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Intensity correlations between the components of the resonance fluorescence triplet

C. A. Schrama, G. Nienhuis, H. A. Dijkerman, C. Steijsiger, and H. G. M. Heideman
Buys Ballotlaboratorium, RijksuniUersiteit Utrecht, Postbus 80000, 3508 TA Utrecht, The ¹therlands

(Received 6 November 1991)

We present a theoretical analysis of the intensity correlations between the spectral components of the
resonance fluorescence triplet while allowing for detection time differences that are smaller than the in-
verse frequency width of the frequency filter. Explicit expressions are derived for the intensity correla-
tion functions that are valid for all times. Furthermore, we present the results of measurements on these
correlation functions for the 'So~'P& resonance transition of natural barium. In general, the results
confirm the theoretical predictions.

PACS number(s): 42.50.Dv, 32.80.—t

I. INTRODuCTION

The spectrum of resonance fluorescence of a two-state
atom contains three well-separated spectral lines at
sufficiently high intensity of the monochromatic driving
field. This fluorescence triplet, which was predicted by
Newstein [1] and Mollow [2], has been observed by a
number of authors [3] and is sometimes referred to as the
Mollow triplet. The three lines may be understood as re-
sulting from spontaneous decay down a ladder of pairs of
dressed states [4]. These states are energy eigenstates of
the atom and the driving mode of the radiation field.

The same picture can explain the behavior of the corre-
lation function between two successively detected pho-
tons originating from two spectral components [4]. Since
the required spectral resolution imposes a limit on the
possible time resolution, the theoretical description of
this type of measurement is rather subtle. In particular,
it is necessary to include the interferometer, used to
separate the spectral components, explicitly in the
theoretical description, as is common in the theory of
time-dependent spectra [5]. A theoretical description of
the time correlations between the spectral components of
resonance fluorescence has been worked out for the spe-
cial case of well-separated spectral lines, and for times
larger than the inverse-frequency width of the inter-
ferometer [4,6,7]. The theoretical predictions have been
verified experimentally in only one special case [8]. In
this article we present a theoretical treatment of the
correlation functions for times that are of the order of the
filling time of the interferometer and we report experi-
ments on the intensity correlations between all possible
combinations of the spectral components of the fluores-
cence triplet.

The simple interpretation of the spectrally resolved
correlation functions in terms of transitions between the
modified energy levels is justified for correlation times
that are large compared with the filling time of the inter-
ferometer. This picture is slightly modified if times are
considered that are of the order of the filling time. In the
latter case the order of detection is not necessarily the
same as the order of emission. For an observed detection

order, interference can arise between opposite emission
orders.

In the following we give a summary of the derivation
of the long-time behavior of the two-time intensity corre-
lation functions for frequency-filtered fields. The short-
time behavior is derived for the case that the fluorescence
field is emitted by a two-state atom in a monochromatic
field. We report an experimental study of the various in-
tensity correlation functions.

II. INTENSITY CORRELATIONS AND SPECTRAL
RESOLUTION

This expression may be viewed as the averaged square of
the amplitude for two successive absorptions at time t&

and tz. If the radiation field is emitted by an atomic tran-
sition from an excited state ~e ) to a ground state ~g ),
then the Heisenberg operators E+ (E ) for the field are
proportional to the lowering part S (raising part S+) of
the atomic dipole transition, so that we may write [10]

E+(t)-S (t), E (t)-S+(t)
with

S =Ig&(el, S+=le&(gl . (3)

For a single atom we obtain for the intensity correlation
function the expression

I,(t„t,) =(qA }'(S+(t,)S+(t, )S (t, )S (t, ) ), (4)

with A the spontaneous-decay rate and g the detection
probability of an emitted photon.

The intensity correlation function I2(t„t2) of a radia-
tion field is measured as the probability density for
detecting a photon at time t

&
and another at time t2. For

a quantum field, the ordering of the field operators in a
transition amplitude is essential. When we denote the ab-
sorptive positive-frequency part of the electric field as
E+(t), the quantum-mechanical expression for the corre-
lation function for t2 t

&
)0 is [9—]

I,(t, , t, )=(2e,c)'(E (t, )E (t, )E+(t, )E+(t, )) .
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We consider the case of a two-state atom in a mono-
chromatic radiation field with frequency co&, so that the
detected radiation is resonance fluorescence. We use a
classical description of the exciting field, and we adopt
the dipole and the rotating-wave approximation. In the
rotating frame the evolution of the atomic density matrix
o. is described by the evolution equation

(5)
dt

= —(iL+I )o .

