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Quantum theory of nonlinear loop mirrors
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We formulate a continuous-mode quantum theory of nonlinear loop mirrors. We exploit the "conser-
vation of squeezing" property at a beam splitter to provide a particularly simple description of the out-
put noise spectra from such devices. We also derive a general condition for which one may obtain a
squeezed vacuum from one of the output ports of the loop mirror.
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I. INTRODUCTION

Four-wave-mixing processes provide effective mecha-
nisms for the production of broadband squeezed light.
The squeezing process occurs via the self-phase modula-
tion associated with the Kerr nonlinearity, and it offers
the important advantages of automatic phase matching
and occurrence in isotropic materials, the Kerr effect be-
ing derived from a third-order nonlinear susceptibility.
Since the original proposals of four-wave mixing [1,2],
there have been detailed studies of the squeezing pro-
duced in propagation along optical fibers [3]. The earlier
calculations of self-phase modulation used theories based
on the discrete-mode quantization of the electromagnetic
field, which was assumed to be confined within an optical
cavity. Recently, we have developed a continuous-mode
quantization scheme for the electromagnetic field [4],
which is particularly appropriate for calculations of pulse
propagation in long optical fibers where there is in reality
no confining cavity. These methods have been used for
calculations of the squeezing spectra produced by self-
phase modulation in optical fibers [5]. We have shown
that the Kerr-effect response time of the fiber material,
although only of the order of femtoseconds for silica, is
an important parameter in determining the dynamics of
the squeezing process.

The self-phase modulation properties of optical fibers
are put to effective practical use in the nonlinear Sagnac
interferometer, or nonlinear fiber loop mirror, which is a
particularly promising device for all-optical signal pro-
cessing [6—8]. Shirasaki and Haus [9] pointed out that
the device should also be useful for the observation of
squeezed light produced by self-phase modulation, since
in contrast to a simple length of optical fiber, it allows a
low-intensity squeezed component of the light to be spa-
tially separated from the surviving high-intensity pump.
Recent experiments have demonstrated the significance
of the nonlinear Sagnac interferometer for the production
and detection of squeezed light [10,11].

We aim in the present paper to apply our previous cal-
culations for self-phase modulation in optical fibers to the
Sagnac interferometer. The previous theory is summa-
rized and extended in Sec. II. We show that the squeez-
ing spectrum of a square pulse can be expressed in analyt-
ic form in terms of two angles that describe the Kerr

phase shift according to classical theory and the phase
shift associated with the quantum-mechanical vacuum.
The vacuum phase shift is ordinarily about five orders of
magnitude smaller than the classical phase shift, and we
provide simple expansions of the squeezing properties in
powers of the vacuum phase shift. Similar results for the
nonlinear Sagnac interferometer are presented in Sec. III,
particularly for a single input beam. Results for arbitrary
input pulses are derived and it is shown that the squeez-
ing spectrum is simply related to that for ordinary fibers.
Simple expansions of the squeezing properties are given
for the case of a square input pulse. %'e also discuss the
use of the "conservation of squeezing" property for a
beam splitter [12] in the interpretation of these results
and for the prediction of new properties of these non-
linear interferometers.

II. SELF-PHASE MODULATION
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where the linear and the Kerr contributions form the
nonlinear refractive index

n =n, + IEI,n2

2no
(2.3)

coo is the central pulse frequency, z is the propagation dis-
tance, and A is the nonlinear effective cross section of the

In this section we review and extend the theory of self-
phase modulation given previously by us [5]. We evalu-
ate the squeezing spectrum for a square pulse, obtaining
both an exact analytic expression and an approximation
valid for propagation in typical optical fibers. The square
pulse is chosen because the nonlinear phase shift is con-
stant across such a pulse and the degree of squeezing ob-
tained is larger [5]. Furthermore, the mathematical ex-
pressions needed to describe the quantum propagation of
a square pulse in a nondispersive nonlinear medium are
easily obtainable in closed form. The theory of self-phase
modulation used previously by us is expressed in terms of
renormalized length and nonlinear parameters given by
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fiber mode. The solution of the propagation equation for
the continuum-mode photon destruction operator is

where the colons denote normal ordering. The quantity
4

defined

b

8(L, t)= exp i—ILL f drg(r)& (0, t —r)&(0, t r—)
0

4 =I(-L/wo (2.8)

