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Dynamics of a two-atom Raman coupled model interacting with two quantized cavity fields
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We describe the quantum dynamics of a two-atom Raman coupled model interacting with two quan-
tized cavity electromagnetic fields as an extension of the previously discussed single-atom Raman cou-
pled model [C. C. Gerry and J. H. Eberly, Phys. Rev. A 42, 6805 (1990)]. In particular we study the
atomic-population dynamics and the dynamics of the photon statistics in the two cavity modes. We
present evidence of cooperative effects.

PACS. number(s): 42.50.Hz, 42.50.Dv, 42.50.Fx

I. INTRODUCTION

Recently, the quantum dynamics of a single-atom Ra-
man coupled to two quantized cavity fields was discussed
[1]. The model consists of a three-level atom in the A
configuration where the excited state is taken to be far off
resonance with any cavity mode (see Fig. 1). The dynam-
ics of this system displayed interesting behavior, rather
different generally than obtained in the usual Jaynes-
Cummings model of a two-level atom interacting with a
single quantized cavity [2]. For example, assuming
coherent states for both modes the atomic inversion be-
tween the two nondegenerate ground states exhibits
periodic revivals but with many secondary revivals as
well. These secondary revivals become less significant for
higher average photon numbers. The collapse and re-
vival patterns were partially explained in Ref. [1] but
have been more fully explained, at least for the case of
equal average photon numbers in both modes, by Cardi-
mona et al. [3]. It was also shown in Ref. [1] that the
Raman coupled model can produce nonclassical photon
states exhibiting antibunching, violations of the Cauchy-
Schwartz inequality, and squeezing.

It has been shown [4] for the case of many two-level
atoms interacting with a single-mode field that coopera-
tive behavior between the atoms (i.e., as in the Dicke

model [5]) can enhance some nonclassical effects such as
squeezing. Similar results have been shown for multipho-
ton generalizations of the Dicke model [6]. It seems nat-
ural then to investigate the possibility of cooperative be-
havior in a many-atom Raman model. In this paper we
do just that by considering a two-atom Raman coupled
model interacting with the two quantized cavity fields.
This model, like the one-atom case, is exactly solvable.
Previously, many authors have studied the dynamics of
the interaction between two two-level atoms and a single
cavity field [7] and cooperative effects have been noted.

This paper is organized as follows. In Sec. II we
present the model, describing the relevant Dicke-type
atomic states. The dynamics of the system is obtained by
solving the time-dependent Schrodinger equation. In Sec.
III we study the population dynamics of the two-atom
system. In Sec. IV we examine the photon statistics, and
in Sec. V we conclude the paper with a brief summary.
However, before proceeding to the next section we should
point out that much of our graphical work, particularly
in Sec. IV, will be compared to similar work in Ref. [1],
and the reader should consult that paper to make detailed
comparison.

II. MODEL HAMILTONIAN AND DYNAMICS

E2

E,

E3

We first review the single-atom Raman coupled model
of Ref. [1]. The three-level single-atom atomic states are
labeled

l
1 ) z, l2) z, and l3) z, with energies E&, Ez, and

E3, respectively, and are arranged as in Fig. 1. States
l

1 ) „and l
3 ) „are the ground states, and l2) „ is the ex-

cited state which is assumed to be far off resonance with
either of the cavity modes. Cavity mode 1 has frequency
co&, while mode 2 has co2. We assume the cavity is tuned
consistent with two-photon energy conservation
(E3 E& =fuu& —%cod) so—that there is only one detuning
parameter b, defined as

FIG. 1. Energy-level diagram of a single-atom Raman cou-
pled model. The detuning 6 is assumed to be large.

Ak =E2 —Ei —AN] =E2 —E3 ACO (2.1)

We assume A'6 to be large (A'b, ))E3—E, ) so that state
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H(1 atom) ~p ~I,eff &

where

(2.2)

12 & „may be adiabatically eliminated, effectively render-
ing the system a two-level atom. The effective Hamiltoni-
an for this system (apart from additive constants) is [1]

where 3, and A2 refer to atoms 1 and 2. It is convenient
to introduce the Dicke states Ij,m &D, which for the
two-atom system we have j=1,I=1,0, —1. The Dicke
states are related to the two-atom states above according
to

and

Hp =—a)po'0+%Co&a ~a ~ +Acoqa 2a2 (2.3a)
11,0&D = (11,3 & &+13,1 & & ),

2

Il, —1& =133&„.