The operator I, which describes spontaneous decay, is
given by [11]

I o= —,
' A(S+S cr+crs+S —2S crs+) .

iLo —= i [H, o—]lfi,

The operator L indicates the commutator with an
effective Hamiltonian

is the conditional detection rate at time t after a previous
detection at time zero. Explicit expressions for f (t) are
given in the literature [12]. From (12) it is obvious that
f (0)=0, which indicates that after a photon emission the
atom cannot immediately emit a subsequent photon
[10,13]. This phenomenon is called antibunching.

These standard results apply in the situation that the
instants of photon emission are determined. This can
only be the case if the photons are detected without spec-
tral resolution. For the description of our experiments
we need a theoretical analysis of correlated detections of
photons with a well-determined frequency. In practice
this means that the two photomultipliers which detect
the photons are viewing the radiation field exiting an in-
terferometer. This implies that the fields in (1) should be
replaced by the filtered fields E, which are to a good ap-
proximation related to the emitted field by the relation [5]

where

H= —A'(b, s, +OS„) .
E+(t}=f d7e ye 7'E+(t —7), (13)

The Pauli matrices have the standard form

is the steady-state photon detection rate, and

f(t)=7)A Trle)(el(e ' + "lg)(gl) (12)

s, =—(Ie&&gl —Ig&&el),
1

2l

s, =-,'(le&&el —
Ig &&gl),

A=co& —
m0 is the detuning from resonance, and 0 is the

Rabi frequency.
In the steady state the intensity correlation function (4)

depends only on the time difference t2 —t, =t and we

may write

I2(t„t, +t)=(7tA) TrS [e ' +r"(S oS+)]S+

&)f(t) . —

Here we introduced cr as the normalized steady-state
solution of (5). Furthermore,

I
&

= 7) A TrS crs+ =7t A ( e
I
o

I
e )

with y the bandwidth of the interferometer, and co its
frequency setting. The normalization of (13) is chosen in

such a way that in the case of a monochromatic field of
frequency co, the filtered field is identical to the incident
field. Factors resulting from filter transmittivities can
simply be absorbed in the overall detection efficiency g.
For classical radiation fields, the correlation function
I2(at, ;Pt2) for observation of a photon from interferom-
eter a at time t

&
and a photon from interferometer P at

time t2 is obtained by substituting E (t, ) for E+(t, ) and-
Ett (t2) for E—+(tz) into (1). The result is a fourfold in-

tegral over a four-point correlation function.
For the present case of resonance fluorescence the field

is essentially quantum mechanical, and the situation is
more delicate. As has been demonstrated by various au-
thors [14,15], for a quantum field where the time ordering
of the field operators is essential, we have to reorder the
operators E+—so that the earlier absorption operators E+
are moved to the right, and the earlier emission operators
are moved to the left. After expressing the field operators
E+ in terms of the—atomic operators S+, as in (2), we ar-
rive at the explicit formal expression for the correlation
function for spectrally resolved photons (tz ) t, )

0

X[6(t, 7, t, +7, )6(t, —7,' —t, +7 )(S (—t —7 )S (t 7 )S (t 7 )S (t 7 ))

+6(t 7 t, +7, )6(t, —7', t +—7')(—S+(t —7—')S+(t, —7', }S (t —7 )$ (t, —7, ) )

+6(t —7 —t +7 )6(t —7 —t +7 )(S (t —7 )S (t —7 )S (t —7 )S (t —7 ) )

+6(t, —7, —t, +7,)6(t, 7', t, +7,')——

x(S+(t, —7,')S+(t, 7', )S (t, —7, )S—(t, —7,))], (14)
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where e is the Heaviside step function. One notices that
the spectral resolution corresponding to the bandwidth y
of the interferometers implies an indeterminacy in the in-
stants of emission, even though the detection times are
known. The evaluation of (14) requires the calculation of
four-time correlation functions of the atomic dipole,
which in general is a very tedious task, and the resulting
general expression is not illuminating in its complexity.
The physical picture of the correlation process becomes
much clearer in the case that the fluorescence spectrum
separates into di6'erent spectral lines. Then also the ex-
plicit evaluation of (14) becomes much simpler, as we
shall demonstrate in the next section.

III. SEPARATE FLUORESCENCE LINES

It is well known that the spectrum of resonance
fluorescence of a two-state atom separates into three dis-
tinct spectral lines at high intensity of the driving field or
at large detuning from resonance [2]. A simple physical
picture of the origin of these lines arises if we diagonalize
the effective Hamiltonian (8). The eigenstates are related
to the atomic states le & and lg & by a simple rotation, ac-
cording to

od = Il &nt & ll+I2&n2&21

then obeys a closed evolution equation

Od

dt
= —I do.d,

(18)

(19)

where I d is the projection of the spontaneous-decay
operator I on the subspace of diagonal matrices. We
separate the atomic decay operator S into a sum of de-
cay operators between dressed states according to

S —SF +S~ +S~ (20)

Rayleigh line (R). For 6)0, the low-frequency sideband
is nearest to the atomic resonance, and it is called the
fluorescence line (F). The high-frequency sideband can be
understood to arise from a three-photon excitation [17],
and it is termed the three-photon line (T}.