X&(O, t), (2.4)

&,„,(t)=Q(t)&;„(t), (2.5)

where Q(t) is the nonlinear propagator that takes the in-
put operator 8;„to the output operator 0,„,. Throughout
the present work we take the simple form

r

1/~0, r & ~0

where g(r} is a normalized function that describes the
temporal response of the fiber material to the Kerr e8'ect,
and t is the time in the frame moving with the group ve-
locity of the medium. The response time ~o in silica is of
the order of 10 ' s (throughout this paper we shall as-
sume a value of 5 fs for the response time) and the exact
form of the response function is not important when the
other time scales in the system are much longer than this.
We shall write (2.4) in the equivalent form

Q(t}=:exp[(e '—1)rP;„(t)8;„(t)]: (2.9)

to a very good approximation.
The above formalism has been used in Ref. [5] to calcu-

late the squeezing spectrum that can be observed by mea-
surements of the quadrature operator

X',„,(t)=d,„,(t)e '&+fthm„,(t)e'~, (2.10)

selected by the phase P of the local oscillator in homo-
dyne detection. The resulting noise spectrum is

is the vacuum phase shift whose physical significance has
been extensively discussed in Ref. [5]. If the expectation
values of the operators in (2.4) show only negligible
changes over the response time scale, then the nonlinear
propagator reduces to

g( )= '() ) (2 6)

Then with the use of the normal-ordering theorem [4],
the nonlinear propagator defined in (2.5) can be written in
the form

to+ T/2 to+ T/2
S(co,g)= —f dt f dt'V(t, t')e'""

(2.11)

Q(t) =:exp (e '—1)

TQ

X f dr& (O, t r)tt(O, t r)
0

(2.7)

where we have written the two-time correlation function

V(t, t') = (~,„f(t)~,„,(t') ) —(~,„,(t) ) (~,„,(t') ) (2.12)

and the explicit expression for an input coherent state
[ [a(t)] & is

V(t, t')=a(t)a(t')expI 2ig+G(4, )[[a(—t)( +(a(t')[ ]][exp[ i@,rag(t' t)—+(a(t')( H—&(@„t t')] —I]—
+a"(t)a(t')exp[G'(4„)(a(t)[ +G(4,)[a(t')) ][exp[(a(t')( H2(@„,t —t')] —1]+cc +5(t . .t') . —(2.13)

The auxiliary functions in this expression, with the adop-
tion of the response function (2.5), are given by

photons received by the detector in the integration time
T according to

G(4 )=(e "—1)ro, N=lal T . (2.16)

H, (4„,s)=(e "—1) (ro —)s()8(ro —[s(),

H, (+„s}=le' "—ll'(r, —lsl)8(r. —lsl),

(2.14)

where 8(t) is the Heaviside unit step function. The vari-
ance (2.13) vanishes for ~t t'~ &ra, and the—spectrum
(2.11) is accordingly independent of co for frequencies
much smaller than 10' Hz. %e restrict attention to such
frequencies, setting co equal to zero in (2.11).

An important special case in which the integrations in
(2.11) can be performed analytically is provided by the
self-phase modulation of a coherent input state of con-
stant flux ~a(t)

~
. We therefore put

a(t) = ~a~e' (2.15)

where ~a~ is a constant that determines the number N of

(&,„,(t)) =exp(i4 —i4, )~a~, (2.18)

where (2.8) has been used and the classical phase shift 4,
is defined by

Equivalently, one can think in terms of a square pulse of
width T incident on the detector. The expectation value
of (2.4) with the approximations discussed above for the
input coherent state (2.15) is given by

(&,„,(t)) =exp[i@ +(e "—1)ro[a( ](a( . (2.17)

The normal-ordering factor exp( i4 ) 1 —arises —from
the commutation properties of the field operators, and it
reduces to —i @ if the operators are treated like classical
amplitudes. In this case (2.17) reduces to
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(2.19)

The derivations that follow use the correct quantum-
mechanical expectation values, including (2.17), but the

results are conveniently expressed in terms of the phase
shifts defined in (2.8) and (2.19).

