intensity, the
smaller the variance. It can be shown [9] that for high
enough intensities n of the coherent field the variance of
the phase is approximately equal to 1/4n It sh.ould be
emphasized here that the value of the variance of the
phase depends not only on the intensity of the coherent
field but also on the actual value of the reference phase
8o. If 8o=g —m, where P is the phase of the amplitude of
the coherent field, that is, a= ~a~exp(iP), the variance of
the phase operator is minimized. On the other hand, if
8o=((), the variance reaches its maximal value. This can
be clearly seen in Fig. 5 where the variance of the phase
operator is plotted as a function of Oo for various values
of a (the phase p is supposed to be zero). We return later

12

a=1

((h4 )') = [-,'s'+-,'s] .
(s+1)2

(67)
e-

0.20
a=4 i

0.15-

0.10—
Q„

a=4

0.00

e

FIG. 4. Phase-probability distribution of the coherent field.
The amplitude of the coherent field is supposed to be real;
Op

—m and s = l00. It is clearly seen that the higher the am-

plitude of the coherent field the smaller is the variance of the
phase.

FIG. 5. Variance of the phase operator is plotted as a func-
tion of 80 for various values of a (the phase P is supposed to be
zero). The variance reaches its maximum for 80=P (s = 100).
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to the problem of the reference phase 00, but now we

proceed to a discussion of the amplitude and phase
squeezing.

B. Amplitude and phase squeezing

To find the degree of squeezing in 8' and 40 we have to
evaluate not only the variances of these operators but
also the mean value of their commutator (see Sec. IV).
As follows from Eq. (17), this commutator is an operator
rather than a c number, which means that the mean value
of [8', tp&] is state dependent. Moreover, the mean value
([8',4s]) does not depend only on the intensity of the
coherent field but also on the value of the reference phase
8o. In Fig. 6 we have plotted the mean value

~ ( [8',@e]) ~

as a function of 00 for various values of o.. From this
Ggure it is clearly seen that for u&0 and 0o=+a the
mean value ~( [8',4s]) ~

approaches unity as was antici-
pated by Dirac [4]. Nevertheless, in the vicinity of 8o this
mean value deviates signi6cantly from unity. It should be
stressed here that ~([8', tp&] ) ~

is equal to unity for the
same value for which the variance of the phase operator
is minimized. Our numerical results are in agreement
with the observation of Pe g and Barnett [18,19],who in-
vestigated the value of ([,4&] ) in the large a limit and
showed that [for a= ~a~exp(iP)]

lim ([8',ks]) =i 2ni5(—$ 8o) .—
l~l

Once we know the value of the variance of the phase
operator as well as the mean value of the commutator we
are ready to evaluate the parameter Sz, corresponding to
the degree of squeezing in 4&. Analogously we can evalu-

ate the parameter Sz, which measures the degree of
squeezing in k The parameters Sz and S@ [see Eqs. (47)
and (48)] are plotted in Figs. 7(a) and 7(b) as a function of
a for 00= —m. First we turn our attention to the param-

eter SN [Fig. 7(a)], which provides us with information
about the degree of squeezing in k In other words, this
parameter can serve as a measure of the amplitude
squeezing. From Fig. 7(a) it follows that in the limit
a~0 the parameter S& tends to —1, which means that
the vacuum state is 100% squeezed with respect to the
operator 8' (see also the discussion in the paper by Vac-
caro and Pegg [21]). This is a consequence of the fact
that the vacuum state is the eigenstate of the number
operator. As a increases the degree of squeezing in 8' de-

creases and for a larger than unity the parameter Sz is

1.0

0.5-

0.0-

-0.5-

—1.0

1.0

0.5—

0.0—

-05-

—1.0

20

15—

10-

a=1
20

15-

10-

1.00

0.75-

0.50-
E

E
c 0.85-

20

15—
A =3

20
0.00—

10— 10—

FIG. 6. Mean value ~([A', 4&]) ~
as a function of 80 for vari-

ous values of a (s = 100).