(2.7)

H(N atom) A&OJO+Ag 10101+%&20202

—gg( J+g)g2+ J g)g2) (2.5)

In what follows, we consider only the special case when
N =2.

For the two-atom case, the possible two-atom states
are

Hl, tt= —AA. (O+0) 02+tr 0,02) . (2.3b)

Here 0, (01) and 02 (02) are the boson annihilation
(creation) operators of the cavity modes, o.+ and cr are
the effective raising and lowering operators between
atomic levels 1 and 3, O.

p is the difference of the occupa-
tion number operators between levels 3 and 1, and A, is
the effective coupling constant, and Scop =E3 —E,
=1rt(tt)) —cp2). The number states for the field modes are
ln( n2&F=ln(&F1(3) ln2&F2, just the direct product of
number states for modes 1 and 2.

The many-atom case is easily constructed just as for
the usual Dicke model [7]. We define the collective atom-
ic operators

N N

y &(i) J y &(~l) (2.4)
i=1 i=1

where N is the number of atoms and the 0." are the
atomic operators for the ith atom. The operators Jp, J+
satisfy the angular momentum algebra. The Hamiltonian
for the N-atom case then is

=
I 1, —»D ln 1n2 &F (2.8)

On the other hand, if we assume both modes are initially
in coherent states, then at t =0 we have

lt)'(0) &...,= Il 1&D g g C„(a1)C„,(a2)ln„n2 &F,
=0 n2=0

(2.9)

where
n,.a

C„(a;) =exp( —
I a, I l2), i = 1,2

Qn, !
' (2.10)

The average photon number in the ith mode is n, = Ia, I
.

Now the interaction Hamiltonian connects the state
11, 1 & „I

n „n2 & F to the states

13,3&„ln, —2, n2+2&F,

13, 1&~ ln1 —l, n2+1&F,

and

11,3 & „ln, —l, n2+1 &F .

If we assume that initially both atoms are in the
ground state with n, photons in mode 1 and n2 in mode
2, then at t =0

lg(0)&„,„,=11,i &„ln,n &

ll, », =I»,
,

I».. .

11,3&g =I», I». ,

13, 1 & „=13 & „(3)11 & „
13,», =l»,

,
l». . .

These states are eigenstate of the free Hamiltonian

Kp =A'COOJO +A'01
)0 10 1 +blitt) 20 20 2

(2 6) with energy eigenvalues

E„„=[1)lp()n)—( 1) +ct)(2n 2+1 )] .

For times t & 0 we write the state vector as

(2.11)

(2.12)

I y(t } &
= g exp( iE„„t/A')C„(a))C„(a2—)[A I('1') ' (t )11,1& z ln(n2 &F+ A(3 3) 13,3 &, ln1 —2, n2+2 &F

nl, n2=0

or in terms of the Dicke states of Eq. (2.7)

Ig(t ) &
= g exp( iE„„t lh')c„—(a, )c„(a2)

n n =01' 2

+ A(13)
2 (t)(11,3&g+13 l&g)ln) —l, n2+1&F] (2.13)

x[A ' ' (t)ll, —1&Dln), n2&F+A+' ' (t)ll, +l&Dln( —2, n2+2&F

+v'2AI) ' ' (t)11,0&Dln, —l, n2+1&F], (2.14)
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where the relabeling of the A coefficients from Eqs. (2.13)
and (2.14) is obvious. The time-dependent Schrodinger
equation leads to the following equations for the
coefficients:

where

a„„=Qn ) (n2+ 1),

b„„=+(n)—1)(n2+2) .
(2.18)

iA ' ' = 2—A+n )(n 2+1)A 0' '

iA+' ' = —2))Q(n) —1)(n2+1)AO ' '

iAo ' ' = —
A, [+n)(n2+1)A

+Q(n) —1)(n2+2)A+' '
]

with the initial conditions

(2.15a)

(2.15b)

(2.15c)

This concludes our discussion of the model and the
solutions of the Schrodinger equation.

