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Radiative recombination of bare ions with low-energy free electrons
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Radiative recombination of bare ions with electrons is discussed as a time-reversed photoionization
process in the nonrelativistic dipole approximation. Analytical expressions for the radiative-
recombination cross section and the angular distribution of the emitted photons are derived for an arbi-
trary (n, I) state in the low-energy limit. In this approximation, the anisotropy of the emitted photons is
described by an energy indep-endent parameter P„l. The radiative-recombination rate coefficients, both
differential and angle integrated, for any (n, l) state can, in this limit, be expressed in analytical form.
This result holds also for an anisotropic electron-velocity distribution characterized by a longitudinal

kTii and transverse kT, electron-beam temperatures. The results are discussed in context of the state-
selective radiative-recombination experiments planned to be studied in electron coolers of heavy-ion
storage rings.

PACS number(s): 34.80.Kw

I. INTRODUCTION

Radiative recombination is one of the fundamental
processes in the electromagnetic interaction of charged
particles. In this process, e.g., an ion captures a free elec-
tron and the excess energy is emitted as a photon. Radia-
tive recombination is, essentially, a time-reversed photo-
ionization process. The importance of radiative recom-
bination has been recognized in many contexts such as
plasma physics [1], astrophysics [2], and accelerator
physics, in the last case for the process of cooling an ion
beam in a storage ring with electrons [3].

The radiative recombination with particles other than
electrons and ions, for example, muons (p ), positrons
(e+ ), or antiprotons (p ), has also been studied frotn the
point of view of mesonic-atom physics [4], muon-
catalyzed fusion [5], antihydrogen (pe+) production [6],
and protonium (pp ) formation [7].

The heavy-ion storage rings (TSR [8], ESR [9], AS-
TRID [10],and CRYRING [11])equipped with electron
coolers offer unique possibilities to study radiative recom-
bination between free electrons and bare or few-electron
ions in much more detail. In this context, precision x-ray
spectroscopy of H-like and few-electron ions via state-
selective radiative recombination has been proposed
[12,13].

The radiative-recombination process was studied
theoretically, in the 1920s, by Kramers [14], Oppenhei-
mer [15], Wessel [16], Stueckelberg and Morse [17], and

by Stobbe [18],who gave the most extensive study of the
subject. He derived, in the dipole approximation, the
quantum-mechanical expression for the radiative-
recombination cross section for arbitrary hydrogenic
(n, l) states. Later, radiative recombination was dis-
cussed by Bethe and Salpeter [19],who derived a simple
estimate of the radiative-recombination cross section for
a fixed n state. Later the process was studied by several
authors in the context of different experiments, namely,
the muon (p ), pion (m ), and kaon (K ) radiative

recombination by Baratella, Puddu, and Quarati [4] and
the muon-catalyzed fusion process by Soff and Rafelski
[5], who performed extensive numerical calculation of
radiative-recombination cross sections. The process of
antihydrogen production by induced radiative recom-
bination, i.e., a photon-assisted radiative recombination
of antiprotons (p) with positrons (e+ ), was discussed by
Neumann et al. [6]. The question of protonium forma-
tion via radiative recombination between protons and an-
tiprotons was discussed by Bracci, Fiorentini, and Pitzur-
ra [7].

The radiative recombination between bare ions and
free electrons, from the point of view of atomic physics
experiments planned at heavy-ion storage rings, was dis-
cussed extensively by Liesen and Beyer [20] and Schuch
et al. [21]. Also, the infiuence on the radiative-
recombination process of the core electrons in not fully
stripped ions (for energies relevant for plasma processes)
was discussed by Hahn and Rule [22], Kim and Pratt
[23], and, recently, by McLaughlin and Hahn [24].

Only recently have the first experimental results be-
come available, both for the total radiative-
recombination cross section (Andersen, Bolko, and Kvist-
gaard [25], Andersen and Bolko [26], and Miiller et al.
[27]) and for the state-selective laser-induced radiative-
recombination process (Schramm et al. [28] and Yousif
et al. [29]).

Since the radiative-recombination cross section in-
creases with decreasing electron energy in the ionic sys-
tern, this process gives the largest contribution for low
relative energy. In fact, in many cases it is enough to
know the recombination cross section in the limit of elec-
tron energy that is low relative to the electron binding en-

ergy in the final state. This condition is perfectly fulfilled
for the electron-ion experiments planned in the storage
rings. There, typically 0.2-eV electrons (transverse
electron-beam temperature in an ion frame) recombine
with a cooled beam of high-Z bare of few-electron ions,
these having binding energies in the kilo-electron-volt
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range for low (n, I ) states.
The aim of this paper is to study systematically the

state-selective radiative recombination of free electrons
with bare ions in the low-energy limit. In this limit, we
give compact analytical results for arbitrary (n, 1 ) states
for (i) electric dipole matrix elements, (ii) radiative-
recombination cross sections, (iii} angular distributions of
x rays and, finally, (iv) rate coefficients (double
differential, differential, and integrated) for arbitrary
electron-beam-velocity distribution characterized by lon-
gitudinal and transverse electron-beam temperatures, kT~~

and kTj, respectively.