In the limit of well-separated lines Q'» A, when the
frequency separation between the dressed states ll & and
I2& is large compared with their width, the evolution
equation (5) for the atomic density matrix can be approxi-
mated by neglecting the coupling between the dressed-
state coherences and populations. The diagonal part

Il&=clg& —sle&, I2&=slg&+cle& (15)
wtth

with
' 1/20'+5

20'

' 1/20' —5
20'

S, =c'll &&21,

S;= —s'I2& & 1 I,
S;=cs(l2&&2l —Il && ll) .

(21)

and

Q'=(0 +6 )'~ (17)

determining the eigenvalues E& =
—,'AO', E2 = —

—,'RQ'.
The states (15) are the classical versions [16] of the
dressed-atom eigenstates [17]. Fluorescent emission
arises as spontaneous decay down a ladder of pairs of
states (15), where the subsequent pairs are separated by
one photon energy AcoI of the radiation field. Transitions
ll&~ll& and I2&~I2& give rise to emission at frequen-
cy coI, and two sidebands at ~I+0' arise from the transi-
tion l1 &~I2& and I2& —+l1 &. These transitions are illus-
trated in Fig. 1. The spectrum consists of three separate
lines when the line separation 0' is considerably larger
than their width, which is of the order of the spontaneous
decay rate A. The central line at frequency ~I is the

—2S~ crdS~ ) . (22)

Note that the contribution of Spf may be ignored in (22)
since Sz+ =Sz commutes with o.d. The physical
significance of this fact is that emission of a photon in the
Rayleigh line does not modify the dressed-state popula-
tions.

The explicit form of the evolution equation for the
dressed-state populations is

dn& dn2= —As n&+ Ac n2=-
dt dt

with the obvious steady-state solutions

(23)

Then we obtain for the approximate evolution of crd the
equation

—r,~, = —
—,'~ y (S.+S.-~,+~,S.'S.—

a=F, T

C
4

n&= n2=c'+s' '
s4

c'+s' (24}

The total fluorescence intensity (11) can be expressed as
the sum of the three separate line intensities

I =gA TrS cYdS+

for a=F, T,R. This gives

(25}

FIG. 1. The lines in the fluorescence spectrum arise from ra-
diative transitions between the dressed states I1) and I2&.

4 4
IF=IT=gA 4 4, Iz =gAc s

c s
(26)
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A. Long-time behavior

We now turn to the spectrally resolved intensity corre-
lation function (14) in the limit of separated lines. When
the frequency settings co and co& are tuned to the fre-
quencies of components of the fluorescence triplet, the
picture of fluorescence as arising from spontaneous tran-
sitions between dressed states leads to simple generaliza-
tions of (10)

I2(af3;t)=(rlA) TrS& [e "(S OdS+ )]St) (27)

( TF.t ) 1+ —A(c +s )t

s
(29a)

(FT.t ) 1+ s
e

—A(c +s )t

C
(29b)

These functions display bunching behavior, since after
the first emission the atom ends up in the initial state for
transition corresponding to the second emission [4,18].
Furthermore, for b, »0 for c /s »1, there is a strong
time asymmetry in the emission order of I' and T pho-
tons. They tend to arrive in pairs, with the T photon
preceding the F photon [4,6]. This has been observed in
an experiment on Sr atoms [8]. Finally, if we apply (27)
to correlations functions involving a photon from the
central Rayleigh line, they are found to be independent of
time, so that [6,7]

g2(Ra;t)=gz(aR;t)=1 . (30)

This reflects that emission of a Rayleigh photon does not
modify the density matrix o.d, and that the emission rate
of Rayleigh photons is independent of the dressed-state

for a,P=F, T, R, where we abbreviate I2(at„'Pt, +t)
=I&(ag;t). Furthermore, we introduce the normalized
correlation function g2(aP;t)=I2(aP;t)/I IP. In the
structure of (27) one recognizes the emission of a photon
in the line a by the steady-state atom, a subsequent evolu-
tion during the time t, and finally the emission of a pho-
ton in the line P. Special cases of (27) have been derived
by various authors [4,6,7,18]. The correlation functions
for two photons from a single sideband are given by

g2(FF;t)=g2(TT;t)=1 —e (28)

These functions display antibunching behavior, which
simply results from the fact that after the first emission
the atom has no population in the dressed state from
which the second emission is possible. Conversely, the
correlation functions between opposite sidebands have
the explicit expressions

populations.
The validity of these simple explicit results (27)—(30)

depends on a number of restrictive assumptions. The
condition already emphasized elsewhere [4,6] is