FIG. 7. Parameters (a) SN and (b) S+ are plotted vs the
coherent amplitude a. The reference phase 80= —

m and
s =100. We see that for small enough values of a the operator
8' is subfluctuant in the coherent field (that is, one can observe
amplitude squeezing), while for a & 1 this operator is
super6uctuant. Simultaneously, the photon statistics is Pois-
sonian for any value of a. In (c) the product of the variances of
the phase and the number operators as well as the mean value of
the commutator of these operators are plotted vs the intensity of
the coherent field. It is clear that the coherent field is not the
MUS for small values of a.
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greater than zero, which means that there is no ampli-
tude squeezing for these values of u. It should be em-
phasized here that the photon-number distribution of the
coherent field under consideration is Poissonian for any
value of a for large enough values of s. In other words,
the Mandel g parameter [43]

&(~&)')—&N)
(68)

lar, for a = 1) the variation of the phase 80 can lead to the
appearance of squeezing in k

C. Number-phase uncertainty relation

We conclude our discussion on the phase properties of
coherent fields with some remarks on the number-phase
uncertainty relation

&(&&)')&(&4,)' —,
'

~ & [1V',C,]) ~
(69)

is equal to zero for any value of a if s is large enough.
Nevertheless, the number operator can be either
subfluctuant or superfluctuant in this state, depending
also on the value of the reference phase 80 (see below).
From this we can conclude that one should carefully dis-
tinguish between the notion of sub-Poissonian statistics
(Q &0) and that of amplitude squeezing (Sz &0). These
two concepts are not identical.

From the parameter S+ we obtain information about
the degree of squeezing in 4&. In particular, from Fig.
7(b) it follows that for small values of a the operator f&s is
superfluctuant in the coherent field, but as a increases
this operator becomes subfluctuant. In the limit of high
intensities of coherent fields the parameter S+ leads to
—1, which means that these states describe a precisely
defined phase as discussed in Ref. [9].

As we said earlier the degree of squeezing in 8' and 4&
depends not only on the intensity of the coherent field but
also on the particular value of 00. To illustrate this effect
we plot in Fig. 8 the parameters Sz and S+ as functions
of 80 for various values of a. We see that in the vicinity
of 8o=p these parameters are very sensitive to the value

of the reference phase 80. This is mainly due to the fact
that the mean value of the commutator ~& [8',4s]) ~

around 80=/ attains very large values (see Fig. 6). It is

interesting to note that for small values of a (in particu-

for the coherent state. It is well known that coherent
states are minimum uncertainty states with respect to the
position and the momentum operators X', and 0, given
by Eq. (44). This is true irrespective of the value of the
intensity of the coherent field. The question is whether
coherent states are minimum uncertainty states with
respect to operators 8' and 48. In Fig. 7(c) we have plot-
ted both the left- and the right-hand sides of the uncer-
tainty relation (69) as a function of a for 8O= nF—rom. .
this figure it follows that the coherent states under con-
sideration are, strictly speaking, neither minimum uncer-
tainty states nor intelligent states for any value of a ex-
cept a =0, that is, only the vacuum state is the MUS with
respect to 1V' and 4's (this is in agreement with the discus-
sion by Vaccaro and Pegg in Ref. [21]). For small values
of a coherent states are far from being the MUS, but with
increasing intensity they approach the MUS. In the limit
of large intensities one can consider the coherent states to
be the MUS with respect to A' and ks (see also Ref. [9]).
Similar results have been obtained also by Carruthers and
Nieto [14],who have discussed the above problem in the
framework of the SG formalism. The main different be-
tween the PB approach and the SG approach consists in

dealing with the vacuum state. In particular, from the
SG formalism it does not follow that in the limit a~0
the coherent state under consideration becomes the MUS
with respect to operators 1V' and 4s.

VII. CONCLUSIONS

0—

a=4

0— 0—

FIG. 8. Parameters Sz and S+ as functions of 00 for various
values of a.