II. RADIATIVE RECOMBINATION
IN THE LOW ELECTRON ENERGY LIMIT

d o r„'I ( Ey )

dQ
0~1(Er ) P„I(Ey )

1+ [3(e.u )
—1]

(3)

where o~&(E~ } is a total (angle-integrated) photoioniza-
tion cross section and u and e are unit vectors directed
along the electron momentum and photon electric vector,
respectively. 13„&(Er) is the so-called anisotropy parame-
ter [31],describing completely the angular distribution of
photoelectrons. In the dipole approximation, the quanti-

The radiative recombination of a free electron to the
bound (n, l) state of a bare ion with atomic number Z
may be written as

++e ~A' "+(n, l }+E
where n and I are the main and orbital electron quantum
numbers in the final hydrogenic (n, I) state, and

Ez =E+E„I is the emitted photon energy, which equals
the kinetic energy E of the electron plus the electron
binding energy E„I in the final state.

Since the radiative recombination is a time-reversed
photoionization process, and the cross sections for both
processes are related via the principle of detailed balance
[30], one can use the known results (see, e.g., Ref. [31]}
for the differential photoionization cross section
d 0 r'~ (Er )Id 0 to get the differential cross section
da„I(E)ldQ for radiative recombination. In fact, when
an electron with momentum p recombines with a bare
ion, and the emitted photon has the momentum A'k

(Er =Akc ), one can write, for a fixed polarization state of
the photon (i.e., the electric vector orientation), the fol-
lowing relation between the differential cross sections for
both processes (see Ref. [30]):

der„((E) (gk)2 der~I(Er)

dQ 2 dQ

The differential photoionization cross section (i.e., the
angular distributions of photoelectrons) do~I(E» }ldQ
appearing in this equation were studied extensively in the
context of photoabsorption and photoelectron spectros-
copy [31,32]. Within a nonrelativistic treatment in the
dipole approximation the differential photoionization
cross section can be expressed as follows [31]:

ties cr~i(E&) and P„I(E&) in Eq. (3) can be expressed [31]
in terms of the electric dipole matrix elements d&+&(E ),
as will be discussed in detail in the following sections.

Finally, taking into account that the total (angle-
integrated) cross sections for radiative recombination
O„I(E) and photoionization o~&(Er) are related in the
same way as the corresponding differential cross sections
[30], namely, O„I(E)=[(A'k) /p ]o'„q(Er), it turns out
that the same relation as Eq. (3) holds for the difFerential
radiative-recombination cross section:

d o 5!(E ) +III (E ) ~n I (E )
1+ " [3(e u~) —1]

4m.

Throughout this paper we will use the fact that the
differential radiative-recombination cross section can be
described completely by the total recombination cross
section o„&(E) and anisotropy parameter P„I(E), which

in turn are expressed by the electric dipole matrix ele-
ments [31]. In the following sections we will discuss in

detail the o „I(E)cross section and anisotropy parameter

P„I(E}for the case of low electron energy E «E„I. In
this limit, both the radiative-recombination cross section
and rate coefBcient can be expressed analytically.

In the present paper the radiative recombination is dis-
cussed within a nonrelativistic dipole approximation
[18,19,31]. A recent justification of this approach for
low-energy electrons (E «E„I) can be found in a publi-

cation by Scofield [33], who discussed, in a relativistic
treatment including higher multipoles, the angular distri-
bution of photons from radiative recombination with keV
electrons. He showed that a nonrelativistic dipole ap-
proximation describes the recombination process very
well for electron energies in the eV region. Generally, an
influence of the relativistic effects on the radiative recom-
bination can be discussed in light of existing extensive
studies [34,35] of a time-reversed photoionization pro-
cess, which is described by the same matrix elements for
the bound-continuum transitions. For total I( -shell pho-
toelectric cross sections it was established long ago by
Hall [34] that the relativistic effects are not important in
photoelectric process even for the heaviest elements,
where aZ =0.6, unless the photoelectron energy is
higher than the electron binding energy, namely, when
E E„I. To be more precise, we have compared a nonre-
lativistic E-shell photoionization cross section for urani-
um (Z=92} as given in the dipole approximation by
Stobbe [18] with the existing relativistic calculations, in-

cluding higher multipoles, of Hultberg, Nag el, and
Olsson [38]. In these calculations the relativistic un-
screened Dirac wave functions were used, which makes
these results especially suited for describing recombina-
tion of bare ions, where a hydrogenlike system is the final
state. For the lowest available photon-energy point for
uranium E&=132 keV, corresponding to E/Ez =0.15,
we found an excellent agreement (within 1.2%) for both
approaches, indicating that a nonrelativistic dipole ap-
proximation can be used safely even for high nuclear
charges in the low-energy regime. Despite the observa-
tion that the relativistic effects do not influence strongly
the total photoionization cross sections when E &&E„&,it
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was found [32,36,37] that the anisotropy parameter p„I is
much more sensitive on relativistic corrections. Detailed
discussion of this question for different (n, l ) states was
given by Pratt and co-workers [36,37] and Manson and
Starace [32], where the general conclusion was drawn
that a nonrelativistic dipole approximation describes the

p„I parameter fairly well for inner shells (n &4), but for
outer shells in many-electron atoms strong relativistic
effects related to the, so-called, Cooper minima (see Refs.
[39] and [40]) were found. However, since these effects
were found to be caused by a nonhydrogenic behavior
[39,40] of the electronic wave functions, one can expect
that it has less importance for a hydrogenlike ion (final
state) discussed in the present paper. In fact, it was
proved [40] that for one-electron ions treated nonrela-
tivistically, due to a pure Coulomb potential, the Cooper
minima do not occur at all. Summarizing, a nonrelativis-
tic dipole approximation for radiative recombination be-
tween bare ions and free electrons is expected to be valid
even for the highest nuclear charges in the discussed
low-energy approximation E &&E„I.