III. ATOMIC DYNAMICS

A
1' 2 (0)=1

A ' ' (0}=A 1I
' ' (0)=0 .

(2.16)

A ' ' (t)=1—
2an n

1 2

2 2
an n +bn n

1 2 1 2

Xsin [Q—,'( „a„+b„„)At], (2.17a)

2a„ „ b„ „&2)(
)

1 2 1 2

ann +bnn
1 2 1 2

The solutions of these equations are easily solved, for ex-
ample, by using Laplace transforms, to obtain

We now turn to the consideration of the atomic dy-
namics, in particular the time evolution of the atomic
populations.

The complete atomic inversion for the two-atom sys-
tem is given by

8'( t ) = ( )p( t ) I Jo l

)Il( t ) )

= y P. (n))P. (n2)[IA+'"' (t}l'
n1=0

' ' (t)I'], (3.1)

Xsin [Q—,'(a„„+b„„))t)],
and

an n
1 2

X si [n+2(a„„+b„„2)gt],

A)) (t) = i-(, n, , n2)

+2(a„„+b„„)

(2.17b)

(2.17c)

where

l

P„(n) )= lC„(u;)l =exp( —n;), (i =1,2) (3.2)
E'

are the coherent-state photon probability distributions.
It turns out to be more revealing of the dynamics to study
the atomic level-occupation probabilities which are given
as

&))(t)= g g P„(n) )P„(n2)l A ' ' (t)l2
n1 =0 n2=0

P„(n, )P„(n ) 1—
n1=0 n2=0

2an n

[1—cos(Q„„ t ) ]

4
an

+
2 2 [—,

' —2 cos(Q„„ t )+—,'cos(2Q„„ t )] (3.3a)

y P„(n))P„(n2}lA+' ' (t)l2
n1=0 n2=0

(3.3b)

oo oo
nl, n2)&)3(t)=2 g g P„(n))P„(n2)lAO ' ' (t)l2

n1=0 n2=0

2
oo n

1 n2g P„,(n) }P„,(n2) 2 2 [1—cos(2Q„„ t)], (3.3c)
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=~2k(2n, n2+3n, n2 ——2)'

are the two-atom Rabi frequencies. Obviously

n„(t)+n„(t)+n„(t)=1
and, of course, the atomic inversion is

(3.4)

(3.5)

where H&& and II33 are the probabilities that both atoms
are in states 1 and 3, respectively, while II&& is the proba-
bility that one atom is in state 1, the other in state 3.
Also in the above expressions

Q„„=A,+2( a„„+b„„)

.8 I I I I
l

I I I I
i

I I I I
l

I I I I
[

I I I I
l

I I I I0.
07
0.6 H~~

0.5

, , -+'AWE"6
0.1

0 -I I I I I I I I I I I I I I I I

0 5 10 15 20 25 30

FIG. 3. Same as Fig. 2 but with n
&

= 10, n, =5.

W(t) =II33(t)—IIll(t) . (3.6)

II33(t)= Q P„(n, )

n, ——O

2nl(nl —1)

3ni 2

In what follows we concentrate on the quantities II33(t)
and II»(t), since IIll(t) is dependent on these through
Eq. (3.5). The subtraction in eq. (3.6) actually deletes
some of the information on the secondary revivals.

We first consider the special case when n2 =0. We ob-
tain

or

A, T~ &2(+3n, +1—+3n, —2) =2~

from which we obtain, for n
&
))1,

' 1/2
2n,

A Tg —277

(3.10)

(3.1 1)

X[—', —2cos(Q„ot)+ —,'cos(2Q„ot)],

(3.7a)

where

Q„o=A,[2(3n, —2)]'i (3.8)

The time evolutions of these quantities are shown in Fig.
2 for n l

= 10. In the quantity II33(t), the largest ampli-
tude is oscillating at frequency Q„o. We can use the usu-

1

al arguments to predict the locations of the revivals [2b].
The time between revivals Tz can be estimated by finding
the time when neighboring oscillators at n& and n&+1
differ by a phase of 2m.

