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Lower bounds to the binding energies of tdp
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We present lower bounds to the binding energies of the three-body Coulomb system, which were
drawn from Rayleigh-Ritz variational upper bounds to the inverse of the Hamiltonian. The method
is shown to generalize Temple's lower bound [Proc. R. Soc. London Ser. A 119, 276 (1928)]. We

applied the method to eigenvalues of the muonic molecular ion tdp, + where we reached accuracies of
10 natural atomic units or better.
PACS number(s): 36.10.Dr, 33.10.Cs

I. INTRODUCTION

The simple muonic molecular ions of the hydrogen iso-
topes are among the few true three-body Coulomb sys-
tems, which can be produced and studied experimentally.
For the ddt, system, experiment was able to measure the
binding energy of the first excited state of ddp, , with an-
gular momentum J = 1, with an accuracy of 10 n.a.u.
(natural atomic units M 1 + m„1 = ez = h = 1, where
M is the heaviest mass in the system and m& is the muon
mass) [1]. Special attention has also been paid to the tdls
system in the context of muon catalyzed fusion (for a re-
cent review see Ref. [2]). In a major theoretical efFort a
few years ago accurate upper bounds were calculated for
the binding energies of most states of all combinations
of hydrogen isotopes in muonic molecules [3—11]. Where
comparison is possible, agreement with experiment lies
within the experimental error [1].It was tempting to try
to complete the solution of the three-body bound-state
problem by calculating accurate lower bounds to the en-
ergies.

Unfortunately, as we will show, the powerful method of
Bazley and Fox [12] and its generalizations are not appli-
cable for true three-body systems. Therefore we resort
to a Temple-like [13] variational principle for the lower
bounds, which we derive in the following section. Sec-
tion III discusses the technical complications involved in
calculating matrix elements of H Finally in . Sec. IV
we demonstrate the numerical power of the method by
calculating bounds to the eigenvalues of tdIJ, .

II. LOWER BOUNDS TO EIGENVALUES

An efficient method to obtain lower bounds to heli-
umlike systems is the projection method (see, e.g. , [14]),
which generalizes the well-known bound by Bazley and
Fox [12]. However, any of the nontrivial forms of this
formula (e.g. , [14—16]) requires that the Hamiltonian of
the problem can be split in the form H = Hp+ H1 where
Hp is some comparison Hamiltonian and H1 ) 0. A nec-
essary condition for the calculation of a bound to the kth
eigenvalue EI, of H is that Hp have only a finite number
of N eigenvalues below El, Since for this .purpose the
onset of the continuum counts as infinitely many eigen-

values, it follows that only eigenvalues below the contin-
uum threshold of Hp can be bounded by the projection
method.

The full three-body Coulomb Hamiltonian after sep-
aration of the center-of-mass motion can be written in
interparticle coordinates as
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Here the continuum threshold of Hp is reached, when the
subsystem with the heavier mass, say m1, is in the ground
state, while the other one dissociates. This threshold lies
m1/(2m3) n.a.u. below the continuum threshold of the
full Hamiltonian (1). Thus, with decreasing ms the pro-
jection method quickly becomes useless for lower bound-
ing.

Assuming we know the number of eigenvalues of H
below a given value F, we may also choose the trivial
splitting

Hp ——H, H1 ——0, (4)

which leads to a generalization of Temple's lower bound.

with the reduced masses p,.
' = m,. + m3, where m,

denotes the mass of the ith particle and Z; are the respec-
tive charges. The coordinates r;& connect the ith with the
jth particle and V';& are the corresponding derivatives.

For infinite "nuclear" mass rn3 and charges Z1 ——Z2 ——

—1 and Zs ——2 ( He), the obvious choice is H1 —I/r13.
Since in that case the continuum thresholds of H and
Hp coincide, any bound state of a system with infinite
nuclear mass can in principle be bounded from below
using the projection method.