In this paper we have investigated in detail the phase
properties of coherent states in a finite-dimensional Hil-
bert space. We have utilized the Pegg-Barnett formalism
to define the phase operator. Because the phase operator
is defined only in the finite-dimensional Hilbert space of a
harmonic oscillator we have defined normalized coherent
states using the analog of the Glauber displacement
operator with the modified creation and annihilation
operators given by Eq. (6). Our results can be applied for
investigations of phase properties of physical systems
having a finite number of states (such as a two-level atom,
which is discussed in detail in the Appendix). We have
shown that our results are valid also in the limit of large
s. Namely, we have found that if the intensity of the
coherent state is much smaller than the dimension of the
state space, then the ordinary coherent state and the
coherent state defined in the finite-dimensional state
space have equal statistical and phase properties. We
have introduced consistently the concept of amplitude
and phase squeezing. We have shown that the effect of
amplitude squeezing is not identical with sub-Poissonian
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photon statistics. In particular, we have shown that the
weakly excited coherent state, which obviously has Pois-
sonian photon statistics, can exhibit amplitude squeezing.
We have analyzed in detail the dependence of the phase
fluctuations and the amplitude squeezing on the value of
the reference phase 8p. We have shown that coherent
states of weakly excited light fields are not minimum un-
certainty states with respect to the phase and the number
operators. Obviously, these states are minimum uncer-
tainty states with respect to the quadrature operators.

&=10&&ll, e'=0,
8=I 1 && ll =8'",
kg=(8p+m/2) ——(e I0)( ll+e I 1)(ol),

2
2

k g=(8p+m/2) +

~(8p+~/2}(e
'

'10&& ll+e' 'll &&01 &,

[g,4g]= —(e 'IO) ( 1 I

—e 'l l ) (Ol),
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APPENDIX: SIMPLE EXAMPLE—
e= [lo), I1)]

It is instructive to see how the ideas advanced in this
paper can be illustrated with the simplest finite-
dimensional Hilbert space, namely that of a two-state sys-
tem. Let us suppose that the state space 4 is spanned
just by two number-state vectors IO) and I 1 ). Alterna-
tively, 4 can be spanned by phase states I8p) and I8, ),
which are related to IO) and I 1 ) by [see Eq. (11)]

cosk =cos8 (e 'IO) ( —e 'l l & & 0
I ),

sinkg=sin8o(e 'I0) ( 1 I+e 'l l & &ol ),
cos 4g=cos 8p

sin 4&=sin Op,

[coskg, A']=cos8o(e 'IO)( ll —e 'l1 &&ol),

[sinkg, k']=sin8o(e 'IO) ( 1
I

—e 'l l ) (Ol ),
8p+ 8,

(l0) (0l- 1 ) & ll)

8p — 8, ;g,+ ' '(e '
'Io&& ll —.'

'Il&&ol),
2

0 '=&8o8i

(A3a)

I8, &
= [Io&+.'"ll &],

2

I8, ) = '
[l0& —.'"ll&]

v'2

[l8,&+ I8, &],
2

—i go

I» = — [I8,&
—l8, &] .

(A 1)

(A2)

[P,P ]=n(e 'IO)(1+e 'll)(OI),
where Hi=Op+~. These operators can be rewritten in
terms of the energy (cr3) and electric-dipole (O„,o )

operators, which can be expressed using the "spin-flip"
operators 0 and 0+..

~ =Io&&ll, ~, =ll&&ol,

~,=-,'(ll && ll —lo&&ol}=-,'[~„~ ] .
Namely, we can define the electric dipole operators o„
and 0 as

The states IO) and I 1) can be associated with the lower
and upper states of a two-level atom. In this case the
phase states I8p& and I8, ) describe coherent superposi-
tions of the lower and upper states of the two-level atom.
Recently it has been shown that these superposition
states play a very important role in the dynamics of the
two-level atom interacting with a coherent field [44] de-
scribed in the framework of the Jaynes-Cummings model
[45]. Physically the states

I 8p, ) corresponds to the states
with well defined values of the atomic-dipole amplitude
which are either in phase or 180' out of phase with the
applied field. As shown in [44], if the atom is initially
prepared in the superposition state I8p) or I8, ) and the
cavity field is prepared in the coherent state, then in spite
of complex quantum dynamics of the atom-field system
governed by the Jaynes-Cummings Hamiltonian [45], the
field as well as the atom remain in a pure state at t )0.

The operators of interest for the two-level system take,
in the number-state basis I I 0), I 1 ) ], the following form:

i 80 —i8o
e o++e 0

X

and then rewrite Eq. (A3a) as

8=0. , & =0,
8'=o+cr =F3+1/2=8'",

kg= (8o+n. /2) n.o—
[8',kg] = imo~, —

cos@0=2 cos8po.

sin@&=2 sinOpcr

i8o —i8o
e 'o. + —e '0-

2l

[cosko, A'] = 2i cos8oo ~—,
[sinkg, A'] = 2i sin8ocr-
$= —(+8o+Q8, }o3 i(+8p +—8,}er-
[g,P]=2m.o„,

(A3b)
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which allows us to describe the phase properties of a
two-level atom in terms of the dipole operators.