(3.9)

n&II»(t)= —,
' g P„(n, ) [1 cos(2—Q„ot)],

, =o 3n

(3.7b)

For n, =10, we obtain AT+ ——16, which indeed is in the
center of the large amplitude oscillation of II»(t). The
other terms in the series are oscillating at the frequencies
2Q„o, so we would expect, by the same argument as

1

above, a smaller amplitude revival at (A, T„/2), which is
indeed present at At=8 for II33(t). For IIl3(t), on the
other hand, only the frequencies 20„o contribute, and

I

the first large revival occurs as expected at A, t =8. The
revival patterns for n2=0 are similar to those seen for
two two-level atoms interacting with a single cavity
mode. See, for example, Deng and Iqbal et al. [7].

We now consider the case for n&, nzAO. For example,
in Fig. 3 we display the time records of II33(t ) and IIl3(t )

or n 1 0 n2 nd or n i =30 nz =30 in Fig. 4, and
we note that the pattern of revivals is significantly
different than the case when nz=O. (Such a distinction
was also evident in the one-atom case [1]). Here we at-
tempt an explanation of the revivals using the method
adopted in Ref. [1].

Let us consider Eq. (3.3b) for II»(t). This can be writ-

ten as

I I I I
)

I I I I
(

I I I I ] I I I I
i

I I I I
l

I I I I I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I

0.8

0.6 0.6

0.4

0.2
j
IIIIIII0 I I I I P)l I I I I I I I I I I I I I I I

0.4 a ~, t JL 3 J{ i JL
T '[ T '$ 'I )( T

i~, I a
V [-l

H)~
0.2

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I0
0 5 10 15 20 25 30 0 5 10 15 20 25 30

FIG. 2. H33(t) and HI&(t) vs A,t for n, =10, n2=0. FIG. 4. Same as Fig. 2 but with nl =n2 =30.
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II33(t )=Re g g P„(n, )P„(nz ) [—,
' —2 exp(iQ„„ t )+—,

' exp(2iQ„„ t)] (3.12)

The rapid oscillations in the time records are from the dominant Rabi oscillations at
Q„=&M.[2n, n z+3n, n—, —2)'~ . We now expand the frequencies Q„„ in a Taylor series about n, and nz to ob-

tain (to first order)

2n2 2n)
&2 (2n)nz+3n( n—

z
—2)'~ &2 (2n)nz+3n) nz——2)'

(3.13)

(A, Ta ) (2nz+3)(2n, —1)
=4~'kl .

(2n, nz+3n& nz ——2)

Now for large n &, n z we obtain ( A, Ttt } =4m. kl or

(3.15}

Following the arguments of Ref. [1], for the terms oscil-
lating at 0„„,revivals occur at times TR when

1 2

A, TR 2n, +3
=2m.k, k =0, 1,2, . . . ,+2 (2n&nz+3n& nz —2)'~—

(3.14}
A. TR 2n) —1

=2m.l, l=0, 1,2, . . . .
&2 (2n, nz+ 3n, nz —2) '~z—

Multiplying these equations together we obtain

A, Ttt =m., 4.44, 5.44, etc. It is apparent that we do not al-
ways get revivals at these times but when a revival does
occur it is at one of these times. Of course, we have not
taken Eq. (3.17) into account so it appears that the oc-
currence of the revivals is not completely explained. (For
the special case of n

&
=n2 in the one-atom Raman cou-

pled model see the paper by Cardimona et al. [3]). As
n

&
and n2 are increased, only the revivals at 2m, 4~, etc.

seem to survive. See Fig. 5 for n
&

=n2 =100.
Finally, in closing this section we point out that a simi-

lar set of revival patterns would be expected for the two-
atom two-photon system with interaction Hamilton of
the form J+a

&
a2+ H.c. The one-atom version of this has

been discussed by Gou [8].

AT+ =2m&m, m =kl=0, 1,2, . . . .