It is straightforward to evaluate the noise spectrum
(2.11) for the coherent state specified by (2.15) and the re-
sult is

S(0,$)= 1+2Re exp 2i(4 —P)+2(e "—1)
exp[(e —1) 4, /4„]—1

(e "+1)
(e "—1)

—2

+2 exp —2(1—cosC&„)
exp [2( 1 —cos4„)4, /4, ]—1

1 —cos4 'e. (2.20)

It is seen that the noise is entirely controlled by the two
phase shifts, and it is important to consider their magni-
tudes in greater detail. For a 1-%beam of 1.05 pm radia-
tion iud =5X10' s ' and with the value of ~0 given
above, it follows from (2.8) and (2.19) that

4.=4X10 'C, . (2.21)

—4,(24, +4„——',4,4„)cos28
—4, (2—54,4„)sin28, (2.22)

The parameters that occur in (2.1) and (2.2) are such that
4, =4.5 for a 1-km length of silica-based fiber. It follows
that 4, can take values much larger than unity for prac-
tical values of the experimental parameters but that 4„is
generally much smaller than unity.

It is instructive to expand the somewhat complicated
expression (2.20) for the noise spectrum in powers of 4„
and the constant and linear terms give

S(0,$)= 1+24,—~44,4,

S(0,$),„=1+24,+24, (1+4,)'i (2.27)

In the same approximation the product of the maximum
and minimum variances in (2.26) has the unit value that
characterizes a minimum uncertainty or ideal squeezed
state. The minimum variance given by the approximate
expression (2.27) can be made arbitrarily small by the
choice of a suSciently large 4, . However, the amount of

I

The terms of higher order in 4, can, of course, affect the
size of the variance but we have shown that the next
terms, of order 4„arenegligible for the propagation dis-
tances considered here. Figure 1 compares the product
of maximum and minimum variances obtained exactly
from (2.20) with the approximation (2.26).

The terms that contain 4 in the above expressions can
be neglected for propagation distances much shorter than
1 km, when (2.25) reduces to

where we have written

0' —$+4 (2.23) 0.0 0.5
s & t i I

1.0 1.5

DISTANCE (km)
2.0 2.5

I I I I I I I I

This expression has the standard form of a squeezed-state
variance and its main properties follow from well-known
procedures [13]. The variance takes extremal values for
phase angles that satisfy

500-

2 —54,4
tan28=

24, +4 ——', 4,4
(2.24) 300-

and the corresponding maximum and minimum variances
are

S(0,$),„=1+24,——434,4„
+24,(1+4,—4@,4„——', N, 4 )'i2, (2.25)
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where the subscripts max and min refer to the + and-
signs in (2.25), respectively. The product of the extremal
variances satisfies

(2.26)

FIG. 1. Product of the minimum and maximum variances as
a function of classical phase shift 4, and propagation distance.
The solid line is the exact expression and the dashed curve is ob-
tained by retaining only terms up to first order in the vacuum

phase shift @ . In this and subsequent figures, 4, is measured
in radians.
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squeezing that can be obtained in practice is limited by
the growth of the terms in 4„asthe propagation distance
is increased. For classical phase shifts of around n the
4, term begins to dominate and the propagated quantum
state begins to deviate significantly from a minimum un-
certainty state. For the numerical values of the various
parameters assumed earlier in the section, a classical 2m.

phase shift occurs at a propagation distance of approxi-
mately 1.3 km. The variance product is approximately
equal to 15 after this distance and the minimum uncer-
tainty character of the light is well and truly lost. These
effects are shown in more detail in Figs. 2 and 3 where
the maximum and minimum variances are plotted as
functions of the classical phase shift and propagation dis-
tance from the exact expression (2.20), with the 4„=0
limits from (2.27) shown by the dashed curves. It is im-
portant to remember that the curves given as functions of
the classical phase shift are universal curves for a given
fiber response time. The contribution to the maximum
variance from the vacuum phase shift is small, as can be
seen in Fig. 2, and the approximation of setting @„equal
to zero is valid in this case. For the minimum variance,
however, the inclusion of the vacuum phase shift has a
significant effect. It is seen, in Fig. 3, that the terms in 4„
become important at about a classical phase shift of n
and the minimum variance begins to increase for increas-
ing classical phase shift. However, substantial degrees of
squeezing still survive for classical phase shifts up to
about 3m (propagation distances of about 2 km for the
above parameters). Qualitatively similar behavior of the
variance has been calculated and illustrated by Tanas,
Miranowicz, and Kielich [14). Figure 4 shows the ways
in which the detection phase angles for maximum and
minimum variances depend on the propagation distance.
It is important to note that the photon number variance
remains Poissonian throughout the propagation. The de-
gradation of the squeezing for higher classical phase
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FIG. 3. Minimum variance as a function of classical phase
shift and propagation distance. The solid curve is the exact ex-
pression and the dashed curve is obtained by setting the vacuum
phase shift to zero.