1. Coherent state in 4

D (a)&D(a) =&—e'~sinlal [sinlal(e 'i'&+e'~d )

+(2k —l)coslal ],
(a)88(a)=sin lal+[sinlalcoslal(e '~d+e'~8 )

+A'cos2lal],

(A4)

(A5)

where a= lale'~. The coherent state la) in the number-

state basis reads

la & =coslall0&+e'4'sinlall1 & .

If we adopt the definition of the coherent state given in
Sec. V, then we have to define the state la ) generated
from the vacuum l0) by the action of the unitary dis-

placement operator D(a). This operator transforms 8
and 8' in 4 as follows:

and

SN (A14)

From the above it follows that 4& is superfluctuant in the
coherent state (A12) (i.e., S~ )0). On the other hand, the
operator 8 is subfluctuant in (A12) (S~ (0) for any value

of lal. Moreover, if sin2lal~0 (i.e., lal =en or
n.n + a./2), then S~~ —1, while S@~~. Simultaneous-

ly the uncertainty relation reaches its minimum, which
means that the coherent state under consideration is the
minimum uncertainty state. From (A12) we find that the
minimum uncertainty states under consideration are

respect to the operators 4e and k The squeezing param-
eters given by Eqs. (47) and (48) describing the degree of
squeezing of the variances of the operators ke and A' in

the state (A12) are, respectively,

m. —lsin2lal l

This coherent state can in fact be identified with the
SU(2) coherent state for the two-level atomic system
[38—40]. Obviously it is not an eigenstate of the annihila-
tion operator 8. Coherent states (A6) are not orthogonal: and

lim Ia&=+10}
lal ~n

(A15)

(Pla) =coslalcoslPl+e e sinlalsinlPl,

and they are overcomplete, that is,

dpa a a =l,

(A7)

(A8)

with properly chosen measured dp(a) (see, for instance,
Ref. [38]). Finally we note that the mean value of the ex-

citation operator 8' in the state (A6) is

lim la)=+ie 'll) .
lal ~~n+~t2

(A16)

Obviously, these are the number states, in which the
operator 8' is ultimately subfluctuant (100%o squeezed).

We emphasize here that, in spite of the fact that the
mean value of the operator 4& as well as its variance are
constant when 00 —P=a. /2 or 3n/2, that is [see also Eqs.
(66) and (67) with s =1]

(4e) =00+~/2, ((Eke) )=n/4, . (A17)

2. 4e—8 squeeziag

2

((bke) ) = [1—sin Zlalcos (00—P)],
4

((bJV') ) =
—,'sin 2lal,

(A9)

(A10)

The variances of the phase and the number operator
and the mean value of their commutator in the coherent
state (A6) are

the degree of squeezing S@ is sensitive to the value of
l
a l,

which means that the degree of fluctuations in 46) does
not depend only on the value of the variance ( (b ke) ) .

b. Squeezing in 4z

If lsin2lall=l (i.e., lal=nm+m/4 or no+3m/4),
then the coherent state (A6) is the intelligent state with
respect to the operators 4e and k The variances of
these operators are

( [8',4e] ) =—sin(0O —P)sin2la l
.

2l
(A 1 1)

2

((Ate) ) = sin (00—P), ((bA') ) =
—,', (A18)

a. Squeezing in 8'

Let suppose 0O
—P =mn +m. /2. In this case the

coherent state (A6) takes the form

la & =coslall 0&+ sinlale (A12)

It is easy to check that this is the intelligent state with

In what follows we will study the coherent states (A6) in

which the operators 8' and 4e are subfluctuant, that is, in

which squeezing of the variances of these operators can
be observed.

m sin (00—P) —lsin(0o —P)l

l sin(00 —P) l

1 —m.
l sin(00 —P) l

m.
l
sin(0o —P) l

(A19)

(A20)

From above it follows that the coherent state under con-
sideration becomes the minimum uncertainty state when

00 P=nm. In this case—Sz, = —1, while S~~ ~. More-
over, it can be found that

and the corresponding squeezing parameters take the
form
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+[8,)

I
&= +I, &

if Ial =~/4, 80—/=0
if la[=31T/4, 8O

if I a I

=~/4,
if la[=3m/4, 8O

—@=0 .