A. Recombination cross section a „I(E)

For radiative recombination of bare ions with free elec-
trons, both the initial- (continuum-) and final- (bound-)
state wave functions are known analytically for any (n, I )

state. Consequently, according to Stobbe [18], the
radiative-recombination cross section O.„I, within a non-
relativistic treatment in the dipole approximation, can be
expressed as follows:

2(1+x )o„I(x)= a ao [(I+1}~CI'+'(x)~

+I ~C„", -'(x) ~'], (5)

where x =(E/E„I )'~ is a dimensionless parameter which
measures the free-electron kinetic energy relative to the
electron binding energy in the final state, a is the fine-

structure constant, and ao is the Bohr radius. The
C„ I'*'(x) are the electric dipole matrix elements [18] for
transitions [(E,1+1)—+(n, l)], which can be expressed in
terms of parameter x (to get dimensionless quantities) as
follows:

CE,I+ I( )
(
—1) "i

8x (21+1)!

' 1/21+1
2 g [s +(n/x) ]

s=1

h
711T

X

(n+I )!
(n —I —1)!

' 1/2
n

exp ——2 arctanx
2 X

4x
1+x

' 1+2
n, —1

u

X 2F1 l+2 —i—,—nr, 2l+2; 1—. n 1
u F l l, Pl, 2l+2; 1

2 . n
2 1 rs (6)

and

CE, I —1(x)— ( —1) "

8x i (21—1)!

2 P [s +(n/x) ]
s=1

h
Pl7T

X

1/2

(n + I )!
(n —I —1)!

1/2
7l

exp ——2 arctanx
2 X

4x
1+x

- I+1
n„

u

. n 1
X F l —i—,—n, 2l 1—

1 9 rp
u

—u F l —i—,—n —22l 1—2 . n 1
r

u
(7)

where n„=n —I —1, u =(1+ix)/(1 ix), and 2F—, (a,p, y;z) is the hypergeometric function [41]. Numerical calcula-

tions of the radiative-recombination cross section according to these rather complicated expressions were performed by
Stobbe [18],Baratella, Puddu, and Quarati [4], Soff and Rafelski [5], and recently by Andersen and Bolko [26].

However, when the electron kinetic energy is much smaller than the binding energy of the electron in the final state,
i.e, when x « 1, we show (see Appendix} that the electric dipole matrix elements in this limit depend on x in a much

simpler way:

221+4 I + 1 —2n
CE, I+1( ) ( 1)n

—I —I

(21+1)!
(n + I )!

(n —I —1)!

1/2

l —n+1
X F(1 n+1,21+2;4n ) —— F(l n+2, 21—+3;4n ) V'x

I+1
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and

22l I —1e —2n
CE I —

1( ) ( 1)n
—I

(21—1)!
(n +1)!

(n —1 —1)!

1/2

0 (n, l ) = a ao[(1+1)cI+,(n, l )+lcI, (n, 1 )] . (12)

where we have introduced the reduced radiative recom-
bination cross section o (n, 1 ):

X [F(l —n+ 1,21;4n )

F(—l n——1,21;4n ) ]&x

=( —1)" 'cI,(n, 1 )&x (9)

where we have introduced the energy-independent re-
duced electric dipole matrix elements c&+&(n, l}. Here
F(P,y;z } denotes the confiuent hypergeometric function
[41]. Since the parameter P in our case always is a non-
positive integer [see Eqs. (8) and (9}],the confluent hyper-
geometric function has a simple polynomial form (see

Appendix}.
Inserting the asymptotic expressions for the electric di-

pole matrix elements when x «1 [Eqs. (8) and (9}]in Eq.
(5}, we find the following expression for the radiative-
recombination cross section into the (n, l} state in the
limit of low electron velocity:

2

a„I(x)= a ao[(1+1)cI+,(n, l)+lcI, (n, l)]

(10}

o„&(E)= o(n, l),E

1.2

1.0 '
n=1

0.8
IE

y8

0.6

Equation (10}shows the well-known result that in the
low-energy limit the radiative-recombination cross sec-
tion scales as 1!E(since xz=E/E„&), and gives a simple
analytical result for a fixed arbitrary (n, 1 ) state:

We point out that our simple analytical expression for
the radiative-recombination cross section for an arbitrary
(n, l) state contains information about the different 1-

state distributions, thus extending the widely used Bethe
and Salpeter [19] formula which gives information only
on the n-state distribution. Equation (11)also shows that
the relative population of different I states in radiative
recombination does not depend on electron energy in the
low-energy limit. Numerically we found it to be approxi-
mately universal with respect to 1 In In F. ig. 1, the rela-
tive population of different 1 states, cr(n, l)/~, „(n,l)
[where o,„(n,l } means the largest cross section with

respect to 1 for a fixed n], are shown for selected n & 30
versus 1ln. For the lowest n states this distribution
peaks at l=nl2 and with increasing n it gets a more
universal shape, with a maximum located at 1 =n 13.