shifts is associated with the production of crescent-
shaped quasiprobability distributions in single-inode
theories [14-16]. Of course, the nonlinear coefficient
considered here is not sufficient to take us into the regime
where we might observe the production of superpositions
of coherent states [17]. However, the excess noise for
classical phase shifts of a few n, shown in Fig. 3, may be
partly responsible for the excess noise observed in recent
quantum soliton experiments [10].

The solution for self-phase modulation presented above
is derived from a noncanonical theory. The noncanonical
nature of the above theory arises because we have includ-
ed a finite (nonzero), albeit extremely rapid, response
time. This leads to nonlinear absorption, which intro-

D I STA N C E (k m)

600
0.0 0.5 1.0 1.5 2.0 2.5 DISTANCE (km)

0.0 0.5 1.0 1.5 2.0 2.5
I I ~ I I I ~ I i I ~ I I I I ~ I I I I I I I ~ I

~I/

500-

400-

300-

200-

100-

0.8—

0.6—

Q 04—

0.2—

Q Q~0

max

min

0
0

~ I
I

I ~ I ~
I

I l I ~
I

~ I I I
I

~ I ~ ~
I

0 I I ~

4 6 8 10

CLASSICAL PHASE (rad)
12

FIG. 2. Maximum variance as a function of classical phase
shift and propagation distance. The solid curve is the exact ex-
pression and the dashed curve is obtained by setting the vacuum
phase shift to zero.
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FIG. 4. Detection phase angle 0 in units of ~ for maximum
and minimum variances as a function of classical phase shift
and propagation distance.
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duces an extra noise source into the propagation equa-
tion. Our argument is essentially that because the physi-
cal response time is so rapid, this noise source is negligi-
ble and will not have a significant effect on the propaga-
tion of the quantum noise, provided that the classical
nonlinear absorption is also negligible. As a consequence
of the absence of this extra noise source, the commuta-
tion relation between the field creation and annihilation
operators is not conserved under propagation and is
equal to a 5 function plus a correction term. This correc-
tion, which must be included in the squeezing spectrum
to account for this noncanonical approach, is first order
in 4„[5]and cannot obviously be neglected in (2.25).
However, plots of S;„with and without this additional
contribution are almost indistinguishable up to classical
phase shifts of around 4m. This is because at small dis-
tances the correction term is much smaller than the clas-
sical contribution and at large distances it is much small-
er than the dominant quantum contribution, which is
proportional to 4,4 . At these classical phase shifts we
would expect Raman effects to become significant and the
theory we have developed here and elsewhere [5] begins
to break down. The Raman term can be modeled by an
extension to the response function [5] and this is the basis
of a recent approach [18]. Up to this phase shift, howev-
er, the extra noise contribution can be neglected in the
squeezing spectrum.

III. NONLINEAR SAGNAC INTERFEROMETER

A. Conservation of squeezing

In this section we will be concerned with obtaining an
understanding of the operation of the nonlinear Sagnac
interferometer. Specifically, we shall have an eye on ap-
plications that involve the nonlinear loop mirror [6],
which is a particular manifestation of the Sagnac inter-
ferometer. We shall find it convenient to generalize the
analysis slightly to include nonlinear Mach-Zehnder in-
terferometers. By modeling the loop mirror as an ar-
rangement of beam splitters in the Mach-Zehnder
configuration, many of the more important properties
can be readily deduced by a judicious combination of the
linear operation of the device and the input-output rela-
tions for the noise spectra. We shall be interested, pri-
marily, in two quantities: the output photon cruxes from
the arms, and the output noise spectra as defined by
(2.10)—(2.12). Although the output flux is calculated in
the usual way by tracking all the operators through the
various input-output stages of the device, the output
noise spectra can be inferred rather more readily, as we
shall show below. This allows one to develop a powerful
intuition concerning the potential squeezing properties of
nonlinear interferometers and the techniques we present
here can easily be extended to the case where the inter-
ferometer has different media in its internal arms.