(A21)

Scose = cos 8osin (80—P) —
—,
' Icos8osin(80 —P) I

—,
' Icos80sin(80 —P) I

—,
' —

—,
' Icos8osin(80 —P) I

—,
'

I cos80sin(8O —P) I

(A28)

(A29)

%e can conclude that the phase and number states are
the minimum uncertainty states with respect to operators
4s and 8; which exhibit 100% squeezing in the phase
and number states, respectively (see also Sec. VI and Ref.
[21]}.

3. cosine —8' squeezing

The mean values of the operator cos4& and its variance
((b, costs) ) in the state Ia) (A6) are

( costs) =cos80sin2 I
a Icos(80 —P), (A22)

((6 cosk&) ) =cos 80[1—sin 2[alcos (80—P}], (A23)

while the mean value of the commutator [costs, iV] in
this state is

( [costs, A ])= i cos—80sin2[alsin(80 —P) . (A24)

The mean value of the variance of the operator 8' in the
state under consideration is given by Eq. (A10).

a. Squeezingin 8
If 8O

—P = (2n + 1 )n /2, then the coherent state I a )

fa) =coslaff 0)+ie 'sin[a[f1) (A25)

cos 8c—
—,
' Icos80sin2[al I

—,
' Icos80sin2[a I I

(A26)

is the intelligent state with respect to the operators cos4&
and k In this case the squeezing parameters S„,e, and
SN are

From above it follows that if 80 p—=nm and 8o&n/2, .
then S+=—1, while SN~OO and the corresponding
coherent state becomes the minimum uncertainty state.
Moreover, it can be found that

r

Ia)=.

+ [8c& if Ial =~/4, 80—/=0
—[80) if [a[=3m./4, 8o P=—n

+[8,& if la[=~/4, 8.—y=~
if la[=3~/4, 80—&=0,

(A30}

i.e., the phase and number states are the minimum uncer-
tainty states with respect to operators costs and 8,
which exhibit 100% squeezing in the phase and number
states, respectively.

Finally we mention that both operators 4& and cos4&
(as well as sin@&) can be used for measuring the phase of
a state of a harmonic oscillator, but for particular values
of a and 8 the variances of these operators can exhibit
different degree of squeezing. In the phase states [8 )
they exhibit 100% squeezing.

4. X,-$, squeezing

Using the definition of the quadrature operators given
by Eq. (44) we find for the mean values of variances
((W, ) ) and ((AP, ) ) and for the mean value of the
commutator ([X'„$',]) in the state Ia) (A6) the follow-
ing expressions:

((W, ) ) =
—,'(1 —sin 2[alcos P), (A31)

((hf) ) =
—,'(1 —sin 2[a[sin P), (A32)

and

—,'sin 2faf —
—,
' Icos8osin2[al I

SN
—,
' Icos80sin2[a I I

(A27) ( [X., $'.
) &

=—'cos2[ a
I

. (A33)

From these expressions it follows that if sin2[al ~0 (i.e.,
if la[=en/2), while 80%(2n+1)m/2, then S„,@—+DO

and S~~—1, that is, the operator 8' is subfluctuant
(with 100% degree of squeezing) in the number state [0)
(Ial =~n) and in the number state [1) [Ial
=(2n + 1 }~/2]. These number states are simultaneously
minimum uncertainty states with respect to the pair of
operators costs and k

From here it follows that the coherent state
I
a ) is the in-

telligent state with respect to the operators X, and $, if
P=nm or (n+1/2)m.

a. Squeezing in 2,
Let P=nm In this .case the squeezing parameters Sx

andS& are
a

b. Squeezing in cosWq
and

«s'2[a[ —Icos2[aflSx =
Icos2[a II

(A34)

Let us suppose I
a

I
+(2n + 1)~/4, —while 8O

—P
%(2n+1}n/2 In this .case. the squeezing parameters
S„,@ and SN describing the squeezing in the state (A6)
are