For finite mass m3 the mass polarization term can be
expressed by (V'13 + V'33) leading to
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We will give here a direct derivation of this particular
bound, which elucidates the meaning of the conditions
for its validity.

Suppose the Hamiltonian H has a finite number of
eigenvalues N below 0 and for simplicity let us assume
that 0 is not in the spectrum of K. Let EI„k = 1, . . . , N
denote the eigenvalues & 0 in ascending order. An up-
per bound Up to the kth eigenvalue EI, can be readily
obtained by the Rayleigh-Ritz variational method as the
kth solution in ascending order of the finite-dimensional
eigenvalue problem

).[(ilH 'lj) —(L~) '(ilj)jc;~ = o
j=1

(6)

Since for arbitrary functions li) it will be quite diffi-
cult to calculate the matrix elements (i!H lj), we make
the special choice li) = Hli), with {li)}the same as in
Eq. (5). As we assumed that 0 is not in the spectrum of
H, these li) will form a linearly independent set of func-
tions and clearly H 'li) = H 'Hli) = li) holds, which
shows that the li) are from D(H '). Now Eq. (6) reads

) [(ilHlj) —(L~)-'(ilH'lj)jc, ,~
= 0

j=1
(7)

Clearly, the upper bound (Ly) ' to the (N + 1 —k)
highest eigenvalue of H ' turns into a lower bound LI,
of the kth eigenvalue of H, provided Ly & 0 (Fig. 1), and
we have bounds to the kth eigenvalue of K,

La&E~&UA

) ((ilHlj) —U&(i'));,& = 0,
j=l

where (li)} C D(H) is a linearly independent, but oth-
erwise arbitrary set of basis functions from the domain
of K. The inverse of the Hamiltonian K will have ex-
actly N eigenvalues (Ey) i, k = 1, . . . , N below 0. Again
using the Rayleigh-Ritz method we can compute upper
bounds (L~) ' & (E~) ' by solving

where E, is below the continuum threshold and possible
accumulation points of the spectrum of H. With the
substitution L& ~ Ll, —E, , Eq. (7) turns into

As to the choice of E„one sees by multiplying Eq. (9)
by c; ~, summing over i and differentiating that

dI I, (H) —Li,

dE, E, —(H)
(12)

where the expectation values are taken with the normal-
ized function 4~ ——P,. c, .~!i), !!@pl!= 1 belonging to LI.„.
Therefore one will try to choose for E, a value as high
as possible. However, the number of roots Iy & E, in

Eq. (9) should be equal to N, the number of eigenvalues

EI, & E, . If this condition is not met, i.e. , one has only
N' & N roots with Ll, & E, , the lower bounds to the
N' highest eigenvalues EI, & E, will usually have trivial
values close to some lower eigenvalues of H, unless one

uses very good guesses for the basis functions {li)}.
Equation (9) optimizes Temple's inequality in the sense

that it gives the best upper bound to the kth eigenvalue
of (H —E,)

i and therefore the best lower bound to the
corresponding eigenvalue of H —E, with a given basis

{li)}and E, fixed. Further improvement is achieved,
because Eq. (9) is not subject to condition (10) and we

can always choose the highest value E, which allows N
solutions LI, & E, & E~+1.

) .[(ilH-E. lj)-(L. E-.)-'(il(H-E. )2lj)j;,.= 0
j=l

(9)

Temple's original bound results when we choose

E~+1

and M = 1. Then Eq. (9) gives an upper bound to the
lowest eigenvalue of (H —E, ) i, or a lower bound to the
highest eigenvalue & E, of 0 of the form

(H') —(H)'E.+» E. & E~ & L. = (H) —
E

The condition that the Hamiltonian have only a finite
number of eigenvalues below 0 can be fulfilled in a trivial
way by shifting the K by

III. BASIS FUNCTIONS AND MATRIX
ELEMENTS

H~H —E„

H

E2 Continuous spectrum0
I

Vfe use a generalized Hylleraas basis of the form

!
1 t7l' A' —Cj' 113—P 1gg —j f'1g (13)) —~&i "1S"2S "12

Here the polynomials Gz z, , j; p (1, . . . , J+ 1}determine
the angular symmetry of the basis. For J=O and J=l
they were chosen as Gi i = 1 and Gi ~

——cos(8~)i~3,
respectively, where 8& is the angle of r&s with the z axis.
For J=2 the we use

H

-1
E,

FIG. 1. Scheme of the correspondence of the spectrum of
II to the spectrum of H. Upper bounds to eigenvalues of
H turn into lower bounds for H.