The key ingredients of the nonlinear interferometer, in
all its various guises, are the beam splitters and couplers
that form the input and output ports of the device. One
common approach taken in treating beam splitters with
quantum inputs is to use the standard input-output rela-

tions for the operators that describe the input and output
quantum fields. This approach is useful for quantities
such as the photon fiux, but it quickly becomes unwieldy
when the output noise properties are required. It is
therefore convenient, and physically more intuitive, to
make use of an earlier result of Fearn and Loudon [12],
which describes a conservation of squeezing property at a
linear lossless beam splitter. This result relates the noise
spectra at the outputs of a linear lossless beam splitter to
the noise spectra at the inputs, thus forming an input-
output relation for the noise spectra.

With the above remarks in mind, we first consider the
input-output properties of a single beam splitter. The
properties of beam splitters and couplers with respect to
quantum inputs have been discussed by many authors. A
comprehensive discussion, highlighting many new
features (especially in the lossy case) and with references
to earlier work, has recently been given by Lai, Buzek,
and Knight [19]. We consider a single beam splitter, as
shown schematically in Fig. 5, together with the notation
for the input and output operators. We assume that the
reAection and transmission coefBcients p and q, respec-
tively, are independent of frequency and satisfy the usual
unitarity requirements

Ipl'+ Iql'=1, p*q+pq*=o . (3.1)

~3(p) = Ip I'~2(4)+ I ql'~~ (4—~&2)

s, (y) = lql's, (y —~i2)+ lpl's, (y),
(3.2)

where we have used the notation S~(P) to denote the
noise spectrum in arm j. The spectrum is defined in Eqs.
(2.10)—(2.14). As we have shown above, for modest clas-
sical phase shifts and an input coherent state, the output
from a nonlinear y' medium such as an optical fiber is a
minimum uncertainty ideal squeezed state. It is instruc-
tive, therefore, to consider the result (3.2) in a single
mode and with input ideal squeezed states. The max-
imum degree of squeezing in a given output is obtained
when the orientation of the error ellipses for the two in-

FIG. 5. Schematic of a single beam splitter with reflection
and transmission coefficients p and q showing the notation for
the input and output operators.

Without loss of generality we shall assume p to be real so
that q =ilql. The conservation of squeezing property of
the beam splitter can conveniently be expressed by the
formulas [12]
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puts are orthogonal. Let us suppose that this is indeed
the case and that the inputs have squeezing parameters

g, and g2 such that g& &g2 and input 1 is the more highly
squeezed. We can write

S,(P ) =exp( —2g, ), S,(P—
m /2) =exp(2z), ),

(3.3)
Sz($)=exp(2z)z), Sz(P —~/2) =exp( —2z)z),

so that from (3.2) we have

S3(P)= ~p~ exp(2rjz)+ ~q~ exp(2z)&),

S,((()= ip)'exp( —2~, )+ iqi'exp( —2~z) .
(3.4)

~S)(P);„,
S4($)=S,(P),„+~q~ [exp( —2z)z) —exp( —2z), )]

S)(P);„

(3.6)

A similar application of the unitarity condition (3.1) to
Eqs. (3.2) leads to the following inequalities between the
minimum variances obtainable from the output ports:

S,(p);„~S3~(p);„~Sz(p);„. (3.'7)

Consequently, one cannot obtain a higher degree of
squeezing in either of the output arms than is present in
either of the input arms alone. The equalities in the
above expression hold if g&

=g2 and the squeezing in both
arms is of equal strength.