0'»y»A . (31)

B. Short-time behavior

We now proceed to generalize (27) for the case that the
condition (32) is no longer valid. However, we still as-

sume the validity of (31). First we consider the case that

t«A (33)

Then all the time arguments in the integrand of (14) may
be assumed to be close together compared with the slow
evolution time A '. On the other hand, when co and co&

in (14) are taken at the frequency position of components
of the triplet, the rapid oscillations cancel only if we sub-
stitute for the operators S—+ the corresponding transition
operators S—and S&. The resulting expression for the
intensity correlation function (14) is then for t « A

The first inequality 0'))y implies that the bandwidth of
the spectrometers is suSciently narrow to distinguish the
separate lines. Conversely, this also means that the rapid
oscillations of the dressed-state coherences at the preces-
sion frequency 0' are smeared out by the limited time
resolution y '. The second inequality y)) A requires
that each photon from a spectral component has equal
probability of being detected, so that no deformation of
the spectral line arises. As viewed in the time domain,
this means that the uncertainty in the emission time is
small on the time scale of the evolution through spon-
taneous decay. In the language of (14) these two assump-
tions (31) imply that the dressed-state coherences, which
oscillate at the frequency 0', yield negligible contribu-
tions, and that the time differences ~, —~', and ~2 —~z are
negligible on the remaining slow time scale.

Here we wish to emphasize that the conditions (31) are
not sufficient for the validity of (27)—(30). An additional
condition [7] is the requirement that

(32)

This condition ensures that the order of the detection
times t, and t2 =t, +t is the same as the order of the
emission times t, r, and t2 —r2 (or t( ——r', and t2 —rz).
Then only the first term in (14) contributes, and there is
no uncertainty in the order of emission for a given order
of detection.

t I

I2(aP;t)=(gA ) I dr, dr~dr')dray e ' ' ' ' Trcrd [8(t—rz+r'()S+St) +8( t+r'z rI)Sii S+ ]— —

X [8(t r, +r, )S;S.+8—( t+r, r, )S-.S; ]—. —- (34)

Note that we only need expectation values of products of operators at a single time instant. In the first term, the e pho-

ton is emitted first, and in the last term the order of emission is reversed. The second and third term constitute interfer-

ence between opposite time orders.
The integral (34) can be evaluated directly and we find for t « A
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I2(aP;t)=(y)A ) [(I——,'e y') TmdS+S&+S& S

+ ,'e—(1—,'e—')Trod(S+SttS St) +S&S+Stt S )+( ,'e—')TrodStt S+S S& ] . (35)

Obviously, the correlation function between two photons
from the same line (a =P) is not affected by the uncertain-
ty in time orderings, and then (35) is simply equal to the
short-time limit of (27). We conclude that (28) remains
valid also when condition (32) is not met. Likewise, for
the correlation function between two Rayleigh photons
the result

g, (TF.t)= (e "'"+ "—1)+ 1+
S4 4 2

s4+ 1+ ( —,'e y')
c

and

(40a)

g2(RR;t)=1 (36)

remains unchanged.
On the other hand, for aAP the expectation values in

(35) are not all identical, and effects of the time ordering
arise for t &y '. First we consider the case that a=F,
P=R. From Fig. 1 we notice that emission of an F pho-
ton and an R photon can occur as a direct cascade
~2)~~1)~~1), or as a cascade ~2)~~2)~~1). In the
former possibility the emission of the F photon is the first
one, and in the latter case the R photon is emitted first.
Then two different cascades constitute a transition from
the same initial to the same final state of the dressed atom
and the fluorescence field. On the other hand, the ampli-
tudes for these two processes are each other's opposite,
since (21) shows that

S;S;=csil)(2i= —S„-S; . (37)

Therefore, for t =0, where both time orderings contribute
equally, the correlation function must disappear. In gen-
eral, we obtain from (35) the explicit result

g2(FR;t ) =g2(RF;t ) =(1—e y') (38)

which is valid for all values of t)0. For t))y ', the
long-time result (30) for a=F is recovered. The dip at
t=0 is due to destructive interference between the two
time orderings. It is important to notice that this in-
terference arises due to the uncertainty in the instants of
emission for observed detection times. This uncertainty
reflects the finite filling time of the interferometers, which
are normally located at a macroscopic distance from the
emitting atom. The interference dip gets broader when
the bandwidth is decreased. In Fig. 2 Eq. (38} is plotted
(curve b).