G2, i —ri3(3 cos 8i 1)

G2 2
——r23(3 cos' 82 —1)&

G2 3 —ri31 23(3 cos 8i cos 82 —cos 8i2),

with 8i2 the angle between ri3 and r23. Since li) 6 D(H),
we require l;, m;, n; & 0.
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TABLE II. Definition of the basis sets used for Table I. Note that the basis contains J+1
dift'erent angular symmetry factors G'J,~„hence N can increase with J, although lm~x, mm~x, nm~»
and pm~x decrease.

(Je)
(oo)
(»)
(01)
(~o)
(20)

Bound

U, L
U
L

U, L
U, L

364
490
490
572
660

0.767
0.682
0.800
0.802
0.612

0.690
0.512
0.640
0.770
0.535

j..449
0.794
0.824
0.988
1.078

&max

11
8
8
10
9

mrna. x

11
8
8
10
9

'+max

11
13
13
10
9

@ma,x

11
13
13
10
9

factor of 70 than the best upper bounds comparing at
the same number of basis functions. One also sees that
optimization of the nonlinear parameters in set I gave
only moderate improvement over the lower bounds ob-
tained with set U. The ordinary Temple's bound using
the trial function from the upper bound calculation is
worse by a factor of 20 than the lower bounds with set
L.

Quite similar convergence behavior was found for the
remaining three states (Jv) = (00), (10), and (20). As
with the (01) state, the various bounds for a given state
converge with the number of basis functions approxi-
mately exponentially at the same rate, but the lower
bounds are constantly poorer than the upper bounds by
roughly two orders of magnitude. Optimization of the
nonlinear parameters for the lower bound did not give
significant improvements. Differently from the (01) state,
for these states the ordinary Temple's bound is only far-
ther by factors 2 from the exact eigenvalues than the
variatonal lower bound. Table I summarizes the best
bounds for all four states. Definition of the basis sets
used is in Table II.

V. CONCLUSIONS

For cases where the more powerful projection methods
are inapplicable to calculate lower bounds to eigenvalues,
we derived an optimal variational form of the standard
Temple's bound. We showed that this lower bound to
eigenvalues of H can be straightforwardly understood as
a Rayleigh-Ritz variational upper bound to eigenvalues
of the inverse Hamiltonian H

As is generally true for lower bounds, the numerical
quality of the lower bounds is much poorer than that
of the corresponding upper bounds. Yet once one de-
cides for the calculation of Temple's bound, one should
use the optimal form given in this paper, since it may
improve the bound by more than one order of magni-
tude. The main labor in such a calculation goes into
the evaluation of (Hz), while the additional effort to ob-
tain the optimal bound consists only in the solution of a
finite-dimensional eigenvalue problem. In the given ex-
amples, the use of the basis which was optimized for the
upper-bound calculation proved quite adequate also for
the lower bound, although minor improvements could be
achieved by optimizing the basis for the lower bounds.
In practical considerations this small improvement must
be weighed against the considerable computational effort

APPENDIX: CALCULATION OF THE
INTEGRALS

We need to compute integrals of the form

Jt,m, n(~ p v)

00 OO ~x+~s
dr1 dr2 dr1gr1 r2 r12

l m n

0 0

(A1)

where the coordinate r12 has been distinguished arbitrar-
ily, since the three coordinates are simply related by the
triangular inequality. Obviously, the integrals for differ-

ent powers l, m, n are related by

d
J( „(A,p, v)= J( g „(A,p, v)

J( g „(A,p, v)
d —p

d

( )
Jl, m, n 1(~,p, v). — (A2)

These relations prove to be useful for the computation of
some of the integrals and for checks.