The above analysis is valid for two orthogonally
squeezed inputs. It is instructive to consider the case of
two ideal squeezed states with arbitrary squeezing orien-
tations as inputs to the beam splitter. The detection an-
gle is fixed so that it is aligned with the direction of max-
imum squeezing in input arm 1. The output spectrum in
arm 4 is now a function of the angle 8 between the orien-
tation of the error ellipses and is given by

S~(8)= exp( —2g, )

+ ~q~ j [exp( —2z)z) —exp( —2z)&)]sin 8

+ [exp(2gz) —exp( —2g, )]cos 8] . (3.8)

The term in cos 0 is always positive and reduces the de-
gree of squeezing. This is because of the positive ex-
ponential term that arises from the unsqueezed quadra-
ture of the input in arm 2. This term can be so large that
the squeezing in arm 4 is completely destroyed. As the
squeezing in arm 2 is increased, the range of values of 8
for which squeezing is observed in arm 4 is reduced (for

Application of the unitarity condition (3.1) to Eq. (3.2)
enables one to write the output noise spectra in arms 3
and 4 of the beam splitter as

S3(P n/—2).=S,(P)+ ~p~ [Sz(P—n. /2) —S,(P)],
(3.5)

S4(4)=S~(P)+ Iql'[Sz(P —~/2) —S~(P) ] .

By supposition we have that the maximum squeezing in
arm 1 is greater than the maximum squeezing in arm 2;
thus for the inputs considered above we have

Sz(P —n. /2) =S,(P);„+~piz[exp( —2gz) —exp( —2g, )]

FIG. 6. Schematic of a Mach-Zehnder interferometer show-

ing the labeling of the input, output, and internal arms of the
device.

fixed reflection and transmission coefficients).
We are now in a position to understand some of the

important noise properties of the nonlinear loop mirror,
which can be modeled as the Mach-Zehnder arrangement
shown schematically in Fig. 6. In the Mach-Zehnder
configuration of Fig. 6, the function of the first beam
splitter is to allow unequal intensities into the internal
arms so that differential classical phase shifts are pro-
duced in the nonlinear media, and also to produce a m /2
phase shift upon transmission. The nonlinear media pro-
duce squeezing via the self-phase modulation process and
the maximum degree of squeezing obtainable from output
arms 7 or 8 cannot be greater than the maximum degree
of squeezing at inputs 5 or 6. In general it will be less be-
cause the differential phase shifts in the internal arms due
to the nonlinear propagation will ensure that the two in-
put squeezed states at 5 and 6 are not orthogonally
squeezed. In fact, as we have demonstrated above, there
are some values of the classical phase shift that give a
nonsqueezed output state even though the individual

ik
A A
a, a

in out
~F

A
b

out

FIG. 7. Schematic of the fiber loop mirror showing the nota-
tion for the operators at the input, output, and internal arms of
the device.
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states in the internal arms of the device are squeezed. We
discuss a situation where this effect is important in Sec.
III C. It goes without saying that to achieve orthogonally
squeezed inputs at 5 and 6 requires careful adjustment of
the initial amplitudes at the input arms 1 and 2.

B. Vacuum input to arm 2

We now consider the operation of the nonlinear loop
mirror, shown schematically in Fig. 7. The loop mirror is
basically a "folded" Mach-Zehnder interferometer and
the results of Sec. III A can be readily applied. The input

I

modes 8;„andb;„areequivalent to arms 1 and 2, respec-
tively, in the Mach-Zehnder configuration of Fig. 6 and
the loop mirror output modes &,„,and b,„,correspond to
arms 7 and 8, respectively. With an input coherent state
Ia(t)) to the d;„(t)mode and a vacuum input to the
b;„(t)mode, the output flux in the b,„,(t) mode can easily
be calculated from the expression

b.„,(t) =qQ, (t)c(t)+pQ,„(t)d(t), (3.9)

where the 0 operators are defined by (2.5) with the tI
operators replaced by c or d operators. The output flux is
then given by

(bt„,(t)b.„,(t) ) = a(t) I'( Ipl'+ Iql' —Ipql'exp[ [Iql'G'(@„)+Ipl'G(@.)]I«t) I']
—Ipql'exp[ [Ipl'G'(+. )+ Iql'G(@', )]I«t) I']] ) . (3.10)

This gives the usual result

& b'.„,(t)b.„,(t) & =(Iql' —Ipl')'la(t) I' (G =0), (3.11)

when the Kerr coef5cient ~ is set equal to zero.
The output flux (3.10) is readily evaluated for the con-

stant input pulse defined in (2.15), and its expansion in
powers of the vacuum phase shift is

(b,„,(t)b,„,(t) )

= la I'[ Ipl'+ Iql' —2lpql'cos[(lql' —Ipl')@, ]

X(1—
—,'4, 4 )] . (3.12)

The noise spectrum, or variance, achieves its fully
developed form only for integration times at least as long
as the material response time ~o. The material response
time is typically much shorter than the detector resolving
time, and experiments cannot in practice be carried out
on the time scale of ~o. However, the number of photons
received by the detector in the period ro, given from (2.8),
(2.19), and (3.12) as

'
[ lel'+ Iql' —21pq 'cos[( ql' —lpl')C', ]

X (1—
—,'4, 4, )], (3.13)

provides a measure of the minimum input to the detector
needed to detect the presence of squeezing.

