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Pulsed polarization spectroscopy with strong fields and an optically thick sample

Frank C. Spano
Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122

Kevin K. Lehmann
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

(Received 7 October 1991)

The theory of pulsed polarization spectroscopy in the case of a saturating pump pulse and an optically
thick sample is presented, both with and without inhomogeneous broadening. It is found that the molec-
ular anisotropy produced by pumping an R- or P-branch transition is maximized by using a pulse whose
flip angle is near 2m. for the M component with the largest Rabi frequency. Calculations with no or ex-
treme inhomogeneous broadening differ insignificantly. Such a pump pulse produces an anisotropy (and
thus polarization rotation of the probe beam) of the opposite sign of that produced by weak-field excita-
tion. Pulse-propagation calculations obtained by numerically solving the coupled Maxwell-Bloch equa-
tions demonstrate that there exist "stable-area" pulses, much like for a two-level system. The lowest
such stable pulse produces a flip angle of 2.21m. for the M =0 level and produces close to the maximum
polarization anisotropy. This pulse still weakly excites the sample, and thus lengthens as it propagates to
conserve area. The effective absorption coeScient, however, is much less than that for weak pulses. It is
expected that such pulses should provide an order of magnitude or more sensitivity for polarization
spectroscopy than that obtained with nonsaturating pulses.

PACS number(s): 33.10.Ev, 33.80.Be

I. INTRODUCTION

Double-resonance methods are among the most power-
ful techniques of molecular spectroscopy. The selectivity
of double resonance allows complex and even unresolved
spectra to be assigned. It also allows one to reach states
inaccessible from thermally populated levels. While there
are many methods for detecting double resonance, polar-
ization spectroscopy (PS} is among the most sensitive
[l—5]. In polarization spectroscopy, one creates a state-
specific birefringence in a molecular sample, and then
probes for transitions from the pumped molecules via po-
larization rotation of a probe beam. Like all double-
resonance methods, it requires a near saturating pump
power to perturb the sample measurably from equilibri-
um. But unlike a Lamb dip, one detects the signal
through nearly crossed polarizers, and therefore the
method is nearly background free. Thus PS can be much
more sensitive than straight absorption when the probe-
laser amplitude is limited by technical noise. This
characteristic makes it particuIarIy usefuI for experi-
ments with pulsed lasers where there are large shot-to-
shot instabilities [5]. One can expect a sensitivity in-
crease on the order of the square root of the polarization
extinction ratio.

The signal in PS comes from an anisotropic distribu-
tion of magnetic sublevels produced by a polarized pump
laser. The theory for polarization spectroscopy presented
up to now has considered the steady-state response of the
molecular sample, as one has under cw excitation. This
situation does not apply for most applications of polariza-

tion spectroscopy with pulsed lasers, where one usually
works at pressures low enough to ensure that negligible
relaxation occurs during a single pulse. For weakly sa-
turating pulses, perturbation theory allows one to predict
the size of the polarization signals, but such an analysis
breaks down for strongly saturating fields that can be
produced with pulsed lasers. It is the purpose of this pa-
per to present an analysis for the polarization anisotropy
produced by a Fourier-transform (FT) limited pump
pulse in the limit of no relaxation, including pulse propa-
gation effects in an optically thick sample. We present
nonperturbative results that show large enhancements in
the expected probe-field polarization rotation when
strong pump pulses with Hip angles on the order of 2m. are
used in an optically thick sample. This suggests that po-
larization spectroscopy with FT pulsed sources is poten-
tially a more sensitive technique than has been previously
recognized.

In Sec. II a brief description of the technique of polar-
ization spectroscopy is given. In Sec. III the optical
Bloch equations are presented in the limit of negligible
relaxation. In Sec. IV the PS signal is calculated in both
the optically thin and thick limits. A Maxwell equation
is introduced to account for the nonlinear propagation of
the strong pump pulse. Finally we summarize our
findings in Sec. V.

II. BACKGROUND

Before embarking on the mathematical details let us
consider the general experimental arrangement and
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energy-level schemes in more detail. The goal of polar-
ization spectroscopy is to obtain simplified, high-
resolution spectra of the molecule under study. By
simplified, we mean that (1) the pump pulse has selective-
ly depleted a specific (J,K) ground-state rovibrational lev-
el and the probe pulse measures the P, Q, and R transi-
tions from that level or (2) that an excited state has been
selectively populated and the probe pulse measures the P,
Q, and R transitions from that excited level. In the first
scheme the pump and probe transitions share a common
ground state while in the second scheme the excited state
of the pump transition serves as the ground state for the
probe transitions. We will be considered cases where the
pump and probe share only one state in common, i.e., we
are not pumping and probing on the same transition.