1 —
I cos2[a

I ISy =
I cos21a I I

(A35)

which means that the operator X', ( $, ) is subfluctuant
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(superfluctuant) in the state

la& =coslallo&+»nial ll & .
[X',, $', ]= '

. '[Ie, &&e, l

—Ie, )&e,l]. (A44)

In the limit Ial ~(m/2. +no)/2 . one can observe loo%%uo

squeezing in X, quadrature, that is,

The coherent state Ia) (A6) can also be rewritten in the
phase-state basis:

In this case the coherent state (A36) takes the form

(lo)+I»)
2

(A37)

(A38)

I &=a.le. &+@,le, &,

where

i(P—0 )
coslal+e sinla

(A45)

(A46)

and plays the role of the minimum uncertainty state with
respect to the quadrature operators X', and $, . More-
over, this state is equal to the phase state leo) or

I 8, ) de-

pending on the choice of the phase 80. This is in agree-
ment with the observation by Schleich and co-workers
[24,5], who related the squeezed vacuum exhibiting 100%
squeezing (i.e., a line state, which is a quadrature eigen-
state) to states with precisely defined phase.

y 8, +y'eo
( [Wp(t)]') = sin'2lal,

2
(A47)

( [5$'~(t) ] = Qe, -+8,
2

Now one can straightforwardly evaluate the mean values
of the variances of the quadrature operators X& and $'&

as well as the mean value of their commutator:

b. Squeezing in $,

Analogously, if P = (2n + 1 )n /2, then

S~ = 1 —lcos2lall

and

(A39)

X[1—sin 2 alsin (80—P)],
6I, —8O

([+~,~~])=t '
sin2lalcos(80 —P) .

a. Squeezing in Xe

(A48)

(A49)

Sy = cos'2lal —lcos2lal I (A40)

which means that in this case the operator $, is
subfluctuant and loo%%uo squeezing in this quadrature can
be observed in the limit lal ~(n /2+no )/2. In this case
the coherent state (A6) takes the form

Let us suppose 80—/=0. In this case the coherent
state Ia) (A6) is the intelligent state with respect to the
pair of operators X'& and 9&, i.e.,

( [~&,(t)]') ([&t,(t)]')
=

—,
' ( [X'&, $'& ] ) I

=
—,', (8,—eo) sin 2 la I, (A50)

la&= - (Io&+ill &)
2

(A41)

5. fe fesqueez-in'g

and plays the role of the minimum uncertainty state with
respect to the quadrature operators X', and $, .

Here we turn our attention to the fact that the
coherent states (A38) [and analogously (A41}] for which
loo%%uo squeezing in X', [$, ] can be observed are equal to
the phase states leo &) with eo=nm [80=(n + 1)m].

and the squeezing parameter Sz and Sz are

(v 8,+v'eo) sin 2lal —(8,—80) Isin2lal I

(8,—80) lsin2la I I

(Qe, —Qe, }'—(e,—e, ) Isin2lal I

Sy =
(8, —80)lsin2lal I

From the above it follows that

(A51)

(A52)

In this subsection we turn our attention to the squeez-
ing properties of the phase quadrature operators 5& and
$'& given by Eqs. (42) and (43). These operators in the
phase-state basis in 4 can be written as

lim Sz = —1, lim Sz =00,
lal~n. nl2 (t' lal ~en/2

(A53)

which means that in the number state IO) the quadrature
operator X'& is 100% squeezed, while the operator $

&
is

superfluctuant.

8,+ 80
[Ie.&&e, I+le &«.I],

' [le,&(8, I

—le, & &e.l],

and their commutator reads

(A42}

(A43)

b Squeezing in $ e.

Let us suppose Ial=(nn+p/2)/2. In this case we

find for the squeezing parameters S~ and S~ the follow-

ing expressions:
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Sy =

(Q8, +Q8, )'—(8,—8, ) icos(8, —{(')
i

(8, 8o) icos(8() Q—) i

(+8,—+8o) cos (8o—P}—(8,—8o}icos(8o—Q)i

( 8,—8o) icos(8()—Q ) i

from which it follows that in the limit 8o P—~n /2+Pn the quadrature operator $
&

is 100% squeezed. The coherent

state in which the quadrature operator i&i's 100% squeezed is equal to the number state
i
1 ).
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