The output squeezing spectrum is now easily calculated
from the conservation of squeezing property. The first
passage through the coupler produces the counterpro-
pagating coherent states Ipa(t)) and Iqa(t)). These
states propagate through the nonlinear medium and are
squeezed by their interaction with this medium as de-
scribed in Sec. II. These states are then recombined at
the second passage through the coupler to produce an
output noise spectrum in the b,„,(t) mode

s, (y) =
Ipl's, (y)+ Iql's, (y ~y2) . (3.14)

The noise spectra Sd and S, are given by expressions
(2.10)—(2.14) but with a(t) replaced by pa(t) and qa(t),

I

respectively. Thus we have the situation where two
squeezed states, with different squeezing parameters,
phases, and orientations are incident on a beam splitter
or coupler. Clearly, from our previous discussion, the
output from mode b,„,(t) may be squeezed. Apart from
the trivial m/2 phase shift, the differences between the
two incident squeezed states occur solely because of the
differential classical phase shifts experienced by the coun-
terpropagating pulses, which in turn are due to the input
amplitudes and the splitting ratio at the first beam
splitter or coupler. The noise spectrum (3.14) is simply
the weighted sum of the noise spectra from two single
pieces of fiber. There is nothing about the loop mirror
configuration per se that is intrinsic to the production of
squeezing; the nonclassical properties occur because of
independent propagation in single pieces of fiber.

An important special case occurs when the loop mirror
is perfectly balanced so that Ip =

I ql
=

—,'. This case has
been examined previously by Shirasaki and Haus [9] and
is of direct relevance to squeezing experiments [11]. Here
we shall reexamine this situation and highlight some ad-
ditional features that emerge. The principal property of
the balanced device, as shown by Shirasaki and Haus [9],
is to allow separation of the squeezed pump wave emerg-
ing from one output port from the pulse of squeezed vac-
uum emerging from the other. This is important in
squeezing experiments if problems of detector saturation
are to be avoided. The separation of the "pump" from
the "vacuum signal" is entirely a linear classical property
of the device and it occurs regardless of the nature of the
input light [20]. In the quantum-mechanical case, for
modest classical phase shifts in the internal arms, a
squeezed vacuum emerges from the vacuum output.
There is thus a small quantum correction to be made in
the output intensities of the two arms. We shall evaluate
this correction below.

The first passage through the coupler splits the input
light equally in both arms, giving rise to identical classi-
cal phase shifts in the counterpropagating fields. The
coupler also generates a ~/2 phase difference between
these fields so that the fields entering the coupler for the
second time are orthogonally squeezed. As we have dis-
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cussed above, in the limit of a small classical phase shift,
the output fields from the loop mirror will then be ideal
squeezed states. The conservation of the squeezing prop-
erty ensures that the squeezing in the output arms cannot
be greater than the maximum squeezing generated in the
internal arms of the device by the separate counterpro-
pagating fields. Indeed, for the case of perfect balancing,
it is evident from (3.2) that the noise spectra of the out-
puts are identical to the noise spectra of the counterpro-
pagating fields. The noise spectrum for the output mode
b,„,(t) from which the squeezed vacuum emerges is
therefore identical to the noise spectrum obtained from
the output of a single piece of fiber, provided we make
the replacement a~a/&2. Thus we can observe pre-
cisely the same squeezing from the output of a loop mir-
ror as from the output of a fiber provided that the input
intensity to the loop mirror is twice the input intensity to
the single piece of fiber.