The same arguments hold for correlation between a T
photon and an R photon. The result which is valid for all
values of t )0 is

(FT.t ) (
—A(c +s )s I)+ 1+ (1 ~le ys}2

c4 c'

c4+ 1+ ( —'e y')
S

(40b)

g2(TF;0)=1 . (41)

I I I I
l

I I I I
)

I I I I
i

I I I I

2

1.5

Equations (40) combined give the full correlation func-
tion for detection of a T photon and an F photon, both
for positive and negative time differences (see Fig. 2,
curve a}. For t »y ', the long-time behavior of Eqs.
(29) is recovered, while in the region where t « A ' only
the contribution of (35) survives. For t=0, (40a) and
(40b) give the same value, so that the correlation between
a T and an F photon varies continuously at equal detec-
tion times. For b, &)Q' or c /s ))1, the two results
(40a) and (40b) display in the region t =0 a rapid transi-
tion over a time range y

' between the strongly different
long-time functions (29a) and (29b). In the resonance
case that 5=0, we have c =s =4 and the physical
difference between an F transition and a T transition van-
ishes. Then (40a) and (40b} become identical, and the FT
correlation function is even in the detection time
difFerence. Note that Eqs. (40}predict a dip of width y
at t =0, which exactly compensates the bunching behav-
ior of Eqs. (29), so that for the resonant case we have the
equal-time result

gz(TR;t ) =g2(RT;t ) =(1—e y') (39) 0.5

Finally we consider the cases a=F, P=T, and a=T,
P=F. It is easy to check that only the first and the last
term in (35) contribute, while the interference terms van-
ish. If we combine the long-time expressions (29) with
the explicit result (35) for t « A ' we arrive, for this
choice of a and p, at an expression valid for all values of
t)0of the form

0
I I s I I I I I I I I I I s I I I I I

—10 0 5
yt

10

FIG. 2. g2(ap;t) vs yt for 0=100A, b =0, and y= 108; a,
aP=FT; b, aP=FR.
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The origin of this dip lies in the fact that the interference
terms in (35) vanish for the FT correlation function. For
time differences of the order of y

' or less, the amplitude
for detection of an F and a T photon is a weighted sum of
the amplitudes for the two emission orders. Since in the
detection probability the contribution from the cross
terms are missing, this leads to a decrease of the correla-
tion function near zero time difference. For t=0, both
emission orders have equal weight, and the value of g2 is
half the zero-time limit of the bunching long-time func-
tions (29).

IV. EXPERIMENTAL SETUP

Although in correlation experiments sodium is often
used [12,19], we have used the 'So~'PI transition of
barium at X=553.5 nm. The influence of the isotopes
and the metastable D states can be neglected if the metal
is excited on the low-frequency side of the ' Ba reso-
nance transition and if the average time during which the
atom is observed is too short to branch into the D states
substantially [20,21].

A schematic overview of the experimental arrangement
is given in Fig. 3. The experiments are performed in a di-
lute atomic beam of natural barium. In a high-vacuum
chamber the barium beam is produced in a cylindrical
tantalum oven. The atoms leave the oven through a cir-
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ill g

FIG. 3. Experimental setup for photon correlation experi-
ments with spectral resolution. The diameter of the oven aper-
ture is 2.1 mm. pl, p2: pinholes /=0. 5 mm; p3: pinhole /=0. 1

mm; L2, L3: microscope objectives Ll, L4: achromatic lenses

f=254 mm; PMT: photomultiplier; disc. : discriminator; sc:
singles counter; TAC: time-to-amplitude converter; PHA:
pulse-height analyzer; PC: personal computer; M: mirror;
stab. : stabilization unit; FP1,FP2: Fabry-Perot interferometers.
The dot between the microscope objectives indicates the posi-
tion of the laser beam.

cular aperture, / =2. 1 mm. A pinhole having a diameter
of 0.1 mm collimates the beam to a diameter of 0.25 mm
and a divergence of 8=3 mrad (full width). The pinhole
is placed 5X10 m from the interaction region. The
distance between the microscope objectives and the oven
is 0.8 m.

A single-mode laser beam, which is linearly polarized,
is focused on the atomic beam with an achromatic lens of
160 mm focal length. This beam is obtained from a sys-
tern where an Ar+ laser pumps a frequency stabilized
single-mode cw dye laser (Spectra-Physics, model 380D)
operating on Rhodamine-110. Typical output power is
800 mW. On resonance the long-term frequency drift is
checked for by monitoring the singles count rates in the
detection channels. The laser frequency is readjusted
manually whenever necessary. For experiments off reso-
nance the laser is locked to the lower-frequency flank of
the absorption profile of a heat-pipe cell filled with natu-
ral Ba [22]. With this additional stabilization the residual
long-time variation in the laser frequency is less than 10
MHz. This is mainly due to fluctuations in the vapor
pressure caused by variations in the temperature of the
cell.