Dividing the two Eqs. (3.14), for n &, nz large gives

(3.16)

IV. FIELD STATISTICS

n2

n&

k
l

(3.17)

A. Ttt =rr&m, m =0, 1,2, . . . , (3.18)

and indeed, revivals can be seen in Figs. 3 and 4 at

Equation (3.16) predicts a sequence of revivals at
A, TR =2m, 8.89, 10.88, 4~, 14.05, etc., just as for the one-
atom case in [1]. Primary revivals seem to occur at 2m,
4m. , etc. with secondary revivals 8.89, 10.88, etc. These
are clearly visible in Figs. 3 and 4. Additional revivals
from the terms in Eq. (3.12) oscillating at 2Q„„are evi-

1 2

dent. Using the method of the previous analysis, these
revivals can be predicted to occur at

In this section we examine certain aspects of the field
statistics with an interest in obtaining evidence for
cooperative effects. In particular, we examine the oc-
currence of photon antibunching in the modes, anticorre-
lations between the modes, and violations of the Cauchy-
Schwartz inequality indicating a nonclassical correlation
between the modes. To characterize the statistical prop-
erties of the radiation we use the same quantities as used
in Ref. [1] which the reader may consult (and references
therein}.

In what follows, we shall need the quantities
(a, (t)a, (t)), (a, (t)a, (t)), (a, (t)af(t)), (a, (t)a', {t)),
and (a, (t)az(t)az(t)a, (t) ). These are given as

I I I I
f

I I I I
f

I I I I
f

I I I I
f

I I I I
i

I I I I

0.8

0.6

0.4 Lr

0.2

0 I I I

0 5 10 15 20 25 30

13
I I I I I I I I I I I I I I I I I I I I I I ~ I

0 2 4 6 8 10

FIG. 5. Same as Fig. 2 but with nl =n2=100. FIG. 6. (:{t3N~):)and (:{t)N2):)vs kt for n, =10, n2=0.
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(a, (t}a,( ))= g g n, P„(n&}P„(n2)IA ' ' (t)I + g g (n, —2)P„(n, )P„(n2)I A+' ' (t}I
n& =0 n&=0 Pl

1
=2 El2 —0

+2 g g (n, —1)P„(n,)P„(n2)IAO ' ' (t)I
n =1n =0

1 2

(4.1a)

(az(t)a2(t))= g g P„(n, )P„(n2)[n2IA ' ' (t)I +(nz+2)I A+' ' (t)I +2(n2+1)IAO ' ' (t)I ],
n& =0 n&=0

(4.1b)

(a& (t)a, (t)) = g g n, (n&
—1)P„(n~)P„(nz)IA ' ' (t)I

fll 1 722 0

+ g g (n, —2)(n, —3)P„(n, )P„(nz)I A+' ' (t)I
&l

+2 g g (n
&

—1)(n2 —2) I A ',"'"' (t }I'
n =2n =0

1 2

(4.1c)

and

(a&~ (t)az(t))= g g P„(n&)P„(n )2[nz(n —
2 1)IA ' ' (t)I +(nz +1)(n 2+2) IA+' ' (t)I

n =On =0
1 2

+2nz(n2+1}IAO '"' (t}l ] ~ (4.1d)

(a&(t)az(t)a2(t)a&(t))= g g n, nzP„(n, )P„(nz)IA ' ' (t)I
nl =0 nP=O

+ g g (n&
—2}(nz+2)P„(n, )P„(n2)IA+' ' (t)I

n =2n =0
1 2

+2 g g (n& —1)(nz+1)P„(n&)P„(nz)I Ac ' ' (t)I
n, =1n, =o

(4.1e)

%e first consider photon antibunching in the modes
that may be characterized by the normally ordered vari-
ances of the number operators N; =a,~a;

(.(gN ) ) =(a~ a ) —(a~a,. ) (4.2)

Whenever (:(5N, ):)&0, antibunched states exist. In
Fig. 6 we plot t, :(b,N, ):) versus time (A, t ) for n, = 10 and
n2=0. Mode 2 apparently is always antibunched and

(:[B,N~(t)]:)= —g P„(n, )IAO
' (t)I

nl =0
(4.3)

which is always negative. In the transient regime the
variances (:(bN; ):) do become more negative for both

I

indeed from Eqs. (4.1b) and (4.ld) for n2=0 it follows
that

4
3 &: (h.N

0.5

-0.5

&: (AN ):&
-1.5

0 2 4 6 8 30
-2.5

0 2 4 6 8 10

FIG. 7. Same as Fig. 6 but with n, = 10, nz =5. FIG. 8. C{t ) vs A.t for n
&

= 10, n& =0.
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0.2
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-0.3