The knowledge of the reduced radiative-recombination
cross section [Eq. (12}]allows one to calculate the recom-
bination cross section for any system (e.g., electron-ion,
muon-ion, etc.}, within the limit of low energy, using the
scaling relation of Eq. (11). The numerical values of the
reduced recombination cross section, for final states with
n & 10, are summarized in Table I. We should also men-
tion here that the low-energy approximation discussed
above was the subject of investigation in a few previously
published papers. Stueckelberg and Morse [17] gave, we

believe, the first correct result in the low-energy limit, but
their analytical expressions are much more complicated
than ours. Stobbe [18], despite the general formula for
radiative-recombination cross section [Eq. (5)], gave
closed analytical expressions only for the lowest n =1, 2,
and 3 states. Radiative recombination in the low-energy
limit was also investigated by Baratella, Puddu, and
Quarati [4], but we believe that their final formula [Eq.
(27) in Ref. [4] ] is wrong. Finally, Andersen and Bolko
[26] performed extensive numerical calculations which,
due to the approximation used (only linear terms in the
hypergeometric functions were taken into account), yield
the same results as ours, but they did not get an analyti-
cal expression for the cross section.

0.4
I B. Photon angular distribution (do„I /d Q)(8)

0.2',

0.0
0.0 0.2 0.4

n

0.6

10

0.8 1.0

FIG. 1. Relative l distributions of the reduced recombination
cross section, shown as the ratio of o.(n, l)/o. ,„(n,l), where
o. ,„(n,l ) denotes the largest o.(n, I ) cross section for a fixed n,
vs the l/n ratio for selected n states with n ~ 30. Note that for
increasing n the curves approach a universal curve peaked at
I =n/3.

In the introduction to Sec. II we have shown that the
differential radiative-recombination cross section
do „I(E )Id 0„for a fixed polarization state of the photon,
can be expressed by Eq. (4). However, when the polariza-
tion of the photons is not measured, one has to average
the angle-diff'erential cross sections [Eq. (4)] with respect
to diff'erent polarization states (e directions) of the pho-
tons, measured at a fixed angle 8 relative to the electron
momentum direction. After such an averaging, the angu-
lar distribution of photons from radiative recombination,
in polarization-insensitive experiments, may be expressed
as follows:
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TABLE I. The reduced radiative-recombination cross section 0.(n, l ) (in barns), the ratio of the re-
duced electric dipole matrix elements icl, (n, l)lci+, (n, l)~, and the anisotropy parameter P„, for
different (n, l ) states, as obtained in the low-energy approximation E ((E„I. Note that for / =0 only
(E,1 + 1)~(n, l ) transitions contribute.

State

(n, l) o.(n, l )
cI i(n, 1 )

cI+](n, l )

1 0 167.9 2.000

2 0
2 1

98.38
270.5 0.250

2.000
1.455

30
3 1

3 2

74.50
231.1
267.6

0.333
0.167

2.000
1.579
1.182

40
4 1

42
4 3

62.08
196.8
297.6
222.3

0.396
0.219
0.125

2.000
1.662
1.290
1.027

5 0
5 1

5 2
5 3
5 4

54.31
172.6
284.7
305.6
167.9

0.445
0.264
0.160
0.100

2.000
1.719
1.378
1.110
0.929

60
6 1

6 2
6 3
64
6 5

48.93
155.0
265. 1

328.1

275.4
119.4

0.484
0.303
0.192
0.125
0.083

2.000
1.762
1.450
1.184
0.992
0.861

7 0
7 1

7 2
7 3
7 4
7 5
7 6

44.94
141.8
246.3
327.2
329.8
227.8
81.41

0.517
0.337
0.222
0.149
0.102
0.071

2.000
1.794
1.509
1.249
1.051
0.910
0.811

8 0
8 1

8 2
8 3
8 4
8 5

8 6
8 7

41.85
131.5
230.0
317.6
353.2
301.7
177.2
53.83

0.545
0.367
0.249
0.172
0.120
0.086
0.063

2.000
1.820
1.558
1.307
1.106
0.958
0.850
0.774

9 0
9 1

9 2
9 3
9 4
9 5

9 6
9 7
9 8

39.35
123.2
216.0
305.1

360.0
346.9
257.6
131.6
34.77

0.569
0.393
0.274
0.193
0.138
0.100
0.074
0.056

2.000
1.840
1.599
1.359
1 ~ 158
1.003
0.889
0.805
0.744
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State

(n, I) o.(n, I )

TABLE I. (Continued)

cl, (n, I )

&1+1(n ~)

10 0
10 1

10 2
10 3
10 4
10 5

10 6
10 7
10 8
10 9

37.29
116.3
204.0
292.2
358.1

372.2
317.2
208.7

94.38
22.04

0.590
0.417
0.297
0.214
0.156
0.115
0.086
0.065
0.050

2.000
1.857
1.635
1.404
1.205
1.047
0.927
0.837
0.770
0.720

do„l(E,B) o„,(E) p„l(E)
1 — P2(cos@) (13)

where Pz(cos@}=—,'(3cos 8—1) is the Legendre polyno-
mial of second order. The question of the polarization of

I

photons from radiative recombination into different (n, I )

states will be discussed elsewhere [42].
For radiative recombination of bare ions with free elec-

trons (hydrogenic ion in the final state), treated in the di-

pole approximation, the anisotropy parameter has the
following form [31]

(I+2))di+i( +(I—1)[di, ( +6i/I(I+1)Re(di+idi ie '+' ' '
)

„l(E)=
(2l + 1)( Idl+ i I'+ I dl i I')

(14)

where 5i+i are the Coulomb phase shifts and the matrix
elements disci (see Ref. [31]) are related to Stobbe's ma-
trix elements C„l'*'(x) [Eqs. (6) and (7)] as follows:

dl+i~( 1) + i/I+1C ' (x)

~ ( 1 )l~( CE, 1 —
1(x )

(15)

(16)

Since p„i(E) depends only on a ratio of dl+i quantities,
in these formulas, for simplicity, a constant factor was
omitted. As we showed in the preceding section, in the
low-energy limit (x «1) the matrix elements C l'+'(x}
are proportional to &x [Eqs. (8) and (9)]. Additionally,

I

I

for hydrogenic ions the Coulomb phase-shift difference in

Eq. (14) may be expressed as [31]

Z Z
5 —5 = — arctan1+1 I —1 (I+1)p

+arctan —,(17)
Ip

where p denotes the electron momentum (in atomic
units). Consequently, the Coulomb phase-shift difFerence

5l+, —5, ,~ n for a low-—energy electron (x ~0). Fi-
nally we thus find that in the low-energy limit the anisot-
ropy parameter P„i becomes energy independent and may
be expressed by the reduced matrix elements ciz, (n, I ):

(I +2)(l + 1)cl+,(n, I )+I(l —1)cl,(n, I ) —61(I + 1)ci+,(n, I )c, ,(n, I )

(2l+1)[(l+1)el+i(n, l)+Ici, (n, l )]
(18)

In particular, it turns out from Eq. (18) that for recom-
bination to s states (I =0) only the (E,I + 1)~(n, I ) tran-
sition contributes and consequently P„0=2, which corre-
sponds to the well-known result that the angular distribu-
tion of photons for recombination to the E shell is pro-
portional to sin 8 Ref. [19]. Usually, the
(E,I+1)~(n, I ) transition dominates over the
(E,l —1)~(n, l) one [see Eqs. (8) and (9) and Table I].
This means that ~ci+,(n, l)~ &&~ci,(n, l }~, and in this
case P„,=(I+2)/(2I+ I) and approaches the limiting
value —,

' for large I (see Table I). The angular distributions
of photons for selected (n, I ) states for n & 3 are present-

ed in Fig. 2. One can see that the angular distributions
for states with l ~1 have nonzero values for 8=0' and
180 . This is a tendency that the angular distributions are
getting more flat with increasing n and I values, when P„i
goes to —,

' (see Table I for the values of P„i).

m. RADIA'rIVE RECOMSINATION
RATE COEFFICIENTS

Under realistic experimental conditions, the electron
beam in the electron cooler of a storage ring is character-
ized by effective longitudinal kT~~ and transverse kT~
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30(—
I

(n, I)

O

z

Cz

A

/
/y/ ~ ///

/
/' j

/ / /
/ /j r

30 60 90
ANGLE (deg)

120 150 180

FIG. 2. Reduced angle-differential radiative-recombination
cross sections do(n, l)('8)/dQ=[o'(n, I)/4~][1 (P,I/
2)Pz(cos8)] vs photon-emission angle 8 (in the ion frame) for
selected states (n, l) with n ~ 3. Note that for all (n, 0) states,
P„0=2, i.e., the angular dependencies are the same for these
states.

beam temperatures and has, in the ion frame, the follow-
ing relative velocity [v = ( u

~~,
u ~ ) ] distribution [20,21]:

T' 3/2

d a«2(E~ E«)— do«f (v)f(v)dQ„,
dE dQ

(23)

where Ez is the emitted photon energy, d 0,=sin8d 8dy
denotes the solid angle in the polar coordinates (8,y)
defined by the momentum p of the incoming electron. In
order to get the radiative-recombination rate coefficient
for a fixed (in the ion frame) observation angle 8 relative
to the ion-beam direction, we have to perform an angular
integration over d Q„ in Eq. (23). Inserting the expression
for the angle-differential radiative-recombination cross
section do„,/dQ„[Eq. (13)] with anisotropy parameter

p„I from Eq. (18) into Eq. (23) one obtains, following
Liesen and Beyer [20], that the double-differential rate
coefficient has the following form:

d a«E«cr(n, l ) exp[ —(E& E«)/kT—&]

~(2~m)' ' kT, (kT~ )' '(E,O)=

fo(a)+ ~p d't(a)

A. Double-di8'erential d a„l /dE~ 10 rate coe%cient

The double-differential d a„1ldE&dQ rate coefficient
is related to the differential radiative-recombination cross
section [Eq. (13)] and the electron-beam-velocity distribu-
tion [Eq. (19)] in the following way [21]:

f(v)= m

277

1

kTi(kT
mu~

2kT~

mU
II

2kT

(19)
—

—,'p„lfz(a)sin 8 (24)

where m is the electron mass and k denotes the
Boltzmann constant. In the electron cooler, the efFective
electron-beam temperatures in the ion frame (kT and

II

kTj ) result from convolution of the electron- and ion-
beam-velocity distributions, characterized by (kT, l, kT, j )

and (kT;~~~, kT,~) beam temperatures, respectively. Conse-
quently, one gets the following expression for the effective
electron-beam temperature in the ion frame [20,21]:

(20)

where the functions f;(a) are defined as follows:

fc(a)= f e'" dx,
0

f, (a)= f e'" (1—x )dx,

fz(a)= —,
' f e'" (1—3x )dx,

with

kTII
a =(Ey E,I)—

(25)

(26)

(27)

(28)

kT~ =kT,~+ kT;~, (21)

a„i=(uo„i(v))=f uo«(v)f(v)d v . (22)

In the same way, the double-differential d a„I/dE&d 0
and differential du„1 ldQ rate coefficients can be intro-
duced. In the low-energy electron limit (x «1}, the
radiative-recombination rate coefficients can be expressed
analytically for an arbitrary (n, l) state. This will be
shown in the next subsections.

where m and M are the electron and ion masses, respec-
tively. When the electron beam has some velocity distri-
bution f(v}, instead of the radiative-recombination cross
section defined for a fixed electron velocity [Eq. (5)], it is
convenient to introduce the integrated quantity, the rate
coefficient a„&, defined as follows:

d a«E«o (n, I )

&E„dQ "
m-(2am )' kT (kT)()'

(29)

For the case of recombination to the s state, the
present results coincide with the expression for K shell

given by Liesen and Beyer [20], being a specific case in
our general result for p&0=2. In this context, it is
worthwhile to note that in the previous study by Schuch
et al. [21] it was assumed erroneously that the angular
distribution of photons follows the sin 8 law for any (n, I)
state. In light of Eq. (13), this is true only for the s states,
where due to p„0=2 one gets the sin 8 factor in the angu-
lar distribution.

We would like to point out that the double-difFerential
rate coefficient for photon energies near the edge
(Er =E«) does not dePend on P«or 0, since for a =0
one has fo(0)=1, f, (0)=—'„and fz(0)=0. It can be
written as
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which means that the magnitude of the sharp jump in the
photon spectruin expected at E» =E«[see Eq. (24); and
Fig. 10 in Ref. [20] ] will not be influenced by an x-ray an-
isotropy.

Finally, we would like to mention that while deriving
Eq. (23) it was assumed that the width I «of the final
state is small relative to the beam temperature kTi (see
Ref. [21]). This assumption is exactly fulfilled for recom-
bination into the ground state of the ion, which of course
has a zero width. A possible modification of Eq. (23} for
a nonzero width I'«was studied by Schuch et al. [21],
and will not be discussed here.

B. Angle-differential da„i /d Q rate coefficient

The angle-differential rate coefficient da„&/1Q can be
obtained by integrating the double-differential rate

I

coefficient d a«/dE»d Q [Eq. (24}]over the photon ener-

gyE, :

d2
(30)

Note that there is no contradiction in taking this in-
tegral up to infinity (E ~ 00 } within the low-energy ap-
proximation (E &&E«) since the integral is, in a good ap-
proximation, mostly determined by the contribution
around the end-point photon energies Ez =E„I. Before
performing the integration in Eq. (30), we rewrite
d a«(E», 8)/dE»dQ [Eq. (24}], introducing the full ex-
pressions for the f;(a) functions [Eqs. (25)—(27)] and
variable E=E~ —E„I. From this we have

d'a„, E„,u(n, 1 ) 1(E,8}=, , f dx[wi(8) —w2(8)x ]exp
&E»&Q n(2am )» kTi(kTi)

where

kTi —
kTII 2

kTi kTikT
(31)

w, (8)=1+ ', P«sinz—8—, (32)

wz(8)= —,'P„i(1——', sin 8) .

Now changing the integration variable in Eq. (30) from E» to E=E» E«we ge—t

E«o(n, l)(8)=, , f dE f dx[w, (8)—w2(8)x ]exp
~(2mm )'" kT, (kT

i
)

1

kTi
kTz —

kTII 2

(33)

(34)

kT~ —kT
II

(35)

Introducing in this integral a dimensionless parameter This result shows that the angle-difFerential rate
coefficient da«(8)/dQ scales as (kTi) '~ times a func-
tion G„&(8,t ) which depends only on an electron-beam
asymmetry parameter t:

which is a measure of the asymmetry of the electron-
beam-velocity distribution, and changing the order of in-
tegration in Eq. (34) and introducing a new integration
variable w =E/kT&, we find

10

da«E«o (n, l ) (r + 1)i»~
(8)=

7r(27rm )' (kTJ )'

X f dx[w, (8)—w2(8)x ]

X f dw exp[ —(1+tx )w] . (36)
0

Ez

10 11

CQ
O
C3

Ar "'(ls)

kT = OZ eV

kT„= 0.002 eV
flattened
Maxwellian

The integration over x and w in Eq. (36) can be per-
formed analytically, and we arrive at the final result for
the angle-difFerential rate coefBcient:

10
0 60 90

ANGLE (deg)

120 150 180

E«o(n, I )
(8)= (,+,}in,-3»2

dQ ~(2~m)'»2 (kT )»2

X [[wi(8}t+w2(8)]

Xarctanv t w2(8)Wt ]
—. (37)

FIG. 3. Angle-differential rate coe%cient da„l(8)/dQ for
recombination of Ar' + ions with electrons into the 1s state in
Ar' +, vs photon-emission angle 8 in the ion frame. The elec-
tron beam is characterized by transverse temperature kT& =0.2
eV and different longitudinal temperatures kTII as shown in the
figure.
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2.5—
G„,(0 =0;t.)

3.0 I IIII' I I t I IIII' I I I I IIII[ I I I IIIII' I I I I IIII' I I I I IIII) I 1 I | If ll da„&/dQ(8=0 ) by a factor of (m/2)(1+p„I/4) for a
flattened electron-velocity distribution. Generally, this
factor varies between —,', m. and —,

'm. for the limiting p„&

values —,
' and 2, respectively (see Sec. II B and Table I).

2.0—

1 5

X

C. Rate coefBcient a„I

The radiative-recombination rate coefficient a„I can be
derived by the angular integration of da„&/d II [Eq. (37)].
The resulting expression is

' 1/2

arctan&t (40)

0.5
10 10 '

1 10 10'
T, /T, i

—1

10 10 ' 10 '

FIG. 4. Dependence of the G„I(8=0';t) (shown for the 1s
state) and G(t) functions, see Eqs. (39}and (40), respectively, on
the electron-beam asymmetry parameter t=(kTj —kT~~)/kT~~.
The extreme values of the asymmetry parameter t correspond to
Maxwellian (t ~0) and flattened (t~~ ) electron-beam-
velocity distributions.

This equation contains a scaling function
G(t) = [(t+ 1)It ]' arctan&t which for extreme
Maxwellian and flattened electron-velocity distributions
approaches G '"(t~O)=1 and G""(taboo )=n/2, r. e-
spectively. Also, Eq. (40) shows a well-known result [43],
that the flattened electron-velocity distribution increases
the rate coefficient by a factor of m/2 relative to the
Maxwellian distribution. A dependence of the G(t) func-
tion on the electron-beam asymmetry parameter t is
shown in Fig. 4.

G„I(8,t)=(t+I}'~ t ~ j[w, (8)t+w~(8)]

X arct an/t w2(8)V—t ] .

(38)

In two extreme cases of the electron-beam-velocity dis-
tribution, namely, for Maxwellian (kT1 =kTj;t~O) and
fiattened (kTl «kTt;t~ ~ ) distributions, the values of
the G„I(8,t) function approach G„&'"(8)= —,

' [3w, (8)
—wz(8)] and G„"&"(8)=(m/2)w&(8), respectively. As an
example, the angle-differential rate coefficient for the ra-
diative recombination of low-energy electrons with Ar' +

ions (into the final ls state} is shown in Fig. 3. An
enhancement of the rate coefficients for forward and
backward angles is clearly visible. It is also worthwhile
to note that the angle-differential rate coefficient for
8=0', i.e., on the axis of the electron cooler, takes the fol-
lowing form:

G„I(8=0',t ) =(t+ 1)' t

X ' 1+ t+ —,'p„i

X arctanv't —'p„lv't— (39)

This result shows immediately how a zero-degree x-ray
measurement can be influenced by an x-ray anisotropy,
described by the anisotropy parameter p„i [Eq. (18)]. For
Maxwellian and flattened electron-velocity distributions
this function approaches G„I'"(8=0',t ~0)= 1 and
G„"f'(8=0;t ~ oo ) = ( n /2)(1+ p„i /4 }, respectively. The
dependence of the G„&(8=0,t ) function on the electron-
beam asymmetry parameter t =(kTt —

kT~~ )IkT~~ is

shown in Fig. 4. Note the essential increase of

IV. DISCUSSION

Since the radiative-recombination cross sections and
rate coefficients derived above were obtained in the low-
energy approximation (E «E„&) they are valid only up
to some limiting n, „value. Indeed, setting the condi-
tion that a typical electron energy E =kT~ &(E„&,where

E„i=Z Eo/n with Eo = 13.6 eV being the Rydberg en-

ergy, one gets n,„«Z(Eo/kTt)' . When we further
assume that a typical value of the transverse electron-
beam temperature in an electron cooler [3] is

kTj =Eo/100 we get n,„«10Z, which practically
means that the low-energy approximation can be safely
used up to n,„=Z. This result shows that, for instance,
for Ar' + ions the low-energy approximation is valid for
n states up to n =20, or for U + ions up to n =100. In
this context, we cannot estimate the total radiative-
recombination cross section, o „,(E)=g„"=tel =o a'„I(E ),
and total rate coefficient, a„,=g„",g& o'a„&, within the
low-energy approximation, which limits n n,„. To
calculate a„i(E) and a„i for n n),„neohas to go
beyond the low-energy limit, but this question will be dis-
cussed separately [44].

In the following we will find a more quantitative condi-
tion for a validity of the low-energy approximation
(E «E„I) estimating how small x =(EIE„I)' should
be to have an allowed accuracy of the analytical results,
say e. One finds that the next nonvanishing term in
the expansion of Eq. (5) for small x, as compared to
Eq. (10), is a quadratic one, namely o „I(x }
= (o „& /x 2)(1+const Xx ~). By inspection of Eqs.
(5)—(7) one finds that, roughly, const=n/3, which gives
us a simple estimation of the highest x value for an al-

lowed accuracy as nx /3 ~e. For instance, we see from
this immediately that x ~ 0.3 when S% accuracy is
desired for a recombination cross section into the ground
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state. Furthermore, we can now relate n,„discussed
above with an allowed degree of accuracy e as follows:
n,„&(300eZ )'~, for a typical electron-beam tempera-
ture kT~ =Eo/100 as above. One can thus find that the
criterion established for the applicability of the low-

energy approximation in the electron cooler, n,„~Z,
corresponds, roughly, to an accuracy of 5% for Ar' +

and of 30% for U + ions.
Finally, it should be mentioned here that the results

presented in previous sections for radiative-
recombination cross sections, photon angular distribu-
tions, and rate coefficients are valid in the moving frame
of the ion. The transformation from this frame to the
laboratory system can be performed using the following
relations [20]:

cos8iqb P
cos8=

1 —P cos8&,b

dQ 1 —P
(1—P cos8i,b)

E
y(1 —Pcos8„b) '

(41)

(42)

(43)

where p= v;,„/c, with U;,„being the ion velocity,

y = 1/(1 —p2)'~2, and the index lab denotes the quantities
in the laboratory system. The x-ray intensity measured
on the axis of the electron cooler in the forward direction
(8„b=0') is increased due to this transformation by a fac-
tor dQ(8=0')/dQ»b=(1+P)/(1 —P), which gives a
30% gain of x-ray intensity for the example of an Ar' +

ion beam with p= 0. 12. The angle-differential
recombination-rate coefficient da„I/dQ for this beam,
transformed to the laboratory system, is shown in Fig. 5
for different longitudinal electron-beam temperatures.
The advantage to using a forward angle to measure x rays
from radiative recombination is evident in this figure. In
fact, the ratio of angle-differential rate coefficients (in the
laboratory system} for 0' and 180', respectively, is
(1+p) /(1 —p) according to Eqs. (41)—(43).

We find that the description of the radiative-
recombination process within the low-energy approxima-
tion, valid for relatively high-n states with n ~ Z and with
most of the results having simple analytical form for arbi-
trary (n, 1 ) states, offers a very convenient way to discuss
state-selective radiative-recombination experiments pro-
posed for heavy-ion storage rings [12,13].

V. CONCLUSIONS

In the present paper we have studied the radiative
recombination of bare ions with free electrons in the
low-energy limit E(&E„I, i.e., under conditions which
are perfectly fulfilled in experiments planned to be per-
formed in the electron coolers of storage rings. In this
approximation, the electric dipole matrix elements have
simple analytical forms. Moreover, we have also derived
the analytical formulas for the state-selective radiative-
recombination cross sections and angular distributions
for an arbitrary (n, l ) state. The rate coefficients can also
be expressed analytically, for any electron-beam-velocity
distribution, characterized by arbitrary longitudinal kT~~

and transverse kT~ beam temperatures. The results seem
to be very useful for planning and analyzing the experi-
ments concerning state-selective radiative recombination
in the electron coolers of heavy-ion storage rings.

Note added in proof. When the present paper had been
completed we learned about the paper by K. Omidvar
and P. T. Guimaraes [Astrophys. J (Suppl. Ser.) 73, 555
(1990)] where the oscillator strengths for hydrogenic
bound-free transitions were discussed in the low-energy
approximation. Analytical expressions obtained by these
authors for the oscillator strengths in this approximation
correspond to our expressions [Eqs. (A5) —(A8)] for the
electric dipole matrix elements in the low-energy limit.
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APPENDIX

In this Appendix we find the asymptotic forms of
Stobbe's [18] electric dipole matrix elements C„l'*'(x)
[Eqs. (6) and (7)] in the low-energy limit E «E«, i.e., for
x &&1.

First of all we note that

exp[(m /2 —2 arctanx )n /x ]
x~0 (sinn'. /x )'

(A 1)

kT = 02 eV

kT„= 0.002 eV
flattened
Maxwellian

Next, it is easy to show [41] that the hypergeometric
functions appearing in Eqs. (6) and (7) have the following
property:

10
0 50 60 90 120

LAB ANGLE (deg)

150 180 lim zF, a; i ,P, ,y;——. n 4ix
x 0

' ' x' " '(1+ix)2 =F(P, , y;4n ), (A2)

FIG. 5. The same rate coefBcient as in Fig. 3, but after trans-
formation to the laboratory system for an ion-beam velocity
p=0. 12 and plotted vs photon observation angle 8~,&.

where F(p, y;z ) is the confluent hypergeometric function
[41]. When the p parameter is a nonpositive integer, say
p= —m, the confluent hypergeometric function can be
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expressed [41]by a polynomial of order m:

m ( —m)k k
F( —m, y;z)= (y)„k! (A3)

where (a)k =a(a+1) . (a+k —1).
We found, however, that an asymptotic form (x «1)

of the difkrenee of hypergeometric functions
2FI( ) —u (x)2F&( ) in Eqs. (6) and (7) depends on a rela-
tion between p's as follows:

. n 4ix
2FI aI ' pt~yi (1+ix )

1+ix . n 4ix
2Fl a2 I p2 Y (1+Ix )

F(P„y;4n ) F(P2—,y;4n ), P,AP 2

x «1 (a2 —a, )p
4i—x F(P, y;4n ) — F(P+ l, y+1;4n ), PI =P2=P; aIAa2 .

y

(A4)

With the help of Eqs. (Al) and (A4) it is easy to show that for x « 1

C„,'+ '(x) = ( —1)" ' 'c, ,(n, l )&x,
C„I' '(x) =( —1)" 'cI, (n, l )~x

(A5)

(A6)

where we have introduced the reduced electric dipole matrix elements cist(n, l ), which do not depend on x. They have
the following form:

' 1/222I+4n I+le —2n

(2l + 1)!
(n + l )!

(n —I —1)!
' 1/2~21 I —1 —2n2 n e

(2l —1)!
(n —l )!

(n —l —1)!

I —n+ j.F(l n+—1,21+2;4n ) — F(l n+—2, 2l+3;4n )

[F(1 n+1, 2—l;4n ) F(l n ——1,2l;4n )—] .

(A7)

In conclusion, we have shown that using Eqs. (A7) and (AS), with the help of Eq. (A3) to calculate the F(p, y;z ) func-
tions, the reduced electric dipole matrix elements ci+,(n, l) can easily be calculated analytically for arbitrary (n, l)
states.

'Permanent address: Institute of Physics, Pedagogical Uni-
versity, 25-509 Kielce, Poland.
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