Stray light from the laser is reduced by a small aper-
ture just above the interaction region. Two microscope
objectives, one on each side of the interaction region, the
focus from which coincides with the interaction region,
collect the fluorescence and produce a parallel beam of
light. In each detection channel an achromatic lens
focuses this beam on a pinhole. In both detection chan-
nels a Fabry-Perot interferometer (Burleigh RC-110 and
RC-150) is placed outside the vacuum chamber, between
the microscope objective and the achromatic lens. The
fluorescence photons are detected by two photomulti-
pliers whose output pulses are fed into constant-fraction
discriminators. A titne-to-amplitude converter (TAC)
measures the time differences between the photon pulses
and sends its output to a 1024 channel pulse-height
analyzer (PHA) which is part of a personal computer.
Singles rates from each photomultiplier are measured by
two rate meters.

The time resolution of the electronic detection system
was measured by having both photomultipliers look at a
scattering center which is irradiated by a pulsed Ar+
laser (120 ps pulse width). By measuring the cross corre-
lation between the two photomultipliers the time resolu-
tion of the combined system was found to be 3.1 ns.

Inside the interaction volume V, where the Ba beam
crosses the laser beam and from which the fluorescence is
collected, the number of atoms fluctuates around a mean
value (N). The rate of true coincidences (two photons
emitted by one and the same atom) scales with (N ). The
background, due to the accidental coincidences (two pho-
tons emitted by two different atoms), scales with (N ) .
Hence the ratio of the number of true coincidences to the
number of accidental coincidences decreases as (N) in-
creases.

Kimble, Dagenais, and Mandel [23] derived an expres-
sion for the mean number of counts, ( n(t) ), in a channel
of the PHA for experiments without spectral resolution.
If the photomultipliers measure only the intensity from a
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single component of the fluorescence triplet then (n(t) )
takes the form

(n(t)) ~(N)'I, (aP;ac)+(N)g(t)I, (aP;t), (42)

where g(t) describes the effect of the transit of the atoms
through the observation volume. To include effects of
dark currents and the actual shape of the transmission
function of the Fabry-Perot extra terms must be added to
(42)

Equation (42) shows that in a beam experiment there
will always be a background term resulting from acciden-
tal coincidences. Furthermore, the correlation function
I~(aP;t) is multiplied by a time-dependent factor g(t)
which drops to zero as t ~ ao. This can be understood by
noting that it is only for a limited time that the emitting
atom is in the field of view.

The transit function g(t) as derived by Kimble,
Dagenais, and Mandel [23] holds for two identical and
perfectly coinciding observation volumes. We will con-
sider two partially overlapping observation volumes, V,
and V&, and derive a general expression for g(t) It wil. l

I

I —Il —
q

—vt/il for Il —
q vt/i I

——1

0 for Il —
q

—ut/lI &1, (43)

with q =i'/l (see Fig. 4). Since the experiments are per-
formed in a thermal atomic beam f(t, v ) has to be in-
tegrated over the velocity density distribution
P(u)=2(v /vo)exp( —v /vo) with uo=&2kT/m, T the
oven temperature and m the mass of the atom. The re-
sulting transit function is found to be

be assumed that both volumes have the same rectangular
shape and that an atom first enters V, and then Vb,
where V, is seen by the start photomultiplier and Vb is
seen by the stop photomultiplier. In both volumes the
atom can be observed over a length l. The length over
which the atom can be seen by both photomultipliers is
1'~l. We call g'(t, v) the function that describes the
probability of finding an atom with a velocity U in the
stop region at t, given it was in the start region at t =0.
This conditional probability is given by

g(t)= '

—
q ~0/t xt2f dx q+ —x e " for t~O

0 70

(1—
q )q.~/t (2—q)TO/t

2 dx q+ —x e +2 dx 2 —
q

——x e fort+0,
0 (1—q)ro/t

(44)

+()& I tI

g(t)=2 f dx 1 — x e
0 70

(45)

as derived by Kimble, Dagenais, and Mandel [23].

0.5

where ~p = I /Up ~ For perfectly overlapping volumes

(q = 1) this general expression reduces to
When an interferometer is tuned to one of the com-

ponents of the fluorescence triplet a small amount of light
of the other components will be transmitted. The
transmission factor for these other components will be
denoted as g; with i =a, b.

In an experiment in which the interferometers are
tuned to opposite sidebands the unwanted Rayleigh pho-
tons in the filtered fluorescence signal affect the spectra in
two ways: (i) as an uncorrelated part contributing to the
background term and (ii) as a correlated part contribut-
ing to the signal term. We denote by A; the number of R
photons in the filtered fluorescence field and by R; the
number of true F or T photons. The ratio of Rayleigh
photons to the number of true sideband photons in the
filtered fluorescence field is then given by

0
vf/1

~~ 4b 2

R; ' Q2
(46)

stop

PMY

PMT

FIG. 4. g'(t, u) for q =
—,'. The vertical bars in the lower part

of the figure indicate the range of possible positions at four
different times of finding the atom along its path through the
observation volumes, given it was in the start region at t =0. In
the upper part the corresponding conditional probabilities are
given of finding the atom in the stop region.