-1.3
-1.6

0 2 4 8 10

100
50

-50
-100
-150
-200
-250
-300

0 2 4 6 8 10

FIG. 9. Same as Fig. 8 but with n
&

= 10, n2 =5. FIG. 11.Same as Fig. 10 but with n, = 10, n2 =5.

modes than for the one-atom case. (Compare with Fig. 6
of Ref. [1]). In Fig. 7 we plot these quantities for n, =10
and n2 =5. Again we find, for mode 2, that the normally
ordered variance is more negative than for the one-atom
case while the fluctuations in mode 1 are more enhanced
(see Fig. 7 of Ref. [1]). We thus see some evidence of
cooperative behavior in the two-atom model in the pro-
duction of photon antibunching.

Next we consider the cross-correlation function defined
as

C(t)= (at(t)a2(t)a2(t)a$(t))
—(at(t)a, (t) }(a,(t)a,(t)),

which is proportional to the excess coincidence counting
rate for a Hanbury Brown-Twiss-type experiment with
two beams [9]. For C =0 the beams are uncorrelated, for
C&0 they are correlated, and for C&0 they are an-
ticorrelated. In Figs. 8 and 9 we present our results for
n& =10 and n2=0 and n, =10 and n2=5, respectively.
In the former case, comparing with Fig. 8(a) of Ref. [1],
we see that C(t ) does indeed become more negative in the
transient regime. The same is true for the second case in
the transient regime and at the later time A, t =2m [com-
pare with Fig. 8(b) of Ref. [1]]. We thus obtain evidence
of cooperative behavior in the production of anticorrelat-
ed light beams. Indeed from the form of the interaction,
where a photon from one mode is destroyed while one is
created in the other mode, we would expect the resulting
light beams to be predominantly anticorrelated, and this
appears to be reinforced in the two-atom case.

Finally, we consider the Cauchy-Schwartz inequality.
We define the quantity

V(t }= ( a, (t )a, (t )a, (t )a, (t ) )'
—(a, (t)af(t))(a, (t)a', (t)) . (4.5)

V. SUMMARY AND DISCUSSION

Whenever V(t})0 the Cauchy-Schwartz inequality is
violated indicating a nonclassical correlation between the
beams. In Figs. 10 and ll we display V(t) for n, =10,
n2=0 and n, =10, n2=5. Comparing these with Figs.
9(a) and 9(b) of Ref. [1] we see that for the case when
n, =10, nz =0, the Cauchy-Schwartz inequality is slight-
ly more violated than in the one-atom case at least in the
transient regime, but at later times, unlike the one-atom
case, is generally not violated. For n, =10 and n2=5
there is no initial transient violation as there is in the
one-atom case, and the violation at A.t =2m is less pro-
nounced.

We close this section by noting that it would also be
possible to consider the squeezing of the light beams in
the modes. However, the form of the interaction Hamil-
tonian is not conducive to the eScient production of
squeezed light, and indeed, in the one-atom case the
amount of squeezing demonstrated was extremely small.
We therefore do not pursue the squeezing in the present
work.
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FIG. 10. V(t ) vs A, t for n, = 10, n2 =0.

In this paper we have discussed the quantum dynamics
of two atoms that are Raman coupled to two quantized
cavity fields. We have studied the dynamics of the atom-
ic level populations and have shown the existence of dis-
tinct types of revivals in the time records of the Rabi os-
cillations. The locations of these revivals have been at
least partially explained. Furthermore, we have exam-
ined some aspects of the photon statistics and have ob-
served evidence of cooperative behavior in the produc-
tion of antibunching in the modes and of anticorrelations
between the modes. However, we find the Cauchy-
Schwartz inequality less strongly violated in the two-
atom case as compared to the one-atom case of Ref. [1],
except for an initial transient with mode 2 in the vacuum.
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It would perhaps be of interest to study the dynamics
of the ¹ tom case. Previously the one- and two-photon
Dicke models have been shown to produce cooperatively
enhanced squeezing in a single-mode field [4,6]. The
present model with N atoms has so far been studied only
perturbatively for short times [10] where it has become
clear that long-time solutions are required to observe any

interesting behavior. Such long-time studies are current-
ly under way and will be reported elsewhere.
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