In Fig. 8 we plot the variation in the minimum noise
spectrum as a function of the coupler coefficient for an in-
cident square pulse of intensity 1 W. Figure 8(a) is for a
200-m length loop mirror and Fig. 8(b) is for a loop mir-
ror length of 1 km. It can be seen from these curves that
as the power-length product is increased, the coupling ra-
tio required to observe squeezing in the output arm must
be more carefully controlled. This is because the
differential classical phase shift in the internal arms varies
more rapidly with the coupler coefficient for higher input
intensities at a given length. This, however, does not ap-
pear to lead to as stringent a requirement on the coupling
ratio as does the necessity of avoiding detector satura-
tion. In fact, it may be more advantageous to use lower
powers in the loop so that significant squeezing can still
be observed over a wider range of coupler ratios about
the 50:50 point. It is also interesting to note that al-
though the loop requires twice the input intensity to
achieve precisely the same output noise spectrum as a
single piece of fiber, the minimum noise shows little vari-

ation around 700 m (approximately m. classical phase
shift), as shown in Fig. 3. Thus the minimum noise at
~p~

=
—,
' and ~p) =1 for a 1-km loop length is approxi-

mately equal. This behavior can be seen in Fig. 8(b).
This is not the case, however, for the 200-m loop length
as the minimum noise in this region is a sharply varying
function of the classical phase shift. Thus in Fig. 8(a) we
see that the minimum noise is lower at

~ p ~

= 1 than at
Ipl'=-,'

For the square pulse excitation of (2.15) the minimum
photon number required to observe the effects of squeez-
ing can be expanded in powers of the vacuum phase shift
and is, from (3.13), given by

2
+min =

4 @c (3.15)

In the limit of 4, &(1, corresponding to a propagation
distance of less than 100 m or so, the variance reduces to

S(0,$)=1—4, (4, «1) . (3.17)

It is seen from (3.15) and (3.17) that the photon number
in this case is of a higher order in 4, than the reduction
of the variance below its vacuum magnitude of unity.
The photon number is therefore smaller than this mea-
sure of the squeezing by a factor of 4, . Expressions iden-
tical to (3.15) and (3.17), to the given orders in 4„are
found for the mean photon number and quadrature vari-
ance of a discrete mode of the radiation field in a state
consisting of a superposition of the vacuum ~0) and the
number state ~2) with the expansion coefficients given by

(3.18)

and the minimum variance from (2.25) is (remembering
that for the balanced loop mirror we must replace 4,
with 4, /2) given by

S(0,$);„=1+—,'4, —
—,'4, 4,—4, ( 1+—,'4, —24,4,

——'4 4 )' (3.16)

0.0 0.2
0 I I I I I

0.4 0.6 0.8

(b)

1.0
The squeezing produced by such superposition states has
been extensively discussed by Wodkiewicz et al. [21].

c 0.6—
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0.2—

0.0
Q.O Q.2 0.4 0.6 0.8 1.0

COUPLER COEFFICIENT

FKJ. 8. Minimum variance in the output mode b,„,as a func-
tion of the coupler coefBcient for the loop. We have assumed a
coherent input to the &;„modeof the interferometer and a vacu-
um input to the b;„mode. Curve (a) is for a loop length of 200
m. Curve (b) is for a loop length of 1 km.

C. General cancellation condition

As we have demonstrated above, the principal
significance of using a balanced nonlinear loop mirror for
squeezing experiments is the ability to produce a
squeezed vacuum from one of the output ports. It is sim-
ply the linear properties of the device that yield the zero
displacement, and it is the nonlinear propagation that
generates the squeezing. There is, in linear operation, an
alternative configuration of the loop mirror and its inputs
that produces a vacuum in one of the output arms. The
expectation, therefore, is that the nonlinear propagation
changes the quantum noise properties of this vacuum
state so that the state emerging from this port can be a
squeezed vacuum. The balanced loop mirror considered
earlier will be shown to be a special case of this more gen-
eral configuration.
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pie formulation of the noise properties of loop mirrors.
This technique allows one to develop a powerful intuition
concerning the squeezing properties of nonlinear inter-
ferometers. Furthermore, using this technique, one can
readily analyze the situation with concatenated inter-
ferometers, and their input-output noise properties can
quite trivially be obtained. Such devices have recently
been studied in connection with using squeezed light in a
fiber gyroscope [22].

The important property of the interferometer in bal-
anced operation is the separation of the intense pump
wave from the squeezed vacuum. We have presented a

generalization of the balanced configuration that will also
achieve this goal. This condition may well prove to be
useful in future experiments involving nonlinear inter-
ferometers.
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