(N)g, gt, 8 1 . (47)

For all the other combination of lines in the fluores-

Since we are only interested in correlations between side-
band photons this ratio should be much smaller than one.
For 5»Q (large detuning) situations can occur where
the fluorescence detected by the photomultipliers mainly
consists of Rayleigh photons: A,. /R, ))1. Aspect et al.
[8] have shown that in this situation it is still possible to
measure correlations between the sideband photons pro-
vided that
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FIG. 5. Inhomogeneously broadened fluorescence spectrum
on resonance. The inhomogeneous broadening is caused by the
spatial profile of the laser beam.

FIG. 7. The same as Fig. 6. 5= —1.4(2) GHz and
0=4.3(2) GHz.

cence triplet it can be easily shown from a similar treat-
ment that the average number of atoms in the interaction
volume should always be close to or less than one.

V. RESULTS AND DISCUSSION

The parameters c and s, (16), which determine the
shapes of the correlation functions depend only on b, /Q, .
We have done experiments in which 6 was varied, while
keeping 0 as large as possible, to ensure sufficient separa-
tion of the triplet components on resonance.

In Fig. 5 an example is given of the Quorescence triplet
as recorded by one of the Fabry-Perot interferometers.
The fluorescence triplet is inhomogeneously broadened,
which is caused by inhomogeneities in the laser intensity
over the interaction volume. By tuning the Fabry-Perot
device to the maximum of a sideband, only those atoms
which pass through the most intense part of the laser
beam will contribute significantly to the measurement.

During a measurement it is often necessary to readjust

the Fabry-Perot instruments. This is done in the follow-
ing way. An experimental run is interrupted when the
count rate is decreased by 20%. The electronic stabiliza-
tion unit of the Fabry-Perot devices then optimizes the
finesse and mean mirror spacing. About every hour this
procedure is repeated manually since the electronics was
not able to optimize the finesse perfectly. For experi-
ments on resonance the laser frequency is readjusted at
the same time. The frequency drift of the laser is about
130 MHz per hour. After readjustment the count rates
of the photomultipliers are reproduced to within about
2%.

The full width at half maximum (FWHM) (=2@)of the
RC-150 is 0.55 GHz and that of the RC-110 is 0.82 GHz.
Hence for 0=4.3 GHz and 5=0 the transmission factor
for the other triplet components is 5 X 10 for the RC-
150 and 9 X 10 for the RC-110.

In Figs. 6—14 the solid line is a least-squares fit of (42)
to the data points. In all fits the Einstein coefficient A

was fixed at 1.2X10 s '. The Rabi frequency Q and the
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FIG. 6. The correlation function I2(TF;t)g(t); b, =0.0(3)
GHz and 0=4.3(2) GHz. The solid line represents a least-
squares fit of (42) to the data points.
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FIG. 8. The same as Fig. 6. 6= —3.1(5) GHz and
A=3.8(2) GHz.
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FIG. 9. The correlation function I2(FF;t)g(t); b =0.0(3)
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FIG. 12. The correlation function Iz(FR;t)g(t); 6=0.0(3)
GHz and Q=4.0{5)GHz.
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detuning 5 are determined from measurements on the
fluorescence triplet.

For 6 & 0 the F photons originate from the sideband at
the higher-frequency side of the R line and T photons
from the opposite sideband. In this article we adopt the
convention that this is also the case on resonance, al-
though on resonance the assignment of the sidebands as F
line or T line is arbitrary, as mentioned before.

A. FT and TF experiments

Figures 6, 7, and 8 show the plots of three spectra
which were recorded with the start of the TAC triggered
by a photon from the higher-frequency sideband and the
stop triggered by a photon from the lower-frequency side-
band. The measuring times for the three spectra shown
here were 5, 4.2, and 1.9 h, respectively. The average
number of atoms in the interaction volume varied be-
tween 1.5 and 2.

The spectra are strongly influenced by the transit func-
tion g(t) In ou.r experimental circumstances it is neces-
sary to choose the length I rather short. The combined
requirements that 0» 3 and that the laser intensity is
fairly homogeneous over the interaction volume led us to
the choice 1=20 pm. This implies that so=55 ns for an
oven temperature of 1100 K. Note that this is much
larger than 0 ' (=0.3 ns), so that the assumption of a
steady state, as was made in the theory of Chaps. II and
III, is justified. The transit function has yet another
effect on the measured spectra. For 6=0 the measured
correlation function is asymmetric (q=0. 85). This is
caused by an imperfection in the alignment of the detec-
tion optics: the two observation volumes do not coincide
perfectly. This asymmetry has also been taken into ac-
count in the other experiments.