There arise three different types of J~ „,either with
all three powers l, rn, n ) 0, or with exactly one of the
powers =—1, or with two of the powers =—1.

A numerically stable recurrence relation for the J's
with non-negative l, m, n is obtained by partial integra-
tion with respect to the coordinate r1 + r2

1
J( „=„(A( „+th i „+mJ( r„). (A3)

which may be connected with repeated calculations of
(H2) in the course of an optimization of the basis.

In the given examples of four bound states of the
muonic molecular ion (tdp)+ the optimal lower bounds
are poorer than the upper bounds by about two orders
of magnitude. For the (01) state the improvement by
the variational bound over Temple's bound amounts to a
factor of 20. Although, in view of the superiority of the
upper bounds, no attempt was made to push the lower
bounds to convergence, in all four cases the differences
between upper and lower bounds could be reduced to
below 10 5 n.a.u.
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By differentiating Eq. (A3) with respect to —A, —tt, and
—tr and using Eqs. (A2) one readily sees that the surface
terms A~ „also obey diH'erential relations

and integrates relation (A4)
OO 2

App t(A, P, P) = dz

d d
I mrr —

d( ~)
I-l mrr —

d( )
l m lr-r

d

( )Al (A4)
We differentiate (A9) I and m times with respect to —A

and —p, respectively, to obtain

For the Al „one finds the recurrence relation

1
~l,m, rr — [ ~ ~l-l, m, a + m ~l,m-l, rrA+ p+ 2v

+2n A( m ~-g

+bo 2(n+ I)!(A+v) ("+'+')

+bpl2(rty m)!(p+ v) &"+ +'&].

(A5)

For rt = —1, relation (A3) is equally valid, but relation
(A5) must be replaced by

1
Al t —— [ /Al y t —mAl

—bo 2l!(A+ v) ('+'&

+bol2m!(p+ tr) ( +'&]. (A6)

For general A, p, tr the alternating sign leads to huge can-
cellations and makes this recurrence useless for upward
use. The downward version of relation (A6) (assuming
without loss of generality A & tt)

1
~l-l, m, —1 ——[(& —P)~l, m, —1 + m ~l,m-l, -l] (A7)

2

(J + ~)(t + ~)
(AS)

is strictly positive and therefore numerically stable.
As starting values for the latter recurrence one needs to

compute mmax+1 integrals A& .„,m, -» m = 0, , mmax.
For that purpose one observes that

1J t, t,n = —[ —&Jp, —i,a-t —ttJ t,p,n-i

+(n+ 1)J t t t] (A11)

is too unstable for general use. Therefore we directly
calculate J ~ ~ „for each n by using the differential re-
lations (A2) and their inverse integral form to obtain

( d
J-l,-l, (&, p, l ) = dZ dy

~

l kd ~)
X Jp p p(Z, y, tr). (A12)

Observing that Jp p p(z, y, v) = 2/[(v+ z)(z + y)(y+ v)]
the differentiations with respect to —v and the integra-
tion with respect to y can be performed explicitly. The
integration over z was performed numerically for each n
using a self-adapting Gauss-Legendre quadrature proce-
dure. We could verify the results using the relations (A2)
to a relative accuracy of at least 10 when calculating
with 31 decimal digits (FORTRAN REAL*16).

OO 2 l!mt
Al, , t(A, p, tr) = dz, ,

' ', , (A10)A+Z tt+Z

which can easily be integrated numerically. [The closed
analytical form of the integral (Alp) is equivalent to the
recurrence (A6) and therefore equally numerically use-
less.]

The third type of integrals of the form J q ~ „can-
not be expressed through known functions and therefore
requires numerical integrations. Again the recurrence
starting from J q,
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