The experimental arrangement for polarization spec-
troscopy using linearly polarized light is briefly as fol-
lows. A strong, saturating, and linearly polarized (along
the z axis) puinp pulse enters the sample followed, at a
short time delay later, by a weak (i.e., nonsaturating)
probe pulse traveling in the same or the opposite direc-
tion and polarized at an angle of 45' relative to the pump.
The transmitted probe light is then sent through a nearly
crossed polarizer (aligned at 135 ) and detected. Because
the pump pulse induces a nonuniform M-dependent
ground-state (and excited-state) population, the probe
pulse undergoes unequal absorption in the x or z direc-
tion. This translates into a polarization rotation that is
detected. The detected signal, in terms of the initial
probe pulse intensity Io, the finite extinction ratio of the
crossed polarizers e, the sample thickness L, and the
small angle at which the polarizers deviate from exact
crossing 8, is given by [4]

I, =IO[e+8 +—,'8&(a, —a„)L+—,'[(a, —a„)L] }, (2.1)

neglecting a small dispersive contribution that is propor-
tional to the background birefringence of the sample win-

dows. In practice, the windows are carefully squeezed to
make this birefringence negligible. Its presence only
affects the expected line shape, not the on-resonance sig-
nals we will be calculating below.

In what follows, we will be comparing and contrasting
the optically thin and thick limits on the basis of the
differential absorption of the x and z components of the
probe electric field o. and a„respectively. The signal
scales as 8, while the background and thus technical
noise scale as a+0 . As a result, the signal to noise is op-
timized by choosing 0 =e, i.e., uncrossing the polarizers
until the background is just doubled.

III. OPTICAL BLOCH EQUATIONS

The optical Bloch equations, modified to account for
the 2J+1 degenerate rotational transitions in the rovib-
ronic transition from a ground-state level J, describe how
the pump and probe electromagnetic fields interact with
an ensemble of rotating molecules. In what follows we
assume a strong pump beam and a weak probe beam.
For an optically thin sample the optical Bloch equations

suffice for the calculation of the polarization rotation;
however, in an optically thick sample we need an addi-
tional (Maxwell) equation to describe the reradiation of
the molecular polarization, which effects the propagation
of the pump beam. This will be considered in Sec. IV.
Let us first consider the interaction of the pump and
probe beams with an optically thin sample.

pM(b, co,—t )=i Lcd~(b, co, t )+i (p/fi)d( JKM, J,KM )
dt

X E, (t)wM(hen, t ),
(3.1a)

wM(hen, —t ) = —(p/A)d(JKM, J,KM )
o

X Im[E, (t)p~(htg&, t )] . (3.1b)

Here, ppM is the positive-frequency component of the
slowly varying induced polarization of the LCM~ J,EM
transition, where p is the electronic-transition dipole mo-

ment between the ground state and the electronic excited
state near resonance with the pump frequency and is as-

sumed to lie along the principal molecular axis. The su-

perscript "0" refers to the hM =0 selection rule. In the
laboratory frame, the polarization density is equal to

1 0 i(ky —cot)+
2( 2J+ 1 )

XQfJKPPM
M

where g is the density of absorbers and flax is the fraction
of absorbers in the ground state JE at equilibrium.

gfzxwM/(2J+I) is equal to the excited state (J'KM)
population density minus the ground state (JKM) popula-
tion density; wM ranges from —1 in the ground state to
+1 in the excited state. The frequency detuning between
an absorber with Doppler-shifted transition frequency coo

and the applied field frequency co is given by hco=coo —co,

and we assume that the pump is tuned to the line center
coo of the Gaussian inhomogeneous line shape of width o.,
given by g(coo —coo) =g(0)exp[ —(coo—coo) /o ].

The direction-cosine matrix element d(JKMJ', K'M')
for a general JEM~J'K'M' transition is generally
composed of several factors [6], i.e., d(JKM, J'K'M')
=PJz Pzx&.z.PJMz~, , which account for the orientation of

p with respect to the polarization vector of the external
laser beam. A symmetric-top molecule with p along the

A. Pump beam

We start by assuming the pump pulse (as well as the
probe) has a temporal width much shorter than any de-
phasing or relaxation times of the molecular gas. We
define the polarization axis of the pump beam to be the z
axis and the wave vector to lie along the y axis. For a dis-
tribution of inhomogeneously broadened two-level ab-
sorbers, the interaction with an externally applied elec-
tromagnetic wave polarized in the z direction,
E(y, t)= ,'E, (t)e—'"~ "+ c.c., is described by the optical
Bloch equations. Within the rotating-wave approxima-
tion and neglecting relaxation they are
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TABLE I. The J, K, and M dependences of the various factors that comprise the transition dipole moment in a rotationally degen-

erate molecule.

(('JMJ'M

PJMJ'M+1

ctPJJcJ'Jc

0'JJ'

J'=J—1

+&(J+M)(J+M —1)
2+J —K'

(4J+4J' —1)

2M
&(J+M)(J+M + 1)

2E
[4J(J+1)]

J'=J+1
2v (J+1) —I'

-+ &(J+M+1)(J+M+2)

[4(J+ 1)v'(2J + 1)(2J+3)]

principal axis has the selection rules EL=0, EJ=O,+1,
and AM=0, +1. Therefore, for a beam polarized along
the z axis (bM =0) the transition dipole moment for level

M is d(JKM, J'KM) =IJ,ctJJJ ctJJKJKctJJMJ'M while for an x
polarized beam the dipole moment for the M~M+1
transitio»s d(JKM, J'KM+1) =pctJJS'PJKS'KIVJMJ'M+1

In both cases J'=J,J+1. Table I contains all of the fac-
tors comprising d(JKM, J'KM') for I', Q, and R transi-
tions. We emphasize that the K dependence of the polar-
ization signal appears only as a line strength scale factor,
and the results which follow are independent of the direc-
tion of the transition moment in the molecular frame, or
of whether the molecule is a symmetric or asymmetric
top. Except for this overall line strength scaling, only the
J values of the three levels are involved in double-
resonance matter.

B. Probe beam

The weak probe pulse propagates along the y axis and
is linearly polarized at 45' with respect to the pump
pulse. Like the pump pulse, we assume that the probe
pulse width is much shorter than any dephasing or damp-
ing time. If the pump beam is tuned to a J—+J& transi-
tion then the probe beam is tuned to a J~J2 transition
(J2=J,J+1) in the common-ground-state level scheme,
or to a J, ~J2 transition (J2=J&,J,+1) in the excited-
state absorption scheme. In both cases we have
J& =J,J+1. A preferential absorption along the x or z
axis results in an effective polarization rotation which is
detected via transmission through a crossed polarizer
aligned at 135'. The maximum signal is obtained when
the probe pulse (like the pump pulse) is tuned to the inho-
mogeneous line center or to the molecules moving with
zero velocity component along y. In the experiment,
however, the probe beam is frequency scanned, and a line
shape is recorded. Here, we calculate the peak of this
line shape, and do not consider the more general case of
arbitrary probe-beam detuning from line center.

Because the probe pulse is in the weak regime, we can
neglect population transfer induced by the probe beam.
This is justified when either the probe beam is much
weaker than the pump or (the case of more experimental
interest) the probe transition is much weaker than the
pump transition, i.e., p «p, where p is the probe tran-
sition dipole moment. Therefore a linearized version of
Eq. (3.1) is used to calculate the probe absorption in each
of the two polarization directions (x and z). Coherent in-
teractions between the probe beam and the macroscopic
polarization remaining in the wake of the pump pulse are
unimportant if we assume that the probe-pump frequency

difference is much greater than the inhomogeneous tran-
sition linewidths.

IV. CALCULATION OF THE SIGNAL

%'e now proceed to calculate the polarization signal us-

ing the third term in Eq. (2.1) in the optically thin and
thick limits.

where Io is the input probe intensity integrated over time
and a=nrtfJKpzcJJ. cJL8 l2hceo X(b,co) is .the normalized
pulse excitation spectrum obeying J

" db, coL(bcJJ)=1;
in the case of Gaussian pump and probe pulses of full
width (at 1/e )2t„, it is equal to

(4 2)
&2n.

The anisotropy factor HAJJ J (hen) in Eq. (4.1) is defined as
1 2

4JJ2
HAJJ J~(~) = g[((t JMJ2M ) 2(NJMJ~M+1 )

XNJJ M(Aced) (4.3)

such that HAJJ J (bcJJ ) converges for large J. NJJ M(hen) is
1 2 1

the ground-state population prepared by the pump pulse,
i.e., NJJ M= —,'(1 —wM). The anisotropy factor measures

1

the effectiveness of the M-dependent ground- (or excited-)
state population in rotating the probe-beam polarization.
Generally, highly nonuniform distributions yield large
anisotropy factors —a perfectly uniform ground-state
population distribution gives HAJJ J (Aco)=0. Equations

1 2

(4.1)—(4.3) apply to the common-ground-state arrange-
ment. For the excited-state absorption scheme inter-
change J and J, and replace NJJ ~ by the excited-state

1

population 1 —XzJ ~ or just —X~J ~ since the summa-
1 1

A. Optically thin limit

Using Eqs. (3.1) to calculate the saturated population
difference established by the pump pulse and the subse-

quent (weak) absorption of the two polarization com-
ponents of the probe pulse, the differential absorption I,
for an optically thin sample of thickness L is calculated
from Eq. (2.1) to be

BIO oos=
q NJKJ, K

(4.1)
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tion of the constant 1 gives zero. Note that the sign of I,
rejects the sense of the probe-pulse polarization rotation.

Before continuing the analysis in the pulsed regime let
us pause to consider the cw regime. The polarization sig-
nal for cw excitation can easily be calculated from the
steady-state solutions of the Bloch equations (3.1) includ-
ing relaxation terms [add the terms —pM(pro, t )/Tz and

(w—M(b, ro, t)+ I )/T, to the right-hand side of Eqs.
(3.1a) and (3.1b), respectively]. Using Eq. (2.1} the signal
is found to have a form identical to Eq. (4.1) except that
Io is replaced by the unintegrated probe intensity. In the
steady-state limit the normalized pulse excitation func-
tion is given by

3.0

2.0

1.0
I

3

+

0.0
C3
C3
C3

—1.0

—2.0

L(bOJ) = 1 1

+co + 1/T
(4.4)

—3.0
0.0 4.0 80 120 160 200

~/ ~sat

where T2 is the coherence relaxation time, which is as-
sumed to be the same for both pump and probe transi-
tions. The ground-state population prepared by the pump
pulse in the cw case is equal to

NJJ, M ( ~rO)

2
1+ 1

1+(pM /IJM, )'(I/I„, )(rr/Tz )X(&ro)

(4.5)

Here we have I/I„,:—(p,M E, /A') T&Tz, where I is the
0

intensity of the pump beam and I„, is the saturation in-
tensity for the transition with the maximum dipole mo-
ment @sr =IJd(JKMo, J,KMo), i.e., Mo=0 for P and R

transitions and Mo= J for Q transitions. In the cw limit
the integration in Eq. (4.1) can be performed analytically,
assuming that the inhomogeneous broadening is much
greater than the homogeneous broadening (o »1/Tz),
giving

HAJJ J (0) as a function of I/I„, for J=50 in the cw
1 2

limit (solid curve). The dashed curve is the average population
di6'erence (over M). The anisotropy approaches zero as the pop-
ulation equalizes.

8M:— d(JKM, J,KM) f E,(t)dt . (4.7)

The integral in Eq. (4. 1) can now be easily evaluated. Us-
ing Eqs. (4.2), (4.3), and (4.7), the signal is calculated to be

pulse at least partially saturates the transitions with low
values of ~M~, leading to reduced absorption of the z com-
ponent of the probe beam.

Now let us return to the pulsed regime. For very short
excitation pulses that satisfy t~ && T', where T' =2/o. is
the inhomogeneous dephasing time, the ground-state
population established by the pump pulse becomes
independent of b, ro and reduces to NM ( pro )
= ( 1+cos8~ ) /2. The orientation-dependent pump-pulse
area 8~ is defined as

2 20JJz 0JXJzIC
I~ = Kg(0)Io g[(PJMJzM ) (QJMJzM+1) ]

M

zIotI.= —
z

—QJJrJ x(JJ J (0), o tI, «1J &2m.
(4.8)

X
1

+1+(PM/O'M )I/I„,

(4.6)

In Fig. 1, we show the resonant anisotropy factor
HAJJ J (0) calculated by substituting Eqs. (4.4) and (4.5)

1 2

into Eq. (4.3), as a function of I/I„, for an R (50) pump
transition (J&=J+1) and a P(50) probe transition
(Jz=J—1). The anistropy is negative and has a max-
imum magnitude at I/I„, =1, after which it decreases to
zero for large pump-beam intensities. This decrease is a
result of strong saturation, where the ground-state popu-
lation N~ approaches the value of —,', independent of M; a
uniform distribution of ground- (or excited-) state popula-
tion induces no polarization rotation in the probe beam.
The negative sign of the anisotropy indicates that absorp-
tion is greater for the x component of polarization than
for the z component. This is expected since the pump

with

J'AJ,
HAJJ) Jz( )

2 2J + 1
Xl(4 JMJzM) (NJMJzM+1) ]

X ( 1+cos8~ ) . (4.9)

Equations (4.8) and (4.9) also apply to the case of zero in-
homogeneous broadening.

In the extreme-inhomogeneous-broadening limit there
is also a simplification. Here tz » T' so that g(b, ro) can
be taken out of the integral in Eq. (4.1) as g(0). The
remaining integration in Eq. (4.1), however, must be per-
formed numerically. In Fig. 2 we show HAJJ J (0} from

1 2

Eq. (4.9} as a function of the pulse area 8o for an R (50)
pump transition (J, =J+ 1) and a P(50) probe transition
(Jz=J—1) in the short pulse limit (solid curve). Also
shown is the average anisotropy in the extreme-
inhornogeneous-broadening limit (dashed curve) given by

f "„db,roX(pro)HAJJ J (bco). As is evident, the two cases
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area 2m. This behavior was first discovered by McCall
and Hahn [7] and is formulated mathematically in what
is commonly referred to as the area theorem. The effects
of rotational degeneracy on pulse propagation and SIT
has been studied extensively in the late 1960s to the mid
1970s by several groups both theoretically and experi-
mentally using SFs [8,9]. Gibbs, McCall, and Salamo [9]
showed that the propagation of a linearly polarized laser
pulse behaves in many ways like nondegenerate SIT when
tuned to a P or R transition but not to a Q transition.
Hopf, Rhodes, and Szoke [10] studied the propagation of
pulses tuned to a Q transition.

For spectroscopic purposes, SIT in nonde gener ate
two-level systems (TLS) is not very useful since no light is
absorbed; this is not the case for OM =2m pulses in rota-

tionally degenerate TLS, where absorption (or stimulated
emission) occurs for the b,M=O transitions when
MWMo. The propagation of the pump pulse through a
medium of rotationally degenerate two-level systems is
governed by the Maxwell equations; in the plane-wave
limit and for a field on resonance, they reduce to a single
equation [8—10]:

E,(g, t)=
2~g (0)pa Jttz, z

Xgd(JKM, JiKM)
M

X J g(b, co)Im[pNt(b, co, t))db, a)

(4.11)

for a plane polarized pulse in the z direction with y being
the propagation direction. Here

O J~g x =gd (JKM, J'KM )

M

and /=ay, where a is the Beer's law absorption length
for the medium. Equation (4.11) leads directly to an area
theorem, generalized to include the rotationally degen-
erate 6M=0 transitions [8—10]:

Pm,
8(g) = — gd( JKM, JIKM )sin8(g),

2J"uJKJ, K M

(4.12)

where the maximum transition dipole is

@st =p d( JKO, J, K)Oand pd(JKJ, J,KJ) for a P (or R)

branch and Q branch transition respectively, and where
0=8~ . For a nondegenerate transition Eq. (4.12)

0

reduces to the standard area theorem originally derived
by McCall and Hahn [7]. In this case area and pulse-
shape conserving solutions exist for
8=2nvr(n =1,2, . . . ). Unstable solutions exist at
0=(2n +1)n. For rotationally degenerate two-level sys-
tems, the stable (and unstable) area conserving solutions
exist at the zeros of the right-hand side of Eq. (4.12). One
can demonstrate numerically that the stable solutions are
shifted from 2nm and the unstable solutions are shifted
from (2n+1)m. In the large-J limit, the first unstable

TABLE II. Calculated values of 10 gzJ z (0) from Eq. (4.9) in
1 2

the large-J limit (J=1000) and for the common-ground-state
configuration. In the excited-state absorption configuration
simply change the sign.

J,=J—1

J,=J
J,=J+1

J) =J—1

7.6
—31

7.6

—4.0
16

—4.0

J) =J+1
7.6

—31
7.6

solution of Eq. (4.12) is 0= 1.15m for a P (or R) transition
and 8=1.43m for a Q transition. The first stable solu-
tions are at 8=2.21m for P or R transitions and at
8=2.46m for the Q transition [8,9]. Thus for a high-J, P
transition, the area of a pulse which is initially slightly
less than 1.15m. will tend to zero at large propagation dis-
tances. If the input area is slightly greater than 1.15~,
the pulse area will evolve to a constant value of 2.21~.
Because of the distribution in transition moments, there
is absorption and pulse reshaping even though the area is
conserved by Eq. (4.12). The polarization from some M
components (m & 8M & 2m) tends to increase the pulse
area, while the others tend to decrease it, leading to a net
cancellation at the stable area. We have confirmed this
behavior numerically by integrating the Maxwell-Bloch
equations over space and time using standard numerical
algorithms [11]. Figure 4(a) shows the pulse area 8 as a
function of g for a laser pulse tuned to a P(9) transition
(solid curves) and a Q(9) transition (dashed curves) for
several values of the initial pulse area. The input en-
velope is taken to be Gaussian, E,(t) =Eoexp[ (t/—t„) ].
When the initial area is above the first unstable solution
but below the first stable solution, the area evolves to-
ward the stable value, which is 2.22m and 2. 32m. for the
P(9) and Q (9) transitions, respectively. [The R (9) solu-
tion is practically indistinguishable from the P(9) solu-
tion. ] These values are already close to the high-J values.
Note that for small input areas, the area decays exponen-
tially to zero like exp[ —ay /2], which is the linear Beer s
law result. Consideration of the normalized pulse ener-
gies (integrated over time) shown in Fig. 4(b) reveals that
a much smaller fraction of the pulse energy is absorbed
per unit length for the initial pulse areas near the stable
solution. This is due to the restricted range of M values
that are strongly pumped by this pulse. By referring to
Fig. 2, however, we also find that these stable pulse areas
yield high values for gJz+,J, and hence nearly maximize
the signal in polarization spectroscopy. The increase in
signal can be substantially greater than in the unsaturated
regime because molecules over many Beer's lengths can
interact with the probe pulse.

In Table II, we collect our findings for the two energy-
level schemes. The convergent value of gzz J for large J

1 2

values is tabulated for all of the nine possible transitions
in the common-ground-state scheme. gzz J is evaluated

1 2

at the first stable pulse area (P,R: 2.2ln-, Q: 2.46m) for
the pump pulse using Eq. (4.10). To obtain the excited-
state absorption results, relabel the rows as Jz =J&

—1,J&
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and J, +1 and change the sign of gzz z . Substitution of
1 2

these values into Eq. (4.1) gives the polarization signal in

the high optical density limit with strong laser pulses.
Tables similar to Table II can be constructed for the
higher stable solutions, but consideration of Fig. 2 shows
the first stable solution to give the maximum signal.

(a)
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FIG. 4. (a) Pulse-pulse area as a function of ay. The pump is
tuned to a R (9) (solid curve) and Q(9) (dashed curve) transition
in the extreme inhomogeneous broadening limit. The curves
were obtained by numerically integrating the coupled Maxwell-
Bloch equations [Eqs. (3.1) and (4.11)]. Three input areas are
shown: the top curves correspond to 80=2~ and 1.8m for the 8
and Q cases, respectively. Note the increase in pulse area to the
stable propagation values predicted by the area theorem. The
middle curves have 80=m and the lower curves have 80=0. 1m.

In these cases the initial pulse area is below the first unstable
value so the area decays to zero. In (b) the normalized pulse in-
tensities (integrated over time) are shown for all three cases.
The propagation depths of the higher area pulses are much
greater allowing more absorbers to contribute to the signal.
Note that the case with 80=0.1m. obeys Beer's law (the Q and R
cases completely overlap and cannot be distinguished in the
figure).

V. CONCLUSION

%e have presented a nonperturbative approach to cal-
culating the probe-pulse polarization rotation in polariza-
tion spectroscopy for an arbitrarily optically thick medi-
um. The generality of the approach leads to several in-

teresting phenomena.
(1) In the optically thin limit, a pump pulse, which is

shorter than any system relaxation time, induces a sample
birefringence that is several times greater than that estab-
lished using cw beams. The birefringence is an oscillato-

ry function of the pump pulse area (calculated with

respect to the Mo transition, where MD=0 for P or R
transitions, and Mo =J for Q transitions), with maxima

occurring at integral multiples of m. At odd multiples the
polarization rotation is positive while at even multiples it
is negative.

(2) In optically thick samples, where the reradiated
field of the medium is no longer negligible compared to
the pulse field, Maxwell's equation is needed to describe
the pump-pulse propagation. In a rotationally degen-
erate medium the propagation obeys a generalized area
theorem, which predicts that the pump pulse area con-
verges to a stable value as it propagates. Surprisingly this
value is very close to 2m, the value which maximizes
birefringence in the optically thin limit. The solitonlike
pump pulse is thus capable of inducing the same near-
optimal anisotropy to all resonance absorbers at depths
much greater than the Beer's length. In this way many
more absorbers can contribute in an optimal way to the
signal. This holds great promise for observing weak
probe transitions since the signal may then be increased
by orders of magnitude.

Although the pulse area converges to a stable value,
the pulse shape is not preserved, as in nondegenerate
self-induced transparency. In order to establish the
nonuniform M-dependent ground- and excited-state pop-
ulations the pulse must be absorbed to some extent. Fig-
ure 5 shows the pulse shape for a R (9) pump pulse at
three distances into the absorber in the extreme inhomo-
geneous broadening limit. To maintain constant area
while losing energy due to absorption, the pulse width in-
creases with propagation distance, and the ground state
hole in the broad inhomogeneous band therefore narrows
with propagation distance. Thus the M-dependent
excited-state population, which leads to the near-optimal
birefringence, is maintained for a decreasing number of
adsorbers as the pulse travels further into the medium.
As the pulsewidth approaches the excited and ground
state population and coherence relaxation lifetimes,
Equations (3.1) are no longer valid and the additional re-
laxation terms must be included. For pulse widths ap-
proaching the relaxation lifetimes the area theorem
breaks down; if the distance at which this happens is
defined as L„ then when y )L, the near-optimal
birefringence will no longer be maintained. However, by
choosing a sufficiently short pump pulse, most of the
pulse energy is absorbed before the pulse reaches L, and

L, may be several orders of magnitude greater than the
Beer's absorption length (see Fig. 4).

As a potential application of these ideas, consider the
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spectrum of methane. The overtone bands in the near in-
frared and visible are quite complex, and could not be as-
signed by traditional spectroscopic techniques. Recently,
DeMartino and co-workers [12,13] have been able to as-
sign the principal bands with two and three quanta of CH
stretch by double resonance, using a pump-probe tech-

FIG. 5. Bectric-field envelope at three distances into the ab-
sorber: ay =0.2, 10, and 20 for an initial Gaussian pulse of (1/e)
full width 2t~, calculated by numerically integrating the
Maxwell-Bloch equations [Eqs. (3.1) and (4.10)] in the extreme
inhomogeneous broadening limit. Pulse frequency is tuned to a
A(9) transition frequency. Pulses further to the right corre-
spond to the higher propagation depths. Note the temporal
broadening with propagation. Also note that the pulse travels
slower than the speed of light in the material U

=c/n, where n is
the index of refraction and c is the speed of light in vacuum.

nique. Polarization spectroscopy would be expected to
increase the sensitivity of these experiments by several or-
ders of magnitude, allowing the higher bands (which are
of importance in planetary astronomy) to be studied.
With a FT-limited pump pulse, one can achieve a 10-nsec
"2~" pulse on the v3 fundamental near 3.3 pm with a
fluence of on the order of 100 pJ/cm . The strong lines
in the v3 fundamental have peak absorption strengths on
the order of 0.1-0.5 cm ' Torr ' and thus with a pres-
sure on the order of 1 Torr (which will still have a relaxa-
tion rate slow compared with the pulse width) we will ab-
sorb a weak pulse in a few centimeters of pathlength.
With such a small efFective pathlength, sensitivity would
be severely limited. However, by using a 2~ pulse, we
can use a factor of 10 or more longer pathlengths. Com-
bined with the increased anistropy of the sample, a large
increase in sensitivity should result. An added benefit re-
sults from the decreasing spectral width of pumped mole-
cules as the beam propagates through the sample.
Without pulse reshaping, the spectral resolution of the
probe transition is limited to the FT width of pump laser
times the ratio of frequencies, due to the Doppler
broadening. But as the 2m pulse propagates in the opti-
cally dense sample, it will lengthen in time and pump an
even narrower distribution in velocity, leading to
enhanced resolution on the pump transition.
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