In the two spectra for b.WO the measured correlation
function shows a maximum of coincidences for t &0.
This asymmetry becomes more pronounced if

~
b,

~
is in-

creased.
In Fig. 7 deviations from the fit function are visible

near +20 and —20 ns. The observed bumps are caused
by reflections on the Fabry-Perot devices. A photon
from the T line will be reflected by the Fabry-Perot de-
vice which is tuned to the F peak. This reflected photon
is seen by the interferometer which is tuned to the T line.
Hence this delayed photon can cause a true coincidence.
However, the measured correlation function will be shift-
ed over 2L/c, with L the distance between interaction
volume and interferometer, and c is the speed of light.
The distance between the Fabry-Perot interferometers
and the vacuum apparatus is about 3 m, which is con-
sistent with the measured time delay of about 20 ns.

Equations (40a) and (40b) predict a dip for b =0 and
t ~ y '. However, we did not observe such a dip. This is
probably due to the finite time resolution of the detection
electronics (3 ns).

B. FF and TT experiments

In Figs. 9 and 10 the spectra of an FF and a TT mea-
surement on resonance are given, respectively. In the FF

experiment both Fabry-Perot devices are tuned to the
higher-frequency sideband and in the TT experiment
both are tuned to the lower-frequency sideband. As ex-
pected from (28) and (42), the measured correlation func-
tion drops to the background level of accidental coin-
cidences as t approaches zero. In our experimental cir-
cumstances these measurements are the most difficult
ones since the measured correlation function is very
noisy: the maximum of this function is determined by
the maximum of the product of the correlation function
and the transit function. This maximum is smaller than
one. This implies that the average number of atoms in
the interaction region should be smaller than one. In the
two spectra shown here the average number of atoms in
the interaction volume was 0.86 (measuring time 10 h).

C. RR experiments

According to (36) the correlation function in this case
is equal to one for all t. Therefore the measured correla-
tion function shown in Fig. 11 only reflects the behavior
of the transit function. We also performed an experiment
with a small detuning (not shown here). The measured
correlation function did not appear to be affected by a
change in the detuning, which is in accordance with the
theory.

D. TR and FR experiments

Figures 12, 13, and 14 show the results of measure-
ments on the correlation functions in which one R pho-
ton is involved. According to (38) and (39) a correlation
function is expected which equals one for t »y ' and
zero for t =0. The two spectra for b, =0 (Figs. 12 and 13)
show a decrease in the number of coincidences near t =0.
However, the observed dip near t =0 does not drop all
the way to the background level of accidental coin-
cidences. This is due to the finite time resolution of the
detection electronics (3 ns).

We also did some TR and FR experiments off reso-
nance. In Fig. 14 the results are shown of an FR experi-
ment where 6/0=0. 5. In these cases the interference
effect is less pronounced. Probably the interference dip is
obscured by unwanted RR correlations.

VI. CONCLUSIONS

We have extended the theoretical description of spec-
trally resolved photon correlations between the com-
ponents of the fluorescence triplet. The extension lies in
the fact that we allow the time difference between two
successive photon detections to be smaller than the in-
verse bandwidth of the interferometers. The correlation
function for a photon in a sideband and a photon from
the central Rayleigh line is found to display a dip with a
width of the order of the inverse interferometer band-
width. The resulting antibunching behavior can be ex-
plained in the dressed-atom picture as a destructive in-
terference between the time orderings of emission of the
two photons. The destructive interference is possible due
to the uncertainty in the emission times for an observed
time of detection. This uncertainty arises in the inter-
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ferometer, which illustrates that the correlation function
for spectrally resolved photons is a property of the com-
bined system of the fluorescent atom and the interferome-
ters. A similar dip is predicted for the correlation func-
tion between two photons from opposite sidebands.

We have measured the time correlations between spec-
trally resolved photons resulting from the fluorescence
triplet of the 'So~'P, transition of natural barium.
Measurements have been performed on all six combina-
tions of photons from the components of the fluorescence

triplet. In all the experiments the tuning of the laser was
close to or on resonance. The predictions based on exist-
ing theory are confirmed for the case where the time
diS'erence between the detected photons is larger than the
inverse-frequency width of the interferometer. The
short-time behavior of the correlation functions, sketched
in this paper, is also confirmed in most experiments.
However, in some cases the theoretical predictions near
t =0 are obscured by the time resolution of the electron-
ics and unwanted RR